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CLIFFORD INVARIANTS OF
LINE BUNDLE-VALUED QUADRATIC FORMS

ASHER AUEL

Abstract. We construct an extension of the Clifford (also known as the Hasse–Witt or 2nd Stiefel–

Whitney) invariant to similarity classes of line bundle-valued quadratic forms of even rank n = 2m

and fixed discriminant δ on a scheme X (where 2 is invertible). This invariant resides in the étale
cohomology group H2

ét(X,κ
m
δ ) with coefficients in a twisted group scheme of order four and it

“interpolates” between the classical étale cohomological Clifford invariant of (OX -valued) quadratic

forms and the 1st Chern class (modulo 2) of the value line bundle. We further relate this invariant to
natural classes in the “involutive” Brauer group arising from the even Clifford algebra and Clifford

bimodule. In rank ≤ 6, we use the classification of line bundle-valued quadratic forms in terms

of twisted norm and pfaffian forms to explicitly compute this invariant and give necessary and
sufficient conditions for its vanishing.
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Introduction

For a line bundle L on a space X, the notion of a quadratic (or symmetric bilinear) form on X
with values in L dates back to the early 1970s. Geyer–Harder–Knebusch–Scharlau [44] introduced
the notion of symmetric bilinear forms with values in the module of Kähler differentials over a
global function field. This notion enabled a consistent choice of local traces in order to generalize
residue theorems to nonrational function fields. For a smooth complete algebraic curve X, Mumford
[77] introduced the notion of locally free OX -modules with pairings taking values in the sheaf of
differentials ωX to study theta characteristics. For a commutative ring R, Kanzaki [56] introduced
the notion of a Witt group W (I) of quadratic forms with values in an invertible R-module I.

Implicit in these early developments are generalizations to algebraic varieties of the classical transfer
(or trace) maps from the theory of quadratic forms over fields. The general context in which such
transfer maps exist has recently been established by the work of Gille [45], Nenashev [78], [79],
Calmès–Hornbostel [25], [26], and Balmer–Calmès [10]. If f : X → Y is a proper morphism of relative
dimension d between connected, noetherian, regular Spec Z[ 1

2 ]-schemes of finite Krull dimension, then
the total derived direct image functor gives rise to a transfer map,

f∗ : GW i+d(X,ωf )→ GW i(Y,OY ),

between the shifted derived (or coherent) Grothendieck–Witt groups introduced by Balmer [6], [7],
[8], and Walter [96]. Here, ωf is the relative dualizing sheaf from Grothendieck duality theory.
In particular, in order to define the transfer along a proper morphism f : X → Y , one is forced
to consider ωf -valued forms on X. It’s in this setting that Balmer [9, §1.4] and Walter [96, §10]
considered the existence of cohomological invariants defined on general shifted and line bundle-valued
Witt and Grothendieck-Witt groups.
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2 ASHER AUEL

Line bundle-valued forms have also emerged in the context of involutions on Azumaya algebras,
initially to generalize theorems of Albert [1, Thm. 10.19] on the existence of involutions on central
simple algebras. Saltman [88, Thm. 4.2] and Knus–Parimala–Srinivas [67, §3] showed that involutions
on endomorphism algebras are adjoint to symmetric bilinear forms with valued in line bundles. This
paved the way for a version of Jacobson’s [52] (see also Tits [93, §4]) even Clifford algebra of an
Azumaya algebra with orthogonal involution. In his thesis, Bichsel [18] (reported in Bichsel–Knus
[17]) constructs an even Clifford algebra of a line bundle-valued form over an affine scheme, then
Parimala–Sridharan [84] use étale descent to construct an even Clifford algebra of an Azumaya algebra
with orthogonal involution. These constructions enable much of the theory in [69] to be generalized
(with some care) to arbitrary base schemes. In this context, line bundle-valued forms should be
viewed as intermediary objects between quadratic forms and algebras with orthogonal involution:
they are “unsplit” versions of quadratic forms, yet they still represent orthogonal involutions on
“split” algebras.

Kapranov [57, §4.1] also considered the homogeneous Clifford algebra of a quadratic form—the same
as the generalized Clifford algebra (in the sense Bichsel–Knus [17]) or the graded Clifford algebra (in
the sense of Caenepeel–van Oystaeyen [23])—to study the derived category of projective quadrics
and quadric fibrations. This theme was later taken up and developed by Bondal–Orlov [20, §2], [19],
Kuznetsov [71], and Bolognesi–Bernardara [12]. These authors consider line bundle-valued quadratic
forms with possible degeneration.

Over Dedekind domains, regular line bundle-valued bilinear forms (so called modular lattices) have
been studied by Bushnell [21], [22], generalizing results of Fröhlich [38]. Recent number theoretic
developments have also seen the appearance of line bundle-valued forms. Bhargava’s [13], [14], [15]
classification of “rings of low rank” over Z is used in his work [16] on the distribution of discriminants
of number fields of fixed low degree. An approach to this classification over arbitrary base rings is
initiated in Wood’s thesis [97], where line bundle-valued forms (of higher degree) were essential to
the generalization of Bhargava’s results. Also see Ho’s thesis [49]. In related developments, Venkata
Balaji [5] and independently Voight [94], used Clifford algebras of (possibly degenerate) ternary line
bundle-valued forms to classify “degenerate” quaternion algebras over arbitrary bases.

In a topological context, Holla–Nitsure [50], [51] study characteristic classes (i.e. cohomological
invariants in singular cohomology) for possibly mildly degenerate line bundle-valued quadratic forms
(on complex vector bundles) by computing the cohomology of the relevant classifying space.

While the cohomological invariant theory of quadratic forms is well developed, the theory for line
bundle-valued forms is substantially less so. When L is the trivial line bundle, one can use the
work of Delzant [32], Laborde [72], or Jardine [53] to define invariants in étale cohomology analogous
to the Stiefel–Whitney (or higher Hasse–Witt) invariants for quadratic forms over fields (see [91],
for example). These invariants have been intensively studied by many people in various contexts,
including Serre [89], Knus–Ojanguren [70], Parimala–Srinivas [85], Ojanguren–Parimala–Sridharan
[80], Knus–Parimala–Sridharan [66], Esnault–Kahn–Viehweg [34], Jardine [54], Cassou-Noguès–Erez–
Taylor [27], and Esnault–Kahn–Levine–Viehweg [35]. In these approaches, invariants are constructed
is several ways: directly, in the case of the classical invariants; à la Grothendieck, using the étale
cohomology ring of a grassmannian bundle of anisotropic vectors; or as characteristic classes, using
the étale cohomology groups of the simplicial classifying scheme (or topos) of a standard orthogonal
group. The étale cohomology of the anisotropic grassmannian can be computed because it’s an
inner form of projective space with a standard subvariety of isotropic lines removed. The étale
cohomology of the classifying space can be computed by analogy with the topological case because
the standard orthogonal group is the base change of a smooth affine group scheme on Spec Z[ 1

2 ] (even
on Spec Z). When L is nontrivial, these approaches break down. When L is not a square in the
Picard group, there are no known calculations of the étale cohomology rings of the required spaces;
the calculations of Holla–Nitsure [50] in the topological case indicate that this might be a daunting
task. The orthogonal group of such an L -valued form is not a twist of the standard orthogonal group
by a cocycle representing a class in the image of the natural map H1

ét(X,On) → H1
ét(X,POn). As

Serre famously points out, the torsors for a group have in general no relation to the torsors for such
a form of the group.1

In this work, we employ a different approach. While isometry classes of L -valued forms are
associated to torsors for a twisted form of the orthogonal group, their similarity classes are associated
to torsors for a standard group GOn of orthogonal similitudes. One complication is the nonexistence
of a natural “pin” double covering of GO2m (this is even true in the topological context). Our

1 Serre [90, I, §5.5, Remarque] warns, “Par contre, H1(G, aA) n’a en général aucune relation avec H1(G,A).”
Then later in [90, I, §5.7, Remarque 1], Serre feels the need to reiterate himself, “Ici encore, il est faux en général que

H1(G, cB) soit en correspondance bijective avec H1(G,B).” This is indeed an important point.
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essential contribution is the realization that, while there is no natural double covering, there is a
natural four-fold covering of GO2m by the Clifford group Γ2m that becomes a central isogeny when
restricted to the subgroup of proper similitudes, and which “interpolates” between the Kummer
double covering of the multiplicative group and the classical pin covering of the orthogonal group (see
§2.4). Such a central isogeny does not seem to exist in the literature (though see Joshi [55] for an ad
hoc construction in rank 2). The kernel of this covering is the group scheme κmδ mentioned in the
abstract. The appearance of invariants with values in cohomology with coefficients in a group scheme
of order 4 is perhaps natural in light of Berhuy’s theory [11, Prop. 9] of descent of cohomological
invariants. An example of this is the cohomology class of the Tits algebra of a central simple algebra
with orthogonal involution, see [69, VII §31.11].

Finally, since our methods are mostly torsorial in nature, we restrict ourselves to the case where
2 is invertible. This eliminates the consideration of nonsmooth algebraic group schemes and allows
us to work purely in the étale site. The consideration of characteristic 2 phenomena will appear
elsewhere.

Main results. Let X be a noetherian separated scheme on which 2 is invertible. A line bundle-valued
quadratic form on X consists of a locally free OX -module E of finite rank, an invertible OX -module
L , and a quadratic map q : E → L . Since we assume that 2 is invertible on X, we will not concern
ourselves with the difference between line-bundle valued quadratic and symmetric bilinear forms.
Consult §1 for a review of these notions.

When L = OX , the generalization to étale cohomology of the (signed) discriminant d±(E , q) and
classical Clifford invariant c(E , q) yield important invariants of quadratic forms (E , q) on schemes.
When L 6= OX , the discriminant immediately yields a generalization to line bundle-valued forms of
even rank (see Parimala–Sridharan [84]), while the Clifford invariant—due to the nonexistence of a
“full” Clifford algebra—does not. The main construction of this current work is an extension of the
Clifford invariant to similarity classes of line bundle-valued quadratic forms.

For n ≥ 1 and f : Z → X an étale quadratic morphism with isomorphism class δ ∈ H1
ét(X,Z/2Z) ∼=

H1
ét(X,µ2), denote by GQδ

n(X) the set of similarity classes of regular line bundle-valued quadratic
forms of rank n and discriminant δ. In §2.3, we construct a group scheme κZn on X together with
canonical isomorphisms

κZn
∼=

{
R1
Z/Xµ4 if n ≡ 0, 1 mod 4

RZ/Xµ2 if n ≡ 2, 3 mod 4

where RZ/X and R1
Z/X denote the Weil restriction functor and subfunctor of norm one elements (see

§2.2), respectively. There is also a canonical exact sequence

(1) 1→ µ2
i−→ κZn

p−→ µ2 → 1

of group schemes on X. For the relationship between κZn and the center of the spin group, see §3.4.

Theorem 1 (Theorem 2.10). Let X be a scheme with 2 invertible. For each n ≥ 1 and étale quadratic
f : Z → X with class δ ∈ H1

ét(X,Z/2Z), there exists a map, called the similarity Clifford invariant,

gc : GQδ
n(X)→ H2

ét(X,κ
Z
n )

which “interpolates” between the classical étale cohomological Clifford invariant and the 1st Chern
class (modulo 2) of the value line bundle. More precisely, via the exact sequence of étale cohomology
groups

· · · → H2
ét(X,µ2) i2−→ H2

ét(X,κ
Z
n )

p2−→ H2
ét(X,µ2)→ · · ·

arising from (1), we have

i2c(E , q) = gc(E , q,OX), p2gc(E , q,L ) = c1(L ,µ2),

for every isometry class of OX-valued quadratic form (E , q) and every similarity class of line bundle-
valued quadratic form (E , q,L ) of rank n and discriminant δ.

The similarity Clifford invariant is constructed as the coboundary map in nonabelian étale coho-
mology associated to a short exact sequence of sheaves of groups

1→ κZn → SΓZn → GSOZ
n → 1

where SΓZn and GSOZ
n are the even Clifford group and group of proper orthogonal similitudes of

a fixed choice of OX -valued form of rank n and discriminant δ (see §2.4). This particular central
isogeny does not seems to have a place in the existing literature, except in small ranks (see Joshi [55],
for example). Here we use étale descent to identify the category of GSOZ

n -torsors on the étale site
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Xét with the category of regular oriented (see §1.10) line bundle-valued quadratic forms of rank n
and discriminant δ on X.

We prove that the invariant respects Grothendieck–Witt equivalence, and so defines an étale
cohomological invariant on the second part of the “fundamental” filtration of the total quadratic
Grothendieck–Witt group (see §2.7). Let GW (X,L ) denote the Grothendieck–Witt group of L -
valued quadratic forms onX andGW tot(X) = ⊕LGW (X,L ) denote the total quadratic Grothendieck-
Witt group (which is actually a group fibered over the Picard groupoid of X). The signed discriminant
defines a (surjective) cohomological invariant

d± : GW tot(X)→ H1
ét(X,µ2).

Define GItot
2 (X) = ⊕LGI2(X,L ) as the subgroup of GW tot(X) of classes of quadratic forms of rank

n ≡ 0 mod 4 and trivial discriminant.

Theorem 2 (Theorem 2.11). Let X be a scheme with 2 invertible. The similarity Clifford invariant
respects Grothendieck–Witt equivalence and so defines an invariant

gc : GItot
2 (X)→ H2

ét(X,µ4).

Furthermore, if (E , q,L ) is a quadratic form of rank n ≡ 0 mod 4 and trivial discriminant on X,
then

gc((E , q,L ) ⊥ HL (V )) = c(E , q,L ) + i2c1(V ,µ2)

for any L -valued hyperbolic form HL (V ) with lagrangian V of even rank.

In §3 we relate the similarity Clifford invariant to “Brauer classes” associated to the even Clifford
algebra of line bundle-valued form defined in Bichsel [18] and Bichsel–Knus [17]. Parimala–Srinivas
[85] define an “involutive” Brauer group Br∗(X) of Azumaya OX -algebras with involution of the
first kind as well as a “Z/X-unitary involutive” Brauer group Br∗(Z/X) of Azumaya OZ-algebras
with Z/X-unitary involution for f : Z → X étale quadratic (see §3.3). If (E , q,L ) is a regular line
bundle-valued quadratic form of even rank n, then its even Clifford algebra C0(E , q,L )—together
with its canonical Clifford involution τ0—defines a class [C̃0(E , q,L ), τ0] in Br∗(Z) if n ≡ 0 mod 4 or
in Br∗(Z/X) if n ≡ 2 mod 4 (see 3.4). Here, the étale quadratic f : Z → X is the given by the center
of the even Clifford algebra.

Theorem 3 (Theorems 3.13, 3.17). Let X be a scheme with 2 invertible, (E , q,L ) a regular line
bundle-valued quadratic form of even rank n and étale quadratic f : Z → X given by the center of its
even Clifford algebra.

a) If n ≡ 0 mod 4, then

ϕ2gc(E , q,L ) = i2[C̃0(E , q,L ), τ0] + c1(f∗L ,µ4)

in H2
ét(Z,µ4), where i2 : Br∗(Z) → H2

ét(Z,µ4) and ϕ2 : H2
ét(X,κ

Z
n ) → H2

ét(Z,µ4) are certain
canonical comparison maps.

b) If n ≡ 2 mod 4, then

φ2gc(E , q,L ) = [C̃0(E , q,L )]

in H2
ét(Z,Gm), where φ2 : H2

ét(X,κ
Z
n )→ H2

ét(Z,Gm) is a certain canonical comparison map.

In §4 we proceed to exactly calculate the similarity Clifford invariant in terms of “involutive”
cohomology classes arising from what we call Clifford data. A Clifford datum mixes the canonical
involution of the even Clifford algebra together with so-called torsion data arising from the Clifford
bimodule. One should think of a torsion datum as a generalization of an involution. A Clifford datum
(Z/X,A , σ,P, ϕ) combines an Azumaya algebra with involution (A , σ) of the first kind (resp. of
unitary type) together with a torsion datum (A ,P, ϕ) of unitary type (resp. of the first kind). The
interaction of both these structures enables the explicit calculation of the similarity Clifford invariant.

A torsion datum (A ,P, ϕ) on X gives rise to a cohomology class [A ,P, ϕ] in H2
ét(Z,µ2) or in

H2
ét(X,R

1
Z/XGm), depending on whether it is of the first type or of unitary type, respectively.

Theorem 4. Let X be a scheme with 2 invertible and (E , q,L ) a regular line bundle-valued quadratic
form of even rank n and Clifford datum (Z/X,A , σ,P, ϕ).

a) If n ≡ 2 mod 4 then gc(E , q,L ) = [A ,P, ϕ] in H2
ét(X,κ

Z
n ) ∼= H2

ét(Z,µ2)

b) If n ≡ 0 mod 4 then i2gc(E , q,L ) = [A ,P, ϕ] in H2
ét(X,R

1
Z/XGm).

where i2 : H2
ét(X,κ

Z
n )→ H2

ét(X,R
1
Z/XGm) is a certain canonical comparison map.
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In the case where m is even, we also have an exact formula (see Theorem 4.12) expressing the
similarity Clifford invariant in terms of Clifford data. To achieve this, we establish a concrete presen-
tation for the cohomology group H2

ét(X,R
1
Z/Xµ4), generalizing Colliot-Thélène–Gille–Parimala [28,

Prop. 2.10], as a certain fibered product of involutive Brauer groups.
The results in §3 and §4 indicate that the (refined) Tits algebra captures the even Clifford algebra

with it’s canonical involution while the similarity Clifford invariant constructed here captures the
Clifford bimodule and its associated involutive structures.

Finally, in §5 we use the classification of line bundle-valued quadratic forms of rank 2, 4, and 6
in terms of twisted norm and pfaffian functors to explicitly compute the similarity Clifford invariant
and give necessary and sufficient conditions as to its vanishing. The classification of regular quadratic
forms of low rank over rings was initiated by Kneser, Knus, Ojanguren, Parimala, Paques, and
Sridharan [60], [62], [63], [61], [64], [65]. Bichsel [18] and Bichsel–Knus [17] provide an extension of
this theory to line bundle-valued forms of trivial discriminant over rings. In the context of quadratic
forms over schemes, low rank usually means of rank≤ 6. In this interval, the exceptional isomorphisms
of Dynkin diagrams A1 = B1 = C1, D2 = A2

1, B2 = C2, and A3 = D3, have beautiful reverberations
in the theory of quadratic forms of rank 3, 4, 5, and 6, respectively. Now, a standard reference on
this work is Knus [68, Ch. V]. Over fields, a wonderful reference is [69, IV §15]. Much of the work
in §5 can be viewed as generalization, from fields to schemes, of facts from [69]. While much of the
existing theory over rings can be globalized, a unified treatment using the category of Clifford data
(see §4.3) appears in Auel [4].

Theorem 5 (Corollaries 5.6, 5.10, 5.14). Let X be a scheme with 2 invertible and (E , q,L ) a regular
line bundle-valued quadratic form of even rank n and étale quadratic f : Z → X arising from the
center of the even Clifford algebra with ι the nontrivial element of the Galois group of Z/X.
• If n = 2 then (E , q,L ) has trivial discriminant if and only if it’s similar to a hyperbolic form
HL (V ) for some invertible OX-module V . Furthermore, gc(E , q,L ) is trivial if and only if
both L and V are squares in Pic(X).

• If n = 4 then gc(E , q,L ) is trivial if and only if there exists a locally free OZ-module V of rank
2 satisfying det V ∼= ι∗ det V such that (E , q,L ) is similar to the norm NZ/X(V ,∧,det V ) of
the canonical skew-symmetric form V ⊗ V

∧−→ det V . Furthermore, if (E , q,L ) has trivial
discriminant, then it’s similar to the canonical quadratic form W ⊗W ′ ∧⊗∧−−−→ det W ⊗ det W ′

for locally free OX-modules W and W ′ of rank 2 with det W ∼= det W ′.

• If n = 6 then gc(E , q,L ) is trivial if and only if there exists a regular line bundle-valued Z/X-
hermitian form (H , h,M ) of rank 4 with trivial hermitian discriminant such that f∗(E , q,L )
is similar (with the pullback Z/X-hermitian structure) to the canonical quadratic form

∧2H
∧−→

det H . Furthermore, if (E , q,L ) has trivial discriminant, then it’s similar to the canonical
quadratic form

∧2W
∧−→ det W for a locally free OX-module W of rank 4 with det W a square

in Pic(X).

While much of the motivation to construct such a theory of cohomological invariants for line
bundle-valued quadratic forms (and eventually Azumaya algebras with orthogonal involution) comes
from classification problems, there are many other potential applications. As a complement to a
series of papers by Parimala, Scharlau, and Sridharan [82], [83], [81], the author [2] uses the similar-
ity Clifford invariant to prove the validity of Merkurjev’s theorem for line bundle-valued quadratic
forms, where it was known to fail for (OX -valued) quadratic forms. There are also applications to
the “orthogonal Riemann-Roch” problem on computing cohomological invariants of pushforwards in
derived Grothendieck–Witt groups. Finally, a version of the four-fold covering of the orthogonal
similitude group can be adapted to Galois representations—analogously to Deligne’s [31] use of the
spin group—to investigate obstructions to embedding problems and local constants associated to
essentially self-dual Galois representations of orthogonal type.
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1. Torsorial theory of line bundle-valued forms

Let X be a scheme and L and invertible OX -module. An (L -valued) bilinear form on X is a
triple (E , b,L ), where E is a locally free OX -module of finite rank and b : T 2E = E ⊗ E → L is an
OX -module morphism, equivalently, b is a global section of Hom(T 2E ,L ). An L -valued bilinear
form is symmetric if b factors through the canonical epimorphism T 2E → S2E , equivalently, b is a
section of Hom(S2E ,L ) ⊂Hom(T 2E ,L ). An L -valued bilinear form is skew-symmetric if b factors
through the canonical epimorphism T 2E →

∧2E , equivalently, b is a section of Hom(
∧2E ,L ) ⊂

Hom(T 2E ,L ). An (L -valued) quadratic form on X is a triple (E , q,L ), where E is a locally
free OX -module and q : S2E → L is an OX -module morphism, equivalently, q is a global section
of Hom(S2E ,L ) ∼= S2(E ∨) ⊗ L . Here S2E and S2E denote the second symmetric power and
submodule of symmetric second tensors of E , respectively.

Conventions. Denote by Xét the (large) étale site of X. We consider many sheaves of groups on Xét,
such as GL(E ) and O(E , q,L ), that depend on a regular line bundle-valued bilinear form (E , q,L ).
When writing exact sequences and commutative diagrams of such groups, we will often suppress this
dependence. We will also suppress the dependence on the base X, when writing common sheaves of
groups, such as Gm and µn, that are defined over Spec Z.

If α : G → G is a homomorphism of sheaves of groups on Xét, then denote by αi : Hi
ét(X,G) →

Hi
ét(X,G

′) the induced map on étale cohomology, where we assume G and G′ are abelian for i ≥ 2.
All algebras and sheaves of algebras will be unital and associative. The sheaf of algebra automor-

phisms of an OX -algebra A will be denoted by Aut(A ). For a commutative OX -algebra Z , and
a Z -module (resp. algebra) M , we will denote by M̃ the associated OZ-module (resp. algebra) on
Z = Spec Z . A finite étale morphism f : Z → X of degree 2 will be called étale quadratic.

1.1. Quadratic and symmetric bilinear forms. Over an arbitrary scheme, the above notion of
quadratic form agrees with the “classical” notion. See also Swan [92, Lemma 2.1] and Wood [97,
§2.6].

Lemma 1.1. Let Quad(E ,L ) be the Zariski sheaf associated with the presheaf assigning to U → X
the abelian group of maps q : E |U → L |U that satisfy

• q(a v) = a2 q(v) on local sections a of OU and v of E |U , and
• the map bq : E |U ×E |U → L |U , defined locally on sections by b(v, w) = q(v+w)− q(v)− q(w),

is OU -bilinear.

Then there is a canonical isomorphism of OX-modules Quad(E ,L )→Hom(S2E ,L ).

There’s also a canonical OX -module morphism Γ2E → S2E from the module of second divided
powers, which is an isomorphism is E is locally free, see Deligne [30, 5.5.2.5]. Composing the
isomorphism constructed in Lemma 1.1 with the dual of this isomorphism yields an isomorphism
Quad(E ,L ) → Hom(Γ2E ,L ), yielding an additional general tensorial interpretation of quadratic
forms. Also, there’s a canonical isomorphism S2(E ∨)⊗L →Hom(S2E ,L ).

As in the classical case, if 2 is invertible on X, then every quadratic form is the associated quadratic
form of a (symmetric) bilinear form on X, i.e. the canonical OX -module morphism Hom(S2E ,L )→
Hom(S2E ,L ) is an isomorphism. Note that this morphism is not in general equivariant with respect
to the natural GL(E )×GL(L ) actions.

1.2. Adjoint morphism. An L -valued bilinear form b : T 2E → L has an OX -module adjoint
morphism ψb : E → Hom(E ,L ) defined on sections by v 7→

(
w 7→ b(v ⊗ w)

)
. A bilinear form b is

called regular if ψb is an isomorphism of OX -modules. An L -valued quadratic form q : E → L is
called regular if its associated bilinear form bq is regular.

On the category of coherent OX -modules, denote by (−)∨L the exact (contravariant) functor
Hom(−,L ). There is a canonical evaluation morphism of functors

evL : id→ ((−)∨L )∨L ,

which is an isomorphism on the subcategory VB(X) of locally free OX -modules of finite rank. The
triple (VB(X), (−)∨L , evL ) forms an exact category with duality in the language of Balmer [6].

1.3. Similarities and isometries. A similarity (transformation) or similitude between bilinear
forms (E , b,L ) and (E ′, b′,L ′) is a pair (ϕ, λ) of OX -module isomorphisms ϕ : E → E ′ and
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λ : L → L ′ such that either of the following (equivalent) diagrams,

T 2E

T 2ϕ

��

b // L

λ

��
T 2E ′

b′ // L ′

E

ϕ

��

ψb // Hom(E ,L )

λ−1ϕ∨L

��
E ′

ψb′ // Hom(E ′,L ′)

(2)

of OX -modules commute, where λ−1ϕ∨L (ψ) = λ−1◦ψ◦ϕ on sections. Note that the commutativity of
the left-hand diagram (2) takes on the familiar formula b′(ϕ(v), ϕ(w)) = λ◦b(v, w) on sections, and can
be adapted to define similarity transformations between quadratic forms. A similarity transformation
(ϕ, λ) is an isometry if L = L ′ and λ is the identity map.

Denote by Sim(E , b,L ) (resp. Iso(E , b,L )) the presheaf of similitudes (resp. isometries) of a
regular L -valued quadratic or bilinear form (E , b,L ). In fact, these presheaves are sheaves on Xét

and are representable by smooth affine reductive group schemes over X (see Demazure–Gabriel [33, III
§5.2.3]). When b is quadratic or symmetric, we denote this group by GO(E , b,L ) (resp. O(E , b,L ))
and call them the orthogonal similitudes group (resp. orthogonal group) of (E , b,L ). When b is skew-
symmetric, we denote these groups by GSp(E , b,L ) (resp. Sp(E , b,L )). For ε ∈ H0

ét(X,µ2) we will
say that an L -valued bilinear form is ε-symmetric if on each connected component X ′ of X, it is
either symmetric and ε|X′ = 1 or skew-symmetric and ε|X′ = −1. We will often omit the dependence
of the groups of similitudes and isometries on the form (E , q,L ) when no confusion may arise. Even
when these sheaves of groups are representable by schemes over X, we will still think of them as
sheaves of groups on Xét.

1.4. Torsor interpretations. For the abstract notion of a (right) torsor for a sheaf of groups on a
site, see Giraud [47].

Proposition 1.2. Let X be a scheme. Let (E , b,L ) be a fixed L -valued ε-symmetric bilinear form
of rank n on X.

a) The groupoid of Iso(E , b,L )-torsors is equivalent to the groupoid whose objects are regular
L -valued ε-symmetric bilinear forms of rank n and whose morphisms are isometries.

b) The groupoid of Sim(E , b,L )-torsors is equivalent to the groupoid whose objects are regular
line bundle-valued ε-symmetric bilinear forms of rank n and whose morphisms are similarity
transformations.

Proof. For a), the statement is a twist of [33, III, §5.2.1]. For further details, and for b), see Auel [3,
Appendix A]. �

Remark 1.3. If E is a locally free OX -module of rank n, we will denote by GL(E ) its general linear
group on Xét. The sheaves of groups GL(E ) and GL(E ′) are isomorphic on Xét if and only if
E ′ ∼= E ⊗L for some invertible OX -module L . For any invertible OX -module L , there’s a canonical
isomorphism Gm ∼−→ GL(L ), through which we shall identify these groups. A subtlety inherent in
this identification arises when considering the pointed set of isomorphism classes of GL(L )-torsors,
for which the distinguished point is canonically associated to the isomorphism class of L . A similar
remark should be made for the identification µ2 = O(E , b,L ) where (E , b,L ) is a regular form of
rank 1. In what follows, we will keep track of these identifications, if not in our notation, then in any
statement concerning torsors.

1.5. The multiplier sequence. The map assigning (ϕ, λ) 7→ λ on sections defines the multiplier
coefficient homomorphism µ : Sim(E , b,L )→ GL(L ) = Gm.

Proposition 1.4. For any scheme X with 2 invertible, the sequence of sheaves of groups,

1→ Iso(E , b,L )→ Sim(E , b,L )
µ−→ Gm → 1,

is exact on Xét and is called the multiplier sequence.

Proof. The only part needing an argument is that µ is an epimorphism. This follows from the fact that
µ restricted to the central subgroup of homotheties is the squaring map, i.e. there’s a commutative
diagram

1 // µ2

��

// Gm

��

2 // Gm
// 1

1 // Iso // Sim
µ // Gm

// 1

of sheaves of groups on Xét with exact rows. Of course, the (top horizontal) Kummer sequence in
exact on Xét if 2 is invertible. �
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Remark 1.5. The interpretation of the multiplier sequence on cohomology is as follows. If (E , b,L )
is a fixed L -valued ε-symmetric bilinear form of rank n on X, then the map

H1
ét(X, Iso(E , b,L ))→ H1

ét(X,Sim(E , b,L ))

takes the isometry class of a regular L -valued ε-symmetric bilinear form of rank n on X to its
similarity class. Under the identification GL(L ) = Gm the map

H1
ét(X,Sim(E , b,L ))→ H1

ét(X,Gm) ∼= Pic(X)

takes the similarity class of a regular L ′-valued symmetric bilinear form of rank n on X to the class
of L ′ in Pic(X).

1.6. Forms of odd rank. The theory of regular line bundle-valued bilinear forms of odd rank
essentially reduces to the study of regular OX -valued bilinear forms.

Lemma 1.6. If L is not a square in the Picard group Pic(X), then any regular L -valued bilinear
form has even rank.

Proof. Let (E , b,L ) be a regular bilinear form of rank n. Comparing determinants yields an isomor-
phism det(E)⊗2 ∼= L ⊗n of line bundles. Thus we see that either n must be even or L is a square
in Pic(X) (up to an n-torsion element, which is itself a square). An alternate proof in the symmetric
case, using the even Clifford algebra (see §1.8), can be found in [17, Theorem 3.7]. �

Thus every regular line bundle-valued bilinear form of odd rank has values in the square of some
line bundle. In fact, for symmetric forms, there is even a way to take a canonical square root of
the value bundle, see Auel [3, §1.3]. This can also be seen as a consequence of the direct product
structures Gm × SO(E , b,L ) → GO(E , b,L ) of orthogonal similitude groups in odd rank. In view
of this fact, we will only consider regular line bundle-valued forms of even rank.

1.7. Metabolic forms. The notion of a metabolic form—the correct generalization to schemes of the
notion of hyperbolic form—is necessary to the construction of the Grothendieck–Witt and Witt groups
of schemes. The formalism of OX -valued metabolic forms over arbitrary schemes was first introduced
by Knebusch [58, I §3] and then extended to the context of triangulated and exact categories with
duality by Balmer [6], [7], and [8]. We will summarize the formalism of metabolic forms in the context
of line bundle-valued symmetric bilinear forms.

Definition 1.7. Let (E , b,L ) be a line bundle-valued symmetric bilinear form on X and V
j−→ E

a locally free OX -submodule with locally free quotient. The (L -valued) orthogonal complement

V ⊥
j⊥−−→ E is the kernel of the composition E

j∨L ◦ψb−−−−−→Hom(V ,L ).

Note that the restriction of the adjoint map yields an isomorphism V ⊥
ψb|V⊥−−−−→Hom(E /V ,L ).

Definition 1.8. Let (E , b,L ) be a line bundle-valued symmetric bilinear form on X and V
j−→ E

a locally free OX -submodule. Then V is an (L -valued) lagrangian if V = V ⊥, i.e. if there’s an
isomorphism of short exact sequences,

0 // V

canL

��

j=j⊥ // E

ψb

��

j∨L ◦ψb// Hom(V ,L ) // 0

0 // Hom(Hom(V ,L ),L )
(j∨L ◦ψb)∨L // Hom(E ,L )

j∨L

// Hom(V ,L ) // 0

of locally free OX -modules. An L -valued symmetric bilinear form on X is called metabolic if it has
an L -valued lagrangian. An L -valued quadratic form on X is called metabolic if it’s associated
bilinear form is metabolic. Any metabolic form is regular.

The L -valued hyperbolic quadratic form HL (V ) with lagrangian V is the quadratic form (V ⊕
Hom(V ,L ), h,L ) where h is the canonical evaluation pairing h(v, f) = f(v) on sections. We will
often consider the associated L -valued hyperbolic symmetric bilinear form as well.

We call an L -valued metabolic form (E , b,L ) a split metabolic form if some lagrangian V → E
is a direct summand. If 2 is invertible on X, then any split metabolic form (E , b,L ) with direct
summand lagrangian V is isometric to the hyperbolic form HL (V ), see [58, §3 Prop. 1].
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Splitting principle for metabolic forms. Over an affine scheme, every (line bundle-valued) metabolic
form is split. This follows by an adaptation of Knebusch [58, I §3, Corollary 1]. Over a general scheme,
this is no longer the case. However, there’s a splitting principle for metabolic forms, in analogy with
the classical splitting principle for locally free sheaves.

Theorem 1.9. Let X be a scheme and let (E , b,L ) be a metabolic form on X with lagrangian

V
j−→ E .
a) There exists a morphism of schemes f : Y → X such that f∗ : Hi

ét(X,µ2) → Hi
ét(X,µ2) is

injective and f∗(E , b,L ) is a split metabolic form with lagrangian f∗V .
b) If 2 is invertible on X, then there exists a morphism of schemes f : Y → X such that f∗ :

Hi
ét(X,µ2) → Hi

ét(Y,µ2) is injective and f∗(E , b,L ) is isometric to an orthogonal sum of
hyperbolic planes

Hf∗L (V1)⊥ · · ·⊥Hf∗L (Vm),

for invertible OX-modules V1, . . . ,Vm on Y .

Proof. As for a), this is a classical construction. Following Fulton [40, §2], let V
j−→ E be a lagrangian

and let P ⊂ Hom(E ,V ) be the subbundle whose sections over U → X are OU -module morphisms
ϕ : E |U → V |U such that j|U ◦ ϕ = idU . Let Y = V(P) be the corresponding affine bundle, and
f : Y → X the natural projection. Then f∗E has a tautological projection to f∗V , which is a section
of f∗j, hence f∗(E , b,L ) is a split metabolic form with lagrangian f∗V . It is a standard fact that
f∗ is an injection on cohomology for a Zariski locally trivial affine bundle.

Now b) is a direct result of a) and the classical splitting principle for locally free sheaves. Also see
Fulton [40, §2] for a proof using the isotropic flag bundle of a metabolic bundle. Pulling back to this
flag variety yields the required splitting. Also see Esnault–Kahn–Viehweg [34, §5] for a proof using
iterated projective bundles. �

1.8. Even Clifford algebra. In his thesis, Bichsel [18] constructed an even Clifford algebra of a line
bundle-valued quadratic form on an affine scheme. Bichsel–Knus [17], Caenepeel–van Oystaeyen [23]
and Parimala–Sridharan [84, §4] gave alternate constructions, all of which we shall recall below. Let
(E , q,L ) be a line bundle-valued quadratic form on X, not necessarily assumed to be regular.

Splitting construction. Let LL = ⊕n∈ZL ⊗n (called the Laurent polynomial algebra or generalized
Rees ring in the literature) and define Y = Spec LL . Then p : Y → X is identified with the total
space of the line bundle L on X with the zero section removed. There is a canonical identification
p∗L = OY defined using the multiplication in the Rees ring, with respect to which, p∗(E , q,L ) has
a natural structure of (OY -valued) quadratic form on Y . The quasi-coherent sheaf of OX -algebras
C ′(E , q,L ) = p∗C (p∗(E , q,L )), where C is the standard Clifford algebra functor, is called the
generalized Clifford algebra in [17]. As an LL -algebra, C ′(E , q,L ) inherits a natural Z-graded OX -
algebra structure. The even Clifford algebra C0(E , b,L ) is defined to be its 0th degree submodule.
This construction is due to Caenepeel–van Oystaeyen [23].

Tensorial construction. Let TE = ⊕n≥0E⊗n be the tensor algebra on E . Define an ideal J ⊂
TE ⊗OX LL , locally generated by v ⊗ v ⊗ 1LL − 1TE ⊗ q(v) for sections v of E . Define a Z-grading
on TE ⊗OX LL by putting E in degree 1 and L in degree 2. Then J is a 2Z-graded ideal and
C ′(E , q,L ) = TE ⊗OX LL /J is a Z-graded (as well as a Z/2Z-graded) OX -algebra, defining the
generalized Clifford algebra. The even Clifford algebra is defined to be its 0th degree submodule.
This construction is due to Bichsel–Knus [17, §3].

Alternatively, following [69, II Lemma 8.1], we can directly define ideals J1 and J2 of T (E ⊗E ⊗
L ∨) locally generated by

v ⊗ v ⊗ f − f(q(v)), and u⊗ v ⊗ f ⊗ v ⊗ w ⊗ g − u⊗ w ⊗ f(q(v)) · g,

respectively, for sections u, v, w of E and f, g of L ∨. Then C0(E , q,L ) = T (E ⊗E ⊗L ∨)/(J1 +J2).

Gluing construction. Choose a Zariski affine open cover, U = {Ui}i∈I , of X trivializing L via
ϕi : OUi ∼−→ L |Ui . Then aij = ϕij

−1 ϕij ∈ Gm(Uij) for (i, j) ∈ I2 (where Uij = Ui ×X Uj and
ϕij = ϕi|Uij , etc.) is a Čech 1-cocycle representing L . For each i ∈ I, the composition,

ϕ−1
i ◦ b|Ui : E |Ui → L |Ui → OUi ,

defines an OUi -valued quadratic form on Ui, and for each (i, j) ∈ I2, one checks that the identity map
on E |Uij defines a similarity transformation,

(id|Uij , aij) : (E |Uij , ϕ−1
j ◦ q|Uij ,OUij )→ (E |Uij , ϕ−1

i ◦ q|Uij ,OUij ).
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These similarities lift to OUij -algebra isomorphisms of the standard even Clifford algebras (see Knus
[68, IV Prop. 7.1.1]),

C0(id|Uij , aij) : C0(E |Uij , ϕ−1
j ◦ q|Uij )→ C0(E |Uij , ϕ−1

i ◦ q|Uij ),
yielding a gluing datum constructing the even Clifford algebra C0(E , q,L ). This construction is due
to Parimala–Sridharan [84, §4]. The original construction in Bichsel [18], in the affine case, uses
faithfully flat descent.

Remark 1.10. For a regular (OX -valued) quadratic form (H , b) of rank n and trivial Clifford algebra,
the homomorphism of sheaves of groups, GO(H , b)→ Aut(C0(H , b)) defined by lifting similarities
to automorphisms of the even Clifford algebra, induces a map

H1
ét(X,GO(H , b))→ H1

ét(X,Aut(C0(H , b)))

with the following interpretation: the class associated (by Proposition 1.2 and Proposition 3.3) to
the similarity class of a line bundle-valued quadratic form of rank n maps to the isomorphism class
of its even Clifford algebra.

Functorial properties. Some consequence of the splitting construction and the classical properties of
the even Clifford algebra are (assuming that (E , q,L ) is regular and of rank n on X):

a) If n is odd, C0(E , q,L ) is a central OX -algebra. If n = 2m is even, the center Z (E , q,L ) of
C0(E , q,L ) is an étale quadratic OX -algebra (i.e. the morphism f : Spec Z = Z → X is étale
quadratic).

b) If n is odd, C0(E , q,L ) is an Azumaya OX -algebra of rank 2n−1; if n is even, C0(E , q,L ) gives
rise to an Azumaya OZ-algebra of rank 2n−2

c) There is a canonical embedding of locally free OX -modules

i : E ⊗ E ⊗L ∨ → C0(E , q,L )

and a unique canonical involution τ0 of C0(E , q,L ) that restricts to the näıve switch map on
(the first two tensor factors of) E ⊗ E ⊗L ∨.

d) Any similarity transformation (ϕ, λ) : (E , q,L )→ (E ′, q′,L ′) induces an OX -algebra isomor-
phism

C0(ϕ, λ) : C0(E , q,L )→ C0(E ′, q′,L ′).
e) Any regular bilinear form (N , n,N ⊗2) of rank 1, induces an OX -algebra isomorphism

C0(n⊗ id) : C0(E , q,L )→ C0(N ⊗ E , n⊗ q,N ⊗2 ⊗L ).

f) For any morphism of schemes g : X ′ → X, there’s a canonical OX -module isomorphism

g∗C0(E , q,L ) ∼−→ C0(g∗(E , q,L )).

1.9. The discriminant and Arf invariant. The classical signed discriminant of a quadratic form
generalizes to line bundle-valued bilinear forms of even rank, see Parimala–Srinivas [85, §2.2] and
Parimala–Sridharan [84, §4]. We will review this construction here.

By a discriminant module (N , b) on X we mean a regular OX -valued bilinear form b : T 2N → OX
of rank 1. The group (under tensor product and with identity 〈1〉 : T 2OX → OX given by multi-
plication) of isometry classes of discriminant modules on X is canonically isomorphic to H1

ét(X,µ2),
see Milne [76, III §4]. Given an étale quadratic f : Z → X, let N be the kernel of the trace
map f∗OZ

Tr−→ OX . Then the multiplication in the OX -algebra f∗OZ induces a bilinear form
m|N : T 2N → OX , yielding a discriminant module on X, see Knus [68, III §4.2]. The X-isomorphism
classes of étale quadratic f : Z → X is canonically isomorphic to the group H1

ét(X,Z/2Z), and we’ve
just defined a map χ1 : H1

ét(X,Z/2Z)→ H1
ét(X,µ2). This map is the homomorphism induced on co-

homology from the canonical homomorphism of group schemes χ : Z/2Z→ µ2 and is an isomorphism
if 2 is invertible on X, see [68, III Prop. 4.2.4].

Let (E , b,L ) be a regular L -valued bilinear form of rank n on X. Applying the determinant
functor to the adjoint morphism yields an OX -module isomorphism

det E
detψb−−−−→ det Hom(E ,L ) can−−→Hom(det E ,L ⊗n),

of OX -modules, where the canonical isomorphism at right given by

(3) f1 ∧ · · · ∧ fn 7→
(
v1 ∧ · · · ∧ vn 7→ det(fi(vj))ij

)
on sections. Write det b for the L ⊗n-valued bilinear form of rank 1 on X whose adjoint morphism is
the composition can ◦ detψb. Note that under the above identification, det b is given by

det E ⊗ det E
det b−−−→ L ⊗n

v1 ∧ · · · ∧ vn ⊗ w1 ∧ · · · ∧ wn 7−−−→ det(b(vi, wj))ij
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on sections.

Definition 1.11. Let (E , q,L ) be a regular L -valued bilinear form of even rank n = 2m on X. The
unsigned discriminant form of (E , b,L ) is the discriminant module d(E , b,L ) = (L ∨⊗m⊗det E , d(b))
given by the composition

d(b) : T 2(L ∨⊗m ⊗ det E )→ L ∨⊗n ⊗ T 2 det E
id⊗det b−−−−−→ L ∨⊗n ⊗L ⊗n

ev−→ OX ,

The signed discriminant form is the discriminant module d±(E , b,L ) = (L ∨⊗m⊗det E , (−1)md(b)).
The signed discriminant invariant is the isometry class of the signed discriminant form in H1

ét(X,µ2).

Definition 1.12. The Arf covering of a line bundle-valued quadratic form (E , q,L ) will refer to the
morphism f : Spec Z (E , q,L ) = Z → X. The Arf covering is étale quadratic if and only if (E , q,L )
is regular (see [68, IV Prop. 4.8.9]), and then its isomorphism class [Z/X] in H1

ét(X,Z/2Z) is called
the Arf invariant.

Proposition 1.13. Let X be a scheme and (E , q,L ) be a regular line bundle-valued quadratic form
of even rank on X with Arf covering f : Z → X. Then χ1[Z/X] = d±(E , q,L ).

Proof. The statement holds on any Zariski open cover of X trivializing L by [68, IV Prop. 4.6.3].
Since the transition functions are similarity transformations, the statement glues via Knus [68, IV
Prop. 7.1.2]. �

Any similitude (ϕ, λ) : (E , b,L ) → (E ′, b′,L ′) between forms of even rank on X induces an
isometry d(ϕ, λ) : d(E , b,L ) → d(E ′, b′,L ′) between discriminant forms and an OX -algebra iso-
morphism Z (ϕ, λ) : Z (E , q,L ) → Z (E ′, q′,L ′) between even Clifford algebra centers. These give
rise to homomorphisms det /µm : GO(E , b,L ) → O(d(E , b,L )) = µ2 and ∆ : GO(E , q,L ) →
Aut(Z (E , q,L )) = Z/2Z, respectively. The induced maps

(det /µm)1 : H1
ét(X,GO(E , b,L ))→ H1

ét(X,µ2)

∆1 : H1
ét(X,GO(E , q,L ))→ H1

ét(X,Z/2Z)

then have the following interpretation: (E ′, b′,L ′) 7→ d±(E ′, b′,L ′)−d±(E , q,L ) and (E ′, b′,L ′) 7→
Z (E ′, b′,L ′)−Z (E , q,L ), respectively.

Define the group of proper similitudes GSO(E , q,L ) to be the sheaf kernel of the homomorphism
∆. Then χ ◦∆ = det /µm, so that when 2 is invertible on X, GSO(E , b,L ) is also equal to the sheaf
kernel of det /µm.

When 2 is invertible on X, there’s a short exact sequence of sheaves of groups

(4) 1→ GSO(E , b,L )→ GO(E , b,L )
det /µm−−−−−→ µ2 → 1

called the similitude discriminant sequence fitting into a commutative diagram with exact rows and
columns,

1

��

1

��
1 // SO

��

// GSO

��

µ // Gm
// 1

1 // O

det

��

// GO

det /µm

��

µ // Gm
// 1

µ2

��

µ2

��
1 1

(5)

of sheaves of groups on Xét.

Lemma 1.14. Any L -valued metabolic quadratic form (E , b,L ) of rank n = 2m on X has trivial

Arf invariant. Moreover, any choice of lagrangian V
j−→ E induces an OX-algebra isomorphism

ζV : OX × OX → Z (E , q,L ).

Proof. In the case that 2 is invertible on X, we can appeal to Proposition 1.13, then use a straight-
forward adaptation of Knebusch [58, IV Proposition 3.2] or [59, Satz 4.1.2] to line bundle-valued
metabolic forms.

�



12 ASHER AUEL

1.10. Proper torsor interpretation. Let Z be an étale quadratic OX -algebra. An Z -orientation
on a line bundle-valued quadratic form (E ′, q′,L ′) is an OX -algebra isomorphism ζ ′ : Z → Z (E ′, q′,L ′).
If f : Z → X is étale quadratic, we also say use the term Z/X-orientation to mean an f∗OZ-
orientation. When 2 is invertible on X and Z = Z (E , q,L ), then a Z -orientation on (E ′, q′,L ′) is
equivalent to an isometry ζ ′ : d±(E , q,L )→ d±(E ′, q′,L ′) of discriminant modules, by Proposition
1.13.

Proposition 1.15. Let X be a scheme and (E , b,L ) a regular L -valued quadratic form of even rank
n on X.

a) The groupoid of SO(E , b,L )-torsors is equivalent to the category whose objects are Z (E , q,L )-
oriented regular L -valued quadratic forms ((E ′, b′,L ), ζ ′) of rank n, and whose morphisms be-
tween objects ((E ′, b′,L ), ζ ′) and ((E ′′, b′′,L ), ζ ′′) are isometries ϕ : (E ′, b′,L )→ (E ′′, b′′,L )
such that ζ ′′ = Z (ϕ) ◦ ζ ′.

b) The groupoid of GSO(E , b,L )-torsors is equivalent to the category whose objects are Z (E , q,L )-
oriented regular line bundle-valued quadratic forms ((E ′, b′,L ′), ζ ′) of rank n, and whose mor-
phisms between objects ((E ′, b′,L ′), ζ ′) and ((E ′′, b′′,L ′′), ζ ′′) are similarities ϕ : (E ′, b′,L ′)→
(E ′′, b′′,L ′′) such that ζ ′′ = Z (ϕ) ◦ ζ ′.

Proof. This is a straightforward adaptation of Proposition 1.2. �

2. Clifford invariants of line bundle-valued forms

In this section, after reviewing étale cohomological invariants related to 1st Chern classes (in §2.1),
we will construct the four-fold covering of the orthogonal similitude group (in §2.3) that gives rise
to an étale cohomological invariant of line bundle-valued quadratic forms extending the classical
Clifford invariant. We then show that our invariant respects Grothendieck–Witt equivalence of line
bundle-valued forms (in §2.7).

2.1. Chern classes. Let l ≥ 2 be such that l is invertible on X. Recall Grothendieck’s [48] con-
struction of Chern classes modulo l in étale cohomology, ci(E ,µl) ∈ H2i

ét (X,µ⊗il ), of a locally free
OX -module E of finite rank. If E is invertible, define c1(E ,µl) ∈ H2

ét(X,µl) to be the image of the
isomorphism class of E under the coboundary map Pic(X) ∼= H1

ét(X,Gm)→ H2
ét(X,µl) arising from

the Kummer sequence,

1→ µl → Gm
l−→ Gm → 1,

on Xét. For a general locally free OX -module, the construction is reduced to the case of invertible
modules by the splitting principle. In particular, c1(E ,µl) = c1(det E ,µl) ∈ H2

ét(X,µl). Note that
in view of the long exact sequence in étale cohomology associated to the Kummer sequence, c1(E ,µl)
is trivial if and only if det E is an lth power in the Picard group Pic(X).

For the rest of this section we will assume that 2 is invertible on X. The scalar multiplication
homomorphism m : GL(L )×O(E , q,L )→ GO(E , q,L ), given by (λ, ϕ) 7→ (λ ◦ ϕ, λ2) on sections,
yields a commutative diagram of sheaves of groups with exact rows

1 // µ2 // Gm ×O

��

m // GO
µ

��

// 1

1 // µ2 // Gm
2 // Gm

// 1

(6)

on Xét, where µ2 → Gm ×O(E , q,L ) is the diagonal inclusion and the center vertical map is the
projection onto the first factor. The commutativity of diagram (6) implies that the coboundary map
of the first row H1

ét(X,GO(E , q,L ))→ H2
ét(X,µ2) has the following interpretation (via Proposition

1.2): the class associated to (E ′, b′,L ′) is mapped to c1(L ′,µ2)− c1(L ,µ2).

Remark 2.1. What about the 1st Chern class c1(E ,µ2) of the underlying locally free module? For
regular line bundle-valued symmetric bilinear forms of even rank n = 2m, the discriminant and 1st
Chern class (modulo 2) of the value line bundle determine the 1st Chern class of E . Indeed, we have
the equations det E = Lm ⊗ d(E , b,L ) in Pic(X) (see the proof of Lemma 1.6), and also

c1(d(E , b,L ),µ2) = d(E , b,L )N(d(E , b,L ) + (−1))

in H2
ét(X,µ2) ∼= H2

ét(X,µ
⊗2
2 ) due to Esnault–Kahn–Viehweg [34, Lemma 5.3].
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2.2. Weil restriction. Let f : Z → X be finite étale and G a sheaf of groups on Zét represented by
a Z-scheme, which by abuse of notation, we shall also denote by G. Then f∗G is a sheaf of groups on
Xét represented by an X-scheme RZ/XG, called the Weil restriction or corestriction of G through
f : Z → X. By further abuse of notation, we often write RZ/XG for the sheaf of groups f∗G. A
general reference on Weil restriction is [33, I §1.6.6].

The counit of adjunction provides a canonical morphism εG : f−1RZ/XG → G of sheaves of
groups on Zét (or of Z-schemes), and the Weil restriction is universal for this property: given any
sheaf of groups on Xét (or X-scheme) T and a morphism φ : f−1T → G, there exists a unique
morphism ϕ : T → RZ/XG of sheaves of groups on Xét (or X-schemes) such that εG ◦ f−1ϕ = φ.

If G is a sheaf of groups on Xét representable by an X-scheme, then f−1G is a sheaf of groups on
Zét representable by the Z-scheme Z×XG, and the unit of adjunction provides a canonical morphism
of sheaves of groups on Xét (or X-schemes) ηG : G→ RZ/Xf

−1G.
When G is abelian, there’s a norm homomorphism N = NZ/X : RZ/Xf

−1G → G of sheaves of
groups on Xét. The sheaf kernel of the norm homomorphism is denoted by R1

Z/Xf
−1G, and there’s

an exact sequence

(7) 1→ R1
Z/Xf

−1G→ RZ/Xf
−1G N−→ G→ 1

of sheaves of abelian groups on Xét.
Now let f : Z → X be étale quadratic with nontrivial automorphism ι. Then the cokernel of the

counit of adjunction can be identified with R1
Z/XGm, and we have an exact sequence

(8) 1→ G
ηG−−→ RZ/Xf

−1G
id/ι−−→ R1

Z/Xf
−1G→ 1

of sheaves of abelian groups on Xét, where we can identify the cokernel map with x 7→ x/ι(x) for
sections x of RZ/Xf

−1G.

2.3. Finite coverings of orthogonal similitude groups. We now construct the four-fold covering
of the orthogonal similitude group by the Clifford group that will be used in defining the similarity
Clifford invariant. Fixing a regular OX -valued quadratic form (H , b) of even rank n = 2m, let
Z = Z (H , b) with associated étale quadratic Arf covering f : Z = Spec Z → X.

Let Γ = Γ(H , b) be the Clifford group of (H , b) (see [34, §1.9]) and recall the vector representation
r : Γ→ O and the Clifford norm N : Γ→ Gm. The cartesian product of the Clifford norm and the
vector representation yields an exact sequence,

(9) 1→ µ2 → Γ N×r−−−→ Gm ×O→ 1,

of sheaves of groups on Xét, where µ2 → Γ denotes the canonical inclusion of constants. The
exactness at right may be checked locally in the étale topology. Finally, the composite homomorphism
s = m ◦ (N × r) : Γ→ GO is an epimorphism of sheaves of groups on Xét.

Definition 2.2. Define κ = κ(H , b) to be the sheaf kernel of the homomorphism s : Γ → GO.
Equivalently, thinking of µ2 ↪→ O as the subgroup of homotheties, κ is the sheaf defined by

κ(U) = {x ∈ Γ(h)(U) : N(x) ∈ µ2(U), r(x) ∈ µ2(U), N(x) = r(x)}

on Xét. The resulting exact sequence,

(10) 1→ κ→ Γ s−→ GO→ 1,

on Xét is called the similitude Clifford sequence.

By construction, the similitude Clifford sequence is an extension of the Kummer sequence by the
pinor sequence, forming a fundamental Clifford diagram

1

��

1

��

1

��
1 // µ2

i
��

// Pin

��

r // O

��

// 1

1 // κ
p

��

// Γ
N ��

s // GO
λ ��

// 1

1 // µ2

��

// Gm

��

2 // Gm

��

// 1

1 1 1

(11)
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of sheaves of groups with exact rows and columns on Xét. In particular, κ is a étale group scheme of
order 4, which we shall now identify.

Proposition 2.3. Let (H , b) be a regular OX-valued quadratic form of even rank n and Arf covering
f : Z → X. Then there’s a group scheme isomorphism

κ ∼=

{
R1
Z/Xµ4 if n ≡ 0 mod 4

RZ/Xµ2 if n ≡ 2 mod 4 .

Proof. Every symmetric bilinear form over a scheme with 2 invertible is locally diagonalizable in the
Zariski topology. We can assume, without loss of generality, that X is connected. Let U = {Ui →
X}i∈I be a Zariski open cover of X diagonalizing the symmetric bilinear form (H , b) via isometries

Φi : (On
Ui , 〈b

1
i , . . . , b

n
i 〉)→ (H |Ui , h|Ui)

for b1i , . . . , b
n
i ∈ Gm(Ui) corresponding to orthogonal bases e1

i , . . . , e
n
i ∈ On

X(Ui). Let di = b1i · · · bni ∈
Gm(Ui), so that there are isometries

det Φi : (OUi , 〈di〉)→ det(H , b)|Ui .
For each i, j ∈ I, there are isometries

ϕij = Φ−1
ij ◦ Φij : (On

Uij , 〈b
1
j , . . . , b

n
j 〉)→ (On

Uij , 〈b
1
i , . . . , b

n
i 〉)

and
detϕij = det Φ−1

ij ◦ det Φij : (OUij , 〈dj〉)→ (OUij , 〈di〉)
yielding the equality

(12) (detϕij)2di = dj

in Gm(Uij).
Now let p : X̃ → X be the étale quadratic covering defined by the class of

δ′ = −(−1)n(n−1)/2δ ∈ H1
ét(X,µ2).

For each i ∈ I, fix an isomorphism of p−1(Ui) with Ũi = Ui ×Spec OX(Ui) Spec OX(Ui)[
√
−di]. Then

Ũ = {Ũi}i∈I is a Zariski open cover of X̃ and also can be considered as an étale cover of X. We’ll
identify Ũij = Ũi ×X Ũj with Uij ×Spec OX(Uij) Spec OX(Uij)[

√
−di,

√
−dj ], where Uij = Ui ∩ Uj .

Then
δ′ij = −detϕij d−1

j ⊗
√
didj ∈ µ2(Ũij)

defines a Čech 1-cocycle representing δ′. Clearly, any étale cover of X splitting H and δ′ is a
refinement of such a cover. Finally, for each i ∈ I, define

εi =
1
di
e1
i · · · eni ⊗

√
−di ∈ Γi(Ũi),

where Γi is the Clifford group of the diagonal form (OUi , 〈b1i , . . . , bni 〉). We’ll argue that

(13) N(εi) = −1 ∈ Gm(Ũi), r(εi) = −id ∈ Oi(Ũi),

so that εi ∈ κi(Ũi), where Oi and κi are associated to the diagonal form. Recalling that in the
Clifford algebra,

eki e
l
i =

{
di if k = l
−eli eki if k 6= l

,

we now compute

N(εi) = εi σ(εi) =
1
d2
i

e1
i · · · eni eni · · · e1

i ⊗−di = −1⊗ 1.

Also, for each k = 1, . . . , n, we have

εi e
k
i =

1
di
e1
i · · · eni eki ⊗

√
−di = (−1)n−1eki εi,

so that
r(εi)(eki ) = I(εi) eki ε

−1
i = (−1)n εi eki ε

−1 = (−1)n−1(−1)n eki εε
−1 = −ei,

hence r(εi) = −id.
Thus −1 and εi generate κi(Ũi). Using the identity σ(ε) = (−1)n(n−1)/2, and equation (13), we

find that
ε2 = −(−1)n(n−1)/2,

so that

κi(Ũi) ∼=
{

Z/4Z if n ≡ 0, 1 mod 4
Z/2Z× Z/2Z if n ≡ 2, 3 mod 4 ,
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via either εi 7→ 1 or εi 7→ (0, 1) and −1 7→ (1, 0), depending on the rank modulo 4.
The isometry Φi induces an algebra isomorphism C (Φi) of Clifford algebras, hence commutes with

N and r and induces group scheme isomorphisms κi ∼−→ κ|eUi and Oi ∼−→ O|eUi . We have deduced

that κ is a form of the corresponding constant group of order 4, which is split by the étale cover Ũ .
We’ll now argue that κ is split by p : X̃ → X by showing that the sections C (Φi)(εi) ∈ κ(Ũ) glue to
a section ε ∈ κ(X̃).

Lemma 2.4. Let H be a free OX-module of rank n on X, (H , b1) and (H , b2) be regular quadratic
forms with orthogonal bases e1

1, . . . , e
n
1 and e1

2, . . . , e
n
2 , and ϕ : (H , b1)→ (H , b2) an isometry. Then

C (ϕ)(e1
1 · · · en1 ) = ϕ(e1

1) · · ·ϕ(en1 ) = detϕe1
2 · · · en2 .

in the Clifford algebra of (H , b2).

Now using equation (12) and Lemma 2.4, compute

C (ϕij)(εij) =
1
dij

ϕij(e1
ij) · · ·ϕij(enij)⊗

√
−dij

=
1

(detϕij)2 dij
detϕij e1

ij · · · enij ⊗
√
−(detϕij)2 dij

=
1
dij

e1
ij · · · enij ⊗

√
−dij = εij

so that we have the equality

C (Φij)(εij) = C (Φij)(C (ϕij)(εij)) = C (Φij)(εij)

of sections in Γ(Ũij). Thus the sections C (Φi)(εi) ∈ κ(Ũi) glue to a section ε ∈ κ(X̃) which splits
the group scheme κ over the étale quadratic covering p : X̃ → X. Clearly, the Galois action on the
section ε ∈ κ(X̃) is trivial if and only if the class δ′ is trivial. Since any étale quadratic extension
splits a unique nontrivial form of Z/4Z or Z/2Z× Z/2Z, the proposition follows. On the étale cover
Ũ , the isomorphism of group schemes constructed above descends.

Alternatively, we can also view the above equality as

C (Φij)(εij) =
(

detϕij d−1
ij ⊗

√
dijdij

)
C (Φij)(εij) = δ′ijC (Φij)(εij)

so that κ is identified with the twist of Z/4Z or Z/2Z × Z/2Z by the the Čech 1-cocyle δ′ij on the
étale cover Ũ on X. �

Remark 2.5. For regular OX -valued quadratic forms of odd rank, we have

κ ∼=

{
R1
Z/Xµ4 if n ≡ 1 mod 4

RZ/Xµ2 if n ≡ 3 mod 4

see Auel [3, Thm. 2.11]. This formula in the odd rank case depends on our convention for the Clifford
norm N . We take the convention of Fröhlich [39, Appendix I]. The other convention, taken by Knus
[68, IV §6.1], defines N via the standard Clifford involution induced by negation on H .

Example 2.6. We continue to assume, without loss of generality, that X is connected. For certain
standard quadratic forms, we now make the isomorphism in Proposition 2.3. Let (H , b) = HOX (Om

X )
be the hyperbolic quadratic form on X with trivial lagrangian, and e1, . . . , em, f1, . . . , fm a choice
of global sections forming a hyperbolic basis, i.e. h(fl, ek) = δlk. An explicit representation of κ =
κ(HOX (Om

X )) is as follows.
For m odd, a straightforward calculation shows that the global section ε =

∏m
l=1(1−2elfl) ∈ Γ(X)

of the Clifford group generates, together with −1 ∈ Γ(X), the group scheme κ. This yields a global
isomorphism µ2×µ2 = 〈−1〉× 〈ε〉 ∼−→ κ of group schemes on Xét, depending on our particular choice
of ε.

For m even, the section ε̃ = (−1)m/2
∏m
l=1(1− 2elfl)⊗

√
−1 ∈ Γ(X̃) of the Clifford group over the

étale double covering X̃ = X ×Spec OX(X) Spec OX(X)[
√
−1]→ X generates κ| eX . By descent there’s

an isomorphism µ4 ∼−→ κ of group schemes on Xét. This isomorphism also depends on our particular
choice of ε.

More generally, for each even n = 2m ≥ 2 and each étale quadratic f : Z → X, define (H , b) =
hZn = (f∗OZ , hZ) ⊥ HOX (Om−1

X ), where hZ is the norm form associated to f : Z → X (see §5.1).
Then hZn has rank n, Arf invariant canonically isomorphic to f : Z → X, and trivial classical Clifford
invariant (see [68, V §2.3]). There’s a canonical isometry f∗hZn → HOZ (Om

Z ) (indeed, for m = 1
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the canonical OZ-algebra isomorphism f∗f∗OZ → OZ × OZ is an isometry of the quadratic forms
f∗(f∗OZ , hZ)→ HOZ (OZ), which extends, for general m, to the remaining hyperbolic factors by the
identity). Hence we have isomorphisms f−1κ(hZn ) ∼= κ(f∗hZn ) ∼= κ(HOZ (Om

Z )).
For m odd, we compose with the projection onto the subgroup κ(HOZ (Om

Z )) ∼= µ2 × µ2 → 〈−1〉
(this depends on our choice of ε, as above), yielding a morphism f−1κ(hZn ) → µ2, and hence by
adjunction, a morphism κ(hZn ) → RZ/Xµ2, which we can check, locally using Proposition 2.3, is an
isomorphism.

For m even, we have an isomorphism f−1κ(hZn ) → µ4, which by adjunction yields a morphism
κ(hZn )→ RZ/Xµ4, which is seen to be in the kernel of the norm map RZ/Xµ4 → µ4. Thus we have
a map κ(hZn ) → R1

Z/Xµ4, which again we can check is an isomorphism locally. Thus for the form
hZn , we have an explicit choice of isomorphism in Proposition 2.3.

2.4. The similarity Clifford invariant. By the calculations in the proof of Proposition 2.3, we see
that any section of κ not in the canonical subgroup µ2 ↪→ κ has degree (in the Clifford group) the
parity n. The structure theory of the center of the Clifford algebra then implies that the similitude
Clifford sequence (10) is central for n odd. For n even, its restriction to the even Clifford group,

(14) 1→ κ→ SΓ s−→ GSO→ 1,

is central and we consider the restriction of the fundamental diagram (11) to the even Clifford group:

1

��

1

��

1

��
1 // µ2

i
��

// Spin

��

r // SO

��

// 1

1 // κ
p

��

// SΓ
N ��

s // GSO
λ ��

// 1

1 // µ2

��

// Gm

��

2 // Gm

��

// 1

1 1 1

(15)

Definition 2.7. For each n = 2m, étale quadratic f : Z → X, and each sheaf of groups G depending
on a quadratic form, write GZ

n = G(hZn ).

Now, we are ready to define the cohomological invariant we’ll primarily be concerned with.

Definition 2.8. Let f : Z → X be étale quadratic. For a regular line bundle-valued quadratic
form (E , q,L ) of rank n = 2m and Arf invariant [Z/X], define the similarity Clifford invari-
ant gc(q) = gc(E , q,L ) ∈ H2

ét(X,κ
Z
n ) to be the image of (E , q,L , ζ) under the coboundary map

H1
ét(X,GSOZ

n ) → H2
ét(X,κ

Z
n ) arising from the even Clifford sequence (14), for any choice of Z/X-

orientation ζ. By Lemma 5.15, gc(q) does not depend on the choice of orientation ζ.

Remark 2.9. An analogous similarity Clifford invariant can also be defined for line bundle-valued
quadratic forms of odd rank. By Lemma 1.6, the value line bundle is a square, and in fact, has a
canonical square root. This can be used to compute the invariants odd rank forms in terms of classical
invariants, see Auel [3, §2.2.1].

2.5. Interpolation property. The similarity Clifford invariant “interpolates” between the classi-
cal étale cohomological Clifford invariant (see Parimala–Srinivas [85, Lemma 6] or Knus–Parimala–
Sridharan [66, §3]) and the 1st Chern class (modulo 2) (see §2.1) of the value line bundle.

Theorem 2.10. Let X be a scheme with 2 invertible. Let (E , q,L ) be a regular L -valued quadratic
form of rank n = 2m and Arf invariant [Z/X]. We have an exact sequence

· · · → H2
ét(X,µ2) i2−→ H2

ét(X,κ
Z
n )

p2−→ H2
ét(X,µ2)→ · · ·

of étale cohomology groups.
a) Then p2gc(E , q,L ) = c1(L ,µ2), i.e. the similarity Clifford invariant maps to the 1st Chern

class (modulo 2) of L .
b) If L = OX then gc(E , q,OX) = i2c(E , q), i.e. the classical Clifford invariant of a quadratic

form maps to the similarity Clifford invariant of its similarity class.

Proof. In light of the cohomology interpretation of Remark 1.5, one needs only to consider the impli-
cations on étale cohomology of the fundamental diagram (15). For b), it remains to be verified that
the coboundary map H1

ét(X,SOZ
n ) → H2

ét(X,µ2) agrees with the Clifford invariant of a quadratic
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form (E , q) (together with an irrelevant choice of orientation) with Arf invariant [Z/X]. This is veri-
fied using a generalization to Xét of formulas from Lam [73, V Prop. 3.20] and Serre [90, III App. 2,
§2.2]. �

2.6. Functoriality. Let f : Y → X be a morphism of schemes. If (E , q,L ) is an L -valued quadratic
form of rank n on X, then there’s a canonical f∗L -valued quadratic form f∗(E , q,L ) of rank n on
Y . By the functoriality of the Clifford group, there’s also a canonical isomorphism of group schemes
κY×XZn

∼−→ f−1κZn , where f−1 is the pullback in the category of sheaves of groups on Xét (see Milne
[76, II §2]). Finally, we have

gc(f∗q) = f∗gc(q)
in H2

ét(Y,κ
m
Y×XZ/Y ) ∼−→ H2

ét(Y, f
−1κZn ).

2.7. Grothendieck–Witt equivalence. Now let f : Z → X be split, so that hZn = HOX (Om
X ).

Write Gm,m instead of GZ
n for any sheaf of groups depending on a quadratic form. If n is divisible

by four then gc(q) ∈ H2
ét(X,µ4) via the identification µ4 ∼−→ κ of Remark 2.6.

Theorem 2.11. Let X be a scheme with 2 invertible. Let (E , q,L ) be a regular quadratic form of
rank n = 2m divisible by four and trivial Arf invariant on X.

a) If V is a locally free OX-module of even rank, then

gc(q ⊥ HL (V )) = gc(q) + i2c1(V ,µ2).

b) If (E , q,L ) is metabolic with lagrangian V → E , then

gc(q) = c(HL (V )) = c1(L ,µ4) + i2c1(V ,µ2).

Proof. Consider the homomorphism H : Gm ×GLm → GSOm,m defined by

H(l, ϕ) =
(
ϕ 0
0 l (ϕ−1)∨

)
.

Lemma 2.12. The induced mapping H1 : H1
ét(X,Gm ×GLm) → H1

ét(X,GSOm,m) is interpreted
as (L ,V ) 7→ (HL (V ), ζV ), where ζV is the orientation from Lemma 1.14.

Proof. Let U = {Ui}i∈I be a Zariski open cover ofX splitting L and V via OUi-module isomorphisms

λi : OUi ∼−→ L |Ui , φi : Om
Ui
∼−→ V |Ui ,

for each i ∈ I. The OUi-module morphism

ψi : HOUi
(OUi) → HL (V )|Ui
(v, f) 7→ (φi(v), λi ◦ f ◦ φ−1

i )

is a proper similarity transformation with similarity factor λi. For each (i, j) ∈ I2, the collections

lij = λ−1
ij ◦ λij ∈ Gm(Uij), ϕij = φ−1

ij ◦ φij ∈ GLm(Uij),

and
bij = ψ−1

ij ◦ ψij ∈ GOm,m(Uij),

form Čech étale 1-cocycles representing the classes associated to L , V , and HL (V ) in H1
ét(U ,Gm),

H1
ét(U ,GLm), and H1

ét(U ,GOm,m), respectively. With respect to the decomposition HOX (Om
X ) =

Om
X ⊕ Om

X
∨, the cocycle bij is represented by the matrices

H(lij , ϕij) =
(
ϕij 0
0 lij (ϕ−1

ij )∨

)
proving the claim. Thus we’ve shown that H1

ét(X,Gm ×GLm)→ H1
ét(X,GOm,m) is interpreted by

(L ,V ) 7→ HL (V ). All that remains is the verification of the orientation statement. If 2 is invertible
on X, this is equivalent to the equality

(det /µm)(H(lij , ϕij)) ◦ ζV |Uij = ζV |Uij : OUij = d±(HOUij
(Om

Uij ))→ d±(HOUij
(V |Uij )).

This is a straightforward process of unwinding the definition of ζV from Lemma 1.14. �

Furthermore, consider the restriction of H to the maximal torus Gm ×G×mm → GSOm,m, which
similarly to Lemma 2.12, is interpreted as (L ,V1, . . . ,Vm) 7→ HL (V1⊕· · ·⊕Vm), where the orientation
from Lemma 2.12 is understood. We now construct a commutative diagram with exact rows

1 // µ4 × µ×m2Q
��

// Gm ×G×mm

H̃ ��

// Gm ×G×mm

H
��

// 1

1 // µ4 // SΓm,m // GSOm,m
// 1

(16)
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lifting H to the even Clifford group: the top row is the product of appropriate Kummer sequences, the
bottom row is the even Clifford sequence (14) for the split similitude group, Q is the homomorphism
given by multiplying a tuple of the elements together, and

H̃(l, a1, . . . , am) = lm+1
m∏
j=1

a−1
j

(
1−

(
1− (l−1aj)2

)
ejfj

)
on sections, where e1, . . . , em, f1, . . . , fm are global sections of HOX (Om

X ) forming a hyperbolic basis,
i.e. h(ei, ej) = 0, h(fi, fj) = 0, and h(ei, fj) = δij , where δij is the Kronecker δ-function.

To verify the commutativity of diagram (16), we will decompose H̃ into a product of homomor-
phisms. Calculations in the Clifford algebra show that for each 1 ≤ j ≤ m, the map χj : Gm → SΓm,m
defined on sections by

χj(x) = 1− (1− x)ejfj
forms a one parameter subgroup of SΓm,m satisfying

N(χj(x)) = x, r(χj(x)) :
ek 7→

(
1− δjk(1− x)

)
ek

fk 7→
(
1− δjk(1− x−1)

)
fk.

In particular,

N(H̃(l, a1, . . . , am)) = l2, r(H̃(l, a1, . . . , am)) = l−2H(l4, a2
1, . . . , a

2
m)

so that H̃ is a homomorphism and the rightmost square of diagram (16) is commutative. The fact
that the leftmost square is commutative results from the identity

H̃(
√
−1, 1, . . . , 1) = (−1)m/2

√
−1

m∏
j=1

(1− ejfj)

and the identification µ4 ∼−→ κ(h) of Remark 2.6.
Finally, by the splitting principle for metabolic forms (see Theorem 1.9) and the fact that the

formulas of Theorem 2.11 all commute with pullbacks, to prove b) we can reduce to the case where
(E , q,L ) is a hyperbolic form HL (V ) with lagrangian V = V1⊕· · ·⊕Vm a sum of invertible modules.
The coboundary map of the top sequence of diagram (16), composed with the map Q2 induced from
the leftmost vertical map, yields

(L ,V1, . . . ,Vm) 7→ (c1(L ,µ4), c1(V1,µ2), . . . , c1(Vm,µ2)) 7→ c1(L ,µ4) + i2c1(V ,µ2)

and thus HL (V ) 7→ c1(L ,µ4) + i2c1(V ,µ2) under the coboundary map of the Clifford sequence for
the similitude group, verifying the formula in b).

As for a), let m′ be even and consider the commutative diagram with exact rows

1] // µ4 × µ×m
′

2Q
��

// SΓm,m ×G×m
′

m

H̃′
��

// GSOm,m ×G×m
′

m

H′

��

// 1

1 // µ4 // SΓm+m′,m+m′
// GSOm+m′,m+m”

// 1

(17)

where H ′((ϕ, l), a1, . . . , am′) = (ϕ, l) ⊥ H(l, a1, . . . , am′) and

H̃ ′(x, a1, . . . , am′) = N(x)m
′/2 x

m′∏
j=1

a−1
j χj(N(x)−1a2

j ).

The commutativity of the diagram is checked as above. Finally, H ′1 is interpreted as(
(E , q,L ),V1, . . . ,Vm′

)
7→ (E , q,L ) ⊥ HL (V1 ⊕ · · · ⊕ Vm′),

while the coboundary map of the top sequence is interpreted as(
(E , q,L ),V1, . . . ,Vm′

)
7→
(
c(E , q,L ), c1(V1,µ2), . . . , c1(Vm′ ,µ2)

)
so that in total gc(q ⊥ HL (V )) = c(q) + i2c1(V ,µ2), verifying the formula in a). �

Corollary 2.13. Let (E0, q0,L ), (E1, q1,L ), and (E2, q2,L ) be L -valued quadratic forms of rank
divisible by 4 and trivial Arf invariant. If there’s an isometry q0 ⊥ q1

∼= q0 ⊥ q2 then gc(q1) = gc(q2).

Proof. If q0 ⊥ q1
∼= q0 ⊥ q2 then (−q0 ⊥ q0) ⊥ q1

∼= (−q0 ⊥ q0) ⊥ q2. But (E0,−q0,L ) ⊥ (E0, q0,L )
is L -valued metabolic with lagrangian E0, so that by Theorem 2.11,

gc(q1) + i2c1(E0,µ2) = gc(q2) + i2c1(E0,µ2)

in H2
ét(X,µ4), proving the corollary. �
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LetGW (X,L ) be the Grothendieck–Witt group of L -valued quadratic forms onX andGW tot(X) =
⊕LGW (X,L ) the total quadratic Grothendieck-Witt group. Letting GItot

1 (X) = ⊕LGI1(X,L ) be
the subgroup of quadratic forms of even rank, the signed discriminant defines a (surjective) cohomo-
logical invariant (in a sense generalizing Garibaldi–Merkurjev–Serre [43])

d± : GItot
1 (X)→ H1

ét(X,µ2).

Letting GItot
2 (X) = ⊕LGI2(X,L ) be the subgroup of quadratic forms of rank n ≡ 0 mod 4 and

trivial discriminant, we may interpret Theorem 2.11 as the statement that the similarity Clifford
invariant descends to a cohomological invariant

gc : GItot(X)→ H2
ét(X,µ4).

2.8. Oriented invariants. We now restrict our attention to line bundle-valued quadratic forms with
trivial Arf invariant. As noted in Definition 2.8, the invariant gc(E , q,L ) ∈ H2

ét(X,κm,m) does not
depend on an orientation of (E , q,L ). In this section, we construct related invariants in H2

ét(X,µ2),
but which are orientation dependent.

Definition 2.14. Let (H , b) be a regular quadratic form of even rank n = 2m on X. Denote by
z = z(H , b) be the subgroup scheme of SΓ(H , b) defined by

z(U) = {x ∈ SΓ(H , b)(U) : N(x) = 1, r(x) ∈ µ2(U)}.
Equivalently, z is the kernel in the short exact sequence of sheaves of groups

(18) 1→ z→ Spin→ PSO→ 1

on Xét (here PSO = SO/µ2, see §3.1). In fact, z is the center of the simply connected affine algebraic
group Spin. It’s a classical fact, see [69, VI.26.A] for example, that there are isomorphisms of group
schemes

z ∼=

{
RZ/Xµ2 if n ≡ 0 mod 4
R1
Z/Xµ4 if n ≡ 2 mod 4

where Z → X is the Arf cover of (H , b).

We retain the notation of §2.7 and assume, for simplicity of exposition, that X is connected.
For each m ≥ 1, the choice of global section ε =

∏m
i=1(1 − 2eifi) of SΓm,m fixes a group scheme

isomorphism µ2×µ2 ∼−→ zm,m for m even and µ2×µ2 ∼−→ κm,m for m odd. Indeed, if m is even, then
ε is a global section of Spinm,m, which together with −1, generate zm,m. If m is odd, see Example
2.6.

For m even, define Γ′m,m = Gm × Spinm,m and γ+
m,m to be the subgroupscheme generated by

the global section (−1, ε). For m odd, define Γ′m,m = SΓm,m and γ+
m,m to be the subgroupscheme

generated by the global section ε.

Definition 2.15. For m ≥ 1, define GSpin+
m,m = Γ′m,m/γ

+
m,m. Replacing ε by −ε yields an

analogous subgroup γ−m,m and quotient GSpin−m,m.

Remark 2.16. For m odd, GSpin±m,m is precisely the image of SΓm,m under the “half-spin” rep-
resentations ρ± : SΓm,m → GL22(m−1) . In the literature, GSpin(q) is often another name for the
even Clifford group SΓ(q) of a quadratic form. Our notation is somewhat justified since GSpin+

m,m

becomes isomorphic to SΓm,m upon replacing ε by (−1)m−1 in the definition.

The compositions Gm × Spinm,m
pr1−−→ Gm

2−→ Gm and SΓm,m
N−→ Gm

2−→ Gm descend to homo-
morphisms µ± : GSpin±m,m → Gm. The kernel of µ± is isomorphic to Spinm,m, as seen by the Nine
Lemma 5.16 applied to the commutative diagram

1

��

1

��
Spinm,m

��

// kerµ±

��
1 // γ±m,m

∼

��

// Γ′m,m

��

// GSpin±m,m
µ±

��

// 1

1 // µ2 // Gm

��

// Gm

��

// 1

1 1
of sheaves of groups on Xét, with exact columns and bottom rows.
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Also, the homomorphisms Gm × Spinm,m → GSOm,m given by (a, x) 7→ (a r(x), a2) and s :
SΓm,m → GSOm,m from §2.4) factor through homomorphisms s± : GSpin±m,m → GSOm,m, yielding
short exact sequences

(19) 1→ µ2 → GSpin±m,m
s±−−→ GSOm,m → 1

fitting into commutative diagrams with exact rows and columns

1

��

1

��
1 // µ2 // Spinm,m

��

r // SOm,m

��

// 1

1 // µ2 // GSpin±m,m
µ±

��

s± // GSOm,m

µ
��

// 1

Gm

��

Gm

��
1 1

(20)

of sheaves of groups on Xét.

Definition 2.17. For an oriented regular line bundle-valued quadratic form (E , q,L , ζ) of rank
n = 2m and trivial Arf invariant, define a pair of invariants gc±(q, ζ) = gc±(E , q,L , ζ) ∈ H2

ét(X,µ2)
to be the images of (E , q,L , ζ) under the coboundary maps H1

ét(X,GSpin±m,m)→ H2
ét(X,µ2) arising

from sequence (19).

Proposition 2.18. Let (E , q,L ) be a regular line bundle-valued quadratic form of rank n = 2m and
trivial Arf invariant. Let ζ be any orientation of (E , q,L ). Then we have:

a) gc±(q, ζ) = c(q) if L = OX ,
b) gc+(q, ζ) + gc−(q, ζ) = c1(L ,µ2),
c) gc±(q,−ζ) = gc∓(q, ζ),
d) gc+(q, ζV ) = c1(V ,µ2), if V → E is a lagrangian of (E , q,L ) and ζV is the induced orientation

from Lemma 1.14.

Proof. For a), we simply consider the interpretation on cohomology of the top rows of diagram (20).
For b), denote by γm,m the subgroupscheme of Γ′m,m generated by γ+

m,m and γ−m,m. Note that
when m is odd, γm,m = κm,m. We have a fixed isomorphism µ2 × µ2 ∼−→ γm,m and a labeling
γ±m,m and γ0

m,m of the three subgroupschemes of γm,m. For • ∈ {−, 0,+}, denote by p• the quotient
homomorphism in the exact sequence

1→ γ•m,m → γm,m
p•−→ µ2 → 1.

For each m ≥ 1 and each • ∈ {−, 0,+}, it’s a straightforward verification that the diagram

1

��

1

��
γ•m,m

��

γ•m,m

��
1 // γm,m

p•

��

// Γ′m,m
q•

��

// GSOm,m
// 1

1 // µ2

��

// GSpin•m,m

��

s• // GSOm,m
// 1

1 1

(21)

of sheaves of groups on Xét is commutative with exact rows and columns. Here we’ve used the
following notation: for • ∈ {±}, the map q• : Γ′m,m → GSpin•m,m is the quotient homomorphism; for
• = 0, we set s0 = s as defined in Definition 2.2, GSpin0

m,m = Gm×SOm,m, and q0 = N×r : Γ′m,m =
SΓm,m → Gm × SOm,m when m is odd while q0 = id× r : Γ′m,m = Gm × Spinm,m → Gm × SOm,m

when m is even.
For each m ≥ 1, denote by δm : H1

ét(X,GSOm,m)→ H2
ét(X,γm,m) the coboundary map associated

to the central row of diagram (21). Note that for m odd, δm = gc, by Definition 2.8.
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Consider the split exact sequence of group schemes,

1→ γm,m
p−×p0×p+−−−−−−−→ µ×3

2

Q
−→ µ2 → 1,

uniquely defined up to ordering, where Q is the total multiplication homomorphism. On étale coho-
mology, there are thus (split) exact sequences,

(22) 0→ Hi
ét(X,γm,m)

p−,i⊕p0,i⊕p+,i−−−−−−−−−−→ Hi
ét(X,µ2)⊕3 → Hi

ét(X,µ2)→ 0.

of abelian groups for each i ≥ 0.
By the commutativity of the bottom rows of diagram (21), we have

p•,2δm(E , q,L , ζ) =

{
gc•(E , q,L , ζ) for • ∈ {±}
c1(L ,µ2) for • = 0

by the definition of gc± for • ∈ {±} and by the commutativity of diagram (6) for • = 0. Note that
for m odd and • = 0, this is a restatement of Theorem 2.10a). In particular, by exact sequence (22)
of cohomology groups (for i = 2),

gc+(E , q,L ) + gc−(E , q,L ) = p−,2δm(E , b,L , ζ) + p+,2δm(E , b,L , ζ) = c1(L ,µ2)

in H2
ét(X,µ2).

Part c) follows immediately from the definition of GSpin±m,m. For d), we can adapt the proof of
Theorem 2.11 �

Remark 2.19. By Proposition 2.18c), if L is not a square in Pic(X), then gw±(q, ζ) depends on
the orientation ζ. In particular, if Pic(X) is not 2-divisible, then the invariants gc± are in general
orientation dependent and hence do not descend to GItot

2 (X).

Example 2.20. If m = 3, then GSpin±3,3 ∼= GL4 and exact sequence (19) is isomorphic to the
familiar sequence

1→ µ2 → GL4
∧2

−−→ GSO3,3 → 1,
for an appropriate choice of ± and ε, see §5.4 for more details.

As an application of Example 2.20, we can give a characterization of locally free OX -modules of
rank 6 that are exterior squares, i.e. isomorphic to

∧2V for a locally free OX -module V of rank 4.

Proposition 2.21. Let X be a scheme with 2 invertible. Then a locally free OX-module E of rank 6
is an exterior square if and only if E supports a regular line bundle-valued quadratic form (E , q,L )
with trivial Arf invariant and trivial gc+(E , q,L , ζ) for some orientation ζ.

Proof. If E ∼=
∧2V , then E supports a regular line bundle-valued quadratic form via the canonical

“wedging” form
∧2V

∧−→ det V ). That such a form has trivial Arf invariant follows from its inter-
pretation as a reduced pfaffian and the explicit calculation of the even Clifford algebra of a reduced
pfaffian, see §5.4 and [17, Prop. 4.8]. Since 2 is invertible on X we can argue directly, by showing
that the associated symmetric bilinear form has trivial discriminant. Indeed, when V is free with
basis e1, . . . , e4, an OX -module morphism ζ : det(

∧2V )→ (det V )⊗3 can be given by∧
1≤i<j≤4

(
ei ∧ ej

)
7→

(
e1 ∧ · · · ∧ e4

)⊗3
.

A standard computation (compute the similarity factor on the standard middle exterior power of the
fundamental representation of GLr) shows that this morphism does not depend on the choice of basis.
Hence for a general locally free V , this morphism patches over a Zariski open cover of X splitting V .
Finally, scaling ζ by

(
det V ∨

)⊗3 yields an OX -module morphism ζV : d±(
∧2V ,∧,det V ) →<−1>,

which can be checked to be an isometry.

Now the map GL4
∧2

−−→ GSO3,3 can be reinterpreted as the homomorphism of automorphism
sheaves (when applied to V = O4

X) induced from the functor V 7→ (
∧2V ,∧,det V ). Hence, the exact

sequence of cohomology sets

H1
ét(X,GL4)

(∧2)1−−−→ H1
ét(X,GSO3,3)

gc+−−→ H2
ét(X,µ2)

has the following interpretation: (∧2)1 takes the isomorphism class of a locally free OX -module V

of rank 4 to (
∧2V ,∧,det V ) with the above orientation ζV . In particular, gc+(

∧2V ,∧,det V , ζV ) is
trivial.

Now suppose that E supports a regular line bundle-valued quadratic form (E , q,L ) with trivial
Arf invariant. Then the similarity class of (E , q,L ) defines a class in H1

ét(X,GSO3,3) and by the
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exactness of the above sequence, gc+(E , q,L , ζ) is trivial for some ζ if and only if (E , q,L , ζ) is in
the image of (∧2)1. In particular, E ∼=

∧2V for some locally free OX -module V of rank 4. �

3. Relationship to the even Clifford algebra

In this section we relate the similarity Clifford invariant to classes in étale cohomology arising from
the (generalized) even Clifford algebra construction of Bichsel–Knus [17].

3.1. Involutions on endomorphism algebras and projective similarity. An antiautomorphism
of an OX -algebra A is defined to be a OX -algebra isomorphism σ : A → A op, where A op is the
opposite algebra. An antiautomorphism σ is called an involution (of the first kind) if σop ◦ σ = idA ,
identifying A = (A op)op. A morphism ϕ : (A , σ) → (A ′, σ′) between OX -algebras with involution
consists of an OX -algebra homomorphism ϕ : A → A ′ such that ϕ ◦ σ′ = σ ◦ ϕop. If (E , b,L ) is a
regular L -valued bilinear form, the OX -algebra anti-automorphism defined by

σb : End(E )→ End(E )op

ϕ 7→ ψ−1
b ◦ ϕ

∨L ◦ ψb
is an involution (called the adjoint involution) if and only if b is ε-symmetric (see 1.3), for some
ε ∈ H0

ét(X,µ2). Conversely, any involution (of the first kind) on End(E ) arises this way.

Proposition 3.1 (Saltman [88, Thm. 4.2a], Knus–Parimala–Srinivas [67]). Let X be a scheme and
E a locally free OX-module of finite rank. If σ is an involution (of the first kind) of End(E ) then
there exists a regular ε-symmetric bilinear form (E , b,L ) such that σ = σb. Moreover, the similarity
class of (E , b,L ) is uniquely determined by E and σ.

Remark 3.2. Note however, that the OX -algebras End(N ⊗ E ) and End(E ) are isomorphic for any
invertible OX -module N (see Remark 1.3). Thus an involution σ on End(E ) that corresponds to
a bilinear form (E , b,L ) will give rise be an involution on End(N ⊗ E ) that corresponds to the
bilinear form (N ⊗ E , b′,N ⊗2 ⊗L ). Thus the isomorphism class (as OX -algebras with involution)
of (End(E ), σb) only determines the projective similarity class of the bilinear form (E , b,L ), i.e. the
set of similarity classes of bilinear forms (N ⊗ E , n⊗ b,N ⊗2⊗L ), where (N , n,N ⊗2) is a bilinear
form of rank 1.

If (E , b,L ) is a regular ε-symmetric bilinear form, the projective similitude group PSim(E , b,L ) is
defined as the sheaf of automorphism (as algebras with involution) groups Aut(End(E ), σb). There’s
a natural homomorphism GO(E , q,L ) → PSim(E , q,L ) of sheaves of groups on Xét, with kernel
the central embedding Gm → Sim(E , b,L ) given by homotheties There is an exact sequence

(23) 1→ Gm → Sim(E , b,L )→ PSim(E , b,L )→ 1.

of sheaves of groups on Xét. The embedding of homotheties restricts to a central embedding µ2 →
Isom(E , b,L ), the sheaf cokernel of which defines the projective orthogonal group PIsom(E , b,L ).
In total, we have a commutative diagram with exact columns and rows

1

��

1

��
1 // µ2

��

// Gm

��

2 // Gm
// 1

1 // Isom

��

// Sim

��

µ // Gm
// 1

PIsom

��

∼ // PSim

��
1 1

(24)

of sheaves of groups on Xét by the Nine Lemma 5.16.
A locally free OX -algebra A of finite rank is an Azumaya OX-algebra if the canonical OX -algebra

homomorphism
A ⊗ A op → End(A )
a ⊗ b 7→ c 7→ acb

is an isomorphism, where End(A ) is the algebra of OX -module endomorphisms of A . Every Azumaya
algebra is locally isomorphic on Xét to an endomorphism algebra of a locally free sheaf, see Milne
[76, IV Proposition 2.3]. In particular, locally on Xét, an Azumaya algebra has rank n2 for some n,
giving rise to a global section deg(A ) ∈ H0

ét(X,Z) called the degree of A .
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An involution of the first kind σ on an Azumaya OX -algebra A is locally isomorphic on Xét,
by Proposition 3.1, to an adjoint involution associated to an ε-symmetric bilinear form for some
ε ∈ H0

ét(X,µ2), called the type of the involution. On each connected component, the type is called
orthogonal or symplectic depending on the sign of ε.

Proposition 3.3. Let X be a scheme with 2 invertible and (E , q,L ) be a regular ε-symmetric bilinear
form of rank n on X. Then the groupoid of PSim(E , b,L )-torsors is equivalent to the category of
Azumaya OX-algebras of degree n with involution of type ε together with isomorphisms of algebras
with involution.

Remark 3.4. The map on cohomology

H1
ét(X,Sim(E , b,L ))→ H1

ét(X,PSim(E , b,L ))

associated to sequence (23) has the following interpretation: the similarity class of a line bundle-
valued ε-symmetric bilinear form is mapped to the adjoint involution on its endomorphism algebra.
The coboundary map

H1
ét(X,PSim(E , b,L ))→ H2

ét(X,Gm)

takes an Azumaya algebra with with involution of type ε to the Brauer equivalence class of the
algebra. The Brauer class of any Azumaya OX -algebra A supporting an involution of the first kind
is 2-torsion. A refinement of this coboundary map is given via the involutive Brauer group, see 3.3.

3.2. Unitary involutions and hermitian forms. Let f : Z → X be étale quadratic and ι the
nontrivial X-automorphism of Z. Since ι is an automorphism of order 2, ι−1

∗ = ι∗ and ι∗ are
isomorphic functors on the category of OZ-modules. Indeed, for any OZ-module H , a canonical
isomorphism αH : ι∗H → ι∗H is given by adjunction applied to the identity map H → ι∗ι∗H .

For any OX -module L , the unit of adjunction defines an OZ-module isomorphism f∗L
η−→

ι∗ι
∗f∗L = ι∗f

∗L , which we shall (by abuse of notation) also denote by ι] : f∗L → ι∗f
∗L .

Note that this also coincides with the composition

f∗L ∼= f∗L ⊗ OZ
idf∗L⊗ι]−−−−−−→ f∗L ⊗ ι∗OZ ∼−→ ι∗(ι∗f∗L ⊗ OZ) ∼= ι∗f

∗L ,

where the third isomorphism is from the projection formula.

Hermitian forms. A line bundle-valued Z/X-hermitian form is a triple (H , h,L ), where H is a
locally free OZ-module of finite rank, L is an invertible OX -module, and h : H ⊗ ι∗H → f∗L is
an OZ-module morphism such that the following diagram of OZ-modules commute

H ⊗ ι∗H

��

h // f∗L

ι]

��
ι∗(H ⊗ ι∗H )

ι∗h // ι∗f∗L

(25)

where the left vertical map is the composition

H ⊗ ι∗H → ι∗H ⊗H → ι∗(H ⊗ ι∗H )
ι∗(idH ⊗αH )−−−−−−−−−→ ι∗(H ⊗ ι∗H )

of canonical OZ-module morphisms: näıve tensor switch, projection formula, and induced from α. The
commutativity of diagram (25) represents the usual formula “h(x, y) = h(y, x)” defining a hermitian
form.

As in the bilinear form case, a Z/X-hermitian form (H , h,L ) has an OZ-module adjoint mor-
phism ψh : H → Hom(ι∗H , f∗L ). It is called regular if ψh is an OZ-module isomorphism. The
commutativity of diagram (25) is equivalent to ψh = ψ†h, where ψ†h is defined as the composition

ψ†h : H
ev∗L−−−→Hom(ι∗Hom(ι∗H , f∗L ), f∗L )

ψ?L
h−−−→Hom(ι∗H , f∗L ).

Here, (−)?L is the contravariant functor Hom(ι∗(−), f∗L ) and

ev?L : id→ ((−)?L )?L

is the canonical morphism of functors on the category of coherent OZ-modules, which is an isomor-
phism on the subcategory VB(Z) of locally free OZ-modules. The triple (VB(Z), (−)?L , ev?L ) forms
an exact category with duality, the Witt group of which is studied in Gille [46]. This definition of
hermitian form is equivalent to the one found in [67, §3] and (upon taking ι∗) [85, §1.2].
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Unitary groups. A similarity (transformation) or similitude between line bundle-valued Z/X-hermitian
forms (H , h,L ) and (H ′, h′,L ′) is a pair (ϕ, λ), where ϕ : H → H ′ is an OZ-module isomor-
phism and λ : L → L ′ is an OX -module isomorphism such that either of the following (equivalent)
diagrams,

H ⊗ ι∗H

ϕ⊗ι∗ϕ
��

h // f∗L

f∗λ

��
H ′ ⊗ ι∗H ′ h′ // f∗L ′

H

ϕ

��

ψh // Hom(ι∗H , f∗L )

f∗λ−1ϕ∗L

��
H ′

ψh′ // Hom(ι∗E ′, f∗L ′)

(26)

of OZ-modules commute, where f∗λ−1ϕ∗L (ψ) = f∗λ−1◦ψ◦ϕ on sections. A similarity transformation
(ϕ, λ) is an isometry if L = L ′ and λ is the identity map.

For U → X, denote by (H , h,L )|U the Z ×X U/U -hermitian form (H |f−1(U), h|f−1(U),L |U ).
Denote by GU(H , h,L ) (resp. U(H , h,L )) the presheaf on Xét of similarities (resp. isometries)

U 7→ {similarities (resp. isometries) (ϕ, λ) : (H , h,L )|U → (H , h,L )|U}

of the regular L -valued Z/X-hermitian form (H , h,L ). In fact, these presheaves are sheaves on Xét

and are representable by smooth affine reductive group schemes over X, called the general unitary
(resp. unitary) group of the line bundle-valued Z/X-hermitian form (H , h,L ). We will often omit
the dependence of these groups on the form (H , h,L ) when no confusion may arise. Even though
these sheaves of groups are representable by schemes over X, we will still think of them as sheaves of
groups on Xét.

The map assigning (ϕ, λ) 7→ λ on sections defines the multiplier coefficient homomorphism µ :
GU(H , h,L ) → GL(L ) = Gm. As in Proposition 1.4, for any scheme X with 2 invertible, the
sequence of sheaves of groups,

1→ U(H , h,L )→ GU(H , h,L )
µ−→ Gm → 1,

is exact on Xét and is called the multiplier sequence.

Proposition 3.5. Let X be a scheme, f : Z → X étale quadratic, and (H , h,L ) a fixed regular
L -valued Z/X-hermitian form of rank n.

a) The groupoid of U(H , h,L )-torsors is equivalent to the groupoid whose objects are regular
L -valued Z/X-hermitian forms of rank n and whose morphisms are isometries.

b) The groupoid of GU(E , b,L )-torsors is equivalent to the groupoid whose objects are regular
line bundle-valued Z/X-hermitian forms of rank n and whose morphisms are similarity trans-
formations.

Remark 3.6. The multiplier sequence has a cohomological interpretation in analogy with Remark 1.5.
If (H , h,L ) is a fixed L -valued Z/X-hermitian form of rank n, then the map

H1
ét(X,U(H , h,L ))→ H1

ét(X,GU(H , h,L ))

takes the isometry class of a regular L -valued Z/X-hermitian form of rank n to its similarity class.
Under the identification GL(L ) = Gm the map

H1
ét(X,GU(H , h,L ))→ H1

ét(X,Gm) ∼= Pic(X)

takes the similarity class of a regular L ′-valued of rank n to the class of L ′ in Pic(X).

Unitary involutions. If B is an OZ-algebra, then an ι-semilinear antiautomorphism of B is defined
to be an OZ-algebra isomorphism σ : B → ι∗Bop such that the restriction σ|OZ equals the canonical
sheaf isomorphism ι] : OZ → ι∗OZ . An ι-semilinear antiautomorphism σ is called a Z/X-unitary
involution if ι∗σop ◦ σ = idB. An OZ-algebra isomorphism σ : B → ι∗Bop specifies an ι-semilinear
antiautomorphism αBop ◦ σ of B.

A morphism ϕ : (B, σ) → (B′, σ′) of OZ-algebras with Z/X-unitary involution consists of an
OZ-algebra homomorphism ϕ : B → B′ such that σ′ ◦ ϕ = ι∗ϕ

op ◦ σ.
Given a regular line bundle-valued Z/X-hermitian form, the ι-semilinear antiautomorphism defined

by

σh : End(H )→ End(ι∗H )op ∼= ι∗ End(H )op

ϕ 7→ ψ−1
h ◦ ϕ

?L ◦ ψh

is a Z/X-unitary involution called the adjoint involution of (H , h,L ). Conversely, every Z/X-
unitary involution on End(H ) arises this way.
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Proposition 3.7 (Saltman [88, Thm. 4.2b] or Knus–Parimala–Srinivas [67]). Let X be a scheme,
f : Z → X be étale quadratic, and H a locally free OZ-module of finite rank. If σ is a Z/X-unitary
involution on End(H ) then there exists a regular Z/X-hermitian form (H , h,L ) such that σ = σh.
Moreover, the similarity class of (H , h,L ) is uniquely determined by H and σ.

Remark 3.8. Similarly to Remark 3.2, the isomorphism class of the Z/X-unitary involution (End(H ), σh)
determines the projective similarity class of (H , h,L ).

Let (H , h,L ) be a regular Z/X-hermitian form. For every étale U → X, denote by (End(H ), σh)|U
the OU -algebra with Z×XU/U -unitary involution (End(H |f−1(U)), σh|f−1(U)). Denote by PGU(H , h,L )
the presheaf of automorphism groups

U 7→ {Z ×X U/U -unitary automorphisms ϕ : (End(H ), σh)|U → (End(H ), σh)|U}

on Xét. In fact, this presheaves is a sheaves on Xét, representable as an affine reductive alge-
braic group, called the projective unitary similitude group PGU(H , h,L ) = AutZ/X(End(H ), σh).
There’s a natural homomorphism GU(H , h,L ) → PGU(H , q,L ) of sheaves of groups on Xét,
with kernel the central embedding RZ/XGm → GU(E , b,L ) given by homotheties. There is an
exact sequence

1→ RZ/XGm → GU(H , h,L )→ PGU(H , h,L )→ 1.

of sheaves of groups on Xét. The multiplier of a homothety is its norm, thus the inclusion of homo-
theties restricts to a central inclusion R1

Z/XGm → U(H , h,L ), the sheaf cokernel of which defines
the projective unitary group PU(H , h,L ). In total, we have a commutative diagram with exact
columns and rows

1

��

1

��
1 // R1

Z/XGm

��

// RZ/XGm

��

N // Gm
// 1

1 // U

��

// GU

��

µ // Gm
// 1

PU

��

∼ // PGU

��
1 1

(27)

of sheaves of groups on Xét.
Finally, if the OZ-rank of H is m, then N(det(ϕ)) = λ2m. Thus we have an induced homomor-

phism det /µm : GU(H , h,L )→ R1
Z/XGm, whose sheaf kernel is the proper general unitary group

SGU(H , h,L ). In analogy with (4), we have an exact sequence

(28) 1→ SGU(H , h,L )→ GU(H , h,L )
det /µm−−−−−→ R1

Z/XGm → 1.

Restricting det /µm to the unitary group yields a homomorphism det : U(H , h,L ) → R1
Z/XGm,

whose sheaf kernel is the special unitary group SU(H , h,L ). In total, we have a commutative
diagram with exact columns and rows

1

��

1

��
1 // SU

��

// SGU

��

µ // Gm
// 1

1 // U
det

��

// GU
det /µm

��

µ // Gm
// 1

R1
Z/XGm

��

R1
Z/XGm

��
1 1

of sheaves of groups on Xét, in analogy with (5).
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3.3. Involutive Brauer group. Parimala–Srinivas [85] construct an “involutive” Brauer group
Br∗(X) of isomorphism classes [A , σ] of Azumaya OX -algebras with involution of the first kind
modulo classes of adjoint involutions associated to OX -valued symmetric bilinear forms. For an étale
quadratic f : Z → X, they also construct a “Z/X-unitary” Brauer group Br∗(Z/X) of isomorphism
classes of Azumaya OZ-algebras with Z/X-unitary involution modulo classes of adjoint involutions as-
sociated to OX -valued Z/X-hermitian forms. The following result shows that Br∗(X) is a refinement
of the 2-torsion subgroup 2Br(X) and provides a new interpretation for H2

ét(X,µ2).
We have canonical isomorphisms Hi

ét(X,RZ/XGm) ∼−→ Hi
ét(Z,Gm) from the degeneration of the

Leray spectral sequence associated to the étale morphism f : Z → X. Combined with the long exact
sequence of étale cohomology groups associated to (7) and the canonical identification H1

ét(X,Gm) =
Pic(X), we have the exact sequence

· · · → H1
ét(X,R

1
Z/XGm)→ Pic(Z) N−→ Pic(X)→ H1

ét(X,R
1
Z/XGm)→ H2

ét(Z,Gm)→ · · ·

which defines, for every invertible OX -module L a class c1(L ,R1
Z/XGm) ∈ H2

ét(X,R
1
Z/XGm).

Theorem 3.9 (Parimala–Srinivas [85, Th. 1, Th. 2]). Let X be a scheme with 2 invertible.
a) There is a canonical homomorphism Ψ : Br∗(X) → H2

ét(X,µ2) fitting into a commutative
diagram

Br∗(X)

��

Ψ // H2
ét(X,µ2)

��
2Br(X) //

2H
2
ét(X,Gm)

where the vertical maps are the natural forgetful maps. If (E , b,L ) is a regular line bundle-
valued (skew-)symmetric bilinear form on X, then Ψ[End(E ), σb] = c1(L ,µ2).

b) If f : Z → X is étale quadratic, then there is a canonical homomorphism ΨZ/X : Br∗(Z/X)→
H2

ét(X,R
1
Z/XGm) fitting into a commutative diagram

Br∗(Z/X)

��

ΨZ/X // H2
ét(X,R

1
Z/XGm)

��
Br(Z) // H2

ét(Z,Gm)

where the left vertical map is the natural forgetful map and the right vertical map is induced
from cohomology applied to (7). If (H , h,L ) is a regular line bundle-valued Z/X-hermitian
form, then ΨZ/X [End(H ), σh] = −c1(L ,R1

Z/XGm).

Remark 3.10. The forgetful maps Br∗(X)→ 2Br(X) and Br∗(Z/X)→ ker
(
H2

ét(Y,Gm) N−→ H2
ét(X,Gm)

)
are surjective, since every 2-torsion (resp. trivial norm) Brauer class is represented by an Azumaya
algebra with involution of the first kind (resp. unitary involution). This follows from the construction
in Knus–Parimala–Srinivas [67], which generalize results of Saltman [88] and Albert [1, X.9 Thm. 19],
see also [69, I.3].

Now suppose that the map 2Br(X)→ 2H
2
ét(X,Gm) is surjective, i.e. that every 2-torsion class in

the cohomological Brauer group is represented by an Azumaya algebra. This is the case when X is
a quasi-compact quasi-separated scheme admitting an ample invertible sheaf by de Jong’s extension
[29] (see also [74, Th. 2.2.2.1]) of a result of Gabber [41]. Then by the above remark and Theorem
3.9, Br∗(X) → H2

ét(X,µ2) is surjective. Furthermore, restricting Theorem 3.9 to the subgroup
Br+(X) ⊂ Br∗(X) consisting of classes of Azumaya algebras with orthogonal involution yields an
isomorphism Br+(X) ∼−→ H2

ét(X,µ2).
One can reinterpret this in the language of twisted sheaves: while a torsion Gm-twisted sheaf on a

sufficiently nice scheme is represented by an Azumaya algebra, a µ2-twisted sheaf is represented by
an Azumaya algebra with (orthogonal) involution.

Proof of Theorem 3.9. We will review details of the proof inasmuch as they are necessary for our
purposes. We will also provide new torsorial proofs of the statements concerning classes arising from
adjoint involutions. The sign discrepancy between the final formula of b) and the final formula of
Parimala–Srinivas [85, Thm. 2] (the proof of which was left to the reader) is most likely due to
different conventions for associating Gm-torsors to invertible sheaves.

As for a), for each n ≥ 1 and ε ∈ H0
ét(X,µ2), denote by Isomε,n the isometry group of the

form 〈1, . . . , 1〉 on connected components where ε = 1 and the standard skew-symmetric hyperbolic
form of rank n (if n is even) on connected components where ε = −1. Similarly to Remark 3.4,
the map H1

ét(X, Isomn,ε) → H1
ét(X,PIsomn,ε) associated to (24) is interpreted as: the isometry
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class of a regular ε-symmetric form (E , b) maps to the isomorphism class of its adjoint involution
(End(E ), σb). In particular, the coboundary map Ψn : H1

ét(X,PIsomn,ε) → H2
ét(X,µ2) vanishes on

adjoint algebras of OX -valued ε-symmetric bilinear forms and so factors through Br∗(X). The map
Ψ : Br∗(X)→ H2

ét(X,µ2) is defined to be the limit of these coboundary maps over classes of Azumaya
algebras with involution of fixed degree. The fact that the map is a group homomorphism is verified
in [85]. The commutativity of the diagram in a) follows from the interpretation on cohomology of
the commutative diagram with exact rows

1 // µ2

��

// Isomn,ε

��

// PIsomn,ε

��

// 1

1 // Gm
// GLn // PGLn // 1

of sheaves of groups on Xét.
As for the final statement of a), first note that since c1(L ) = c1(N ⊗2 ⊗L ), the 1st Chern class

of the value line bundle is an invariant of the projective similarity class (see §3.1) of a line bundle-
valued bilinear form, and is therefore an invariant of the OX -algebra isomorphism class of its adjoint
involution. Now we apply the Roman IX Lemma 5.17 to the Roman IX rearrangement (Remark 5.18)
of diagram (24), which yields the (anti)commutative pentagon

H1
ét(X,PSimn,ε)

Ψn // H2
ét(X,µ2)

H1
ét(X,Simn,ε)

33gggggggg

++XXXXXXXXX

H1
ét(X,Gm)

c1 // H2
ét(X,µ2)

of cohomology sets. Following the similarity class of a line bundle-valued ε-symmetric bilinear form
(E , b,L ) around the (anti)commuting pentagon yields

Ψn[End(E ), σb] = −c1(L ,µ2) = c1(L ,µ2) ∈ H2
ét(X,µ2).

A similar technique has been used in Căldăraru [24, Prop. 5.2.4].
As for b), the same argument carries over upon replacing Isomn,ε by UZ

n , the unitary group of the
standard Z/X-hermitian form of OZ-rank n. In this case, short exact sequence (23) is replaced by

1→ R1
Z/XGm → UZ

n → PUZ
n → 1

whose coboundary map ΨZ
n : H1

ét(X,PUZ
n ) → H2

ét(X,R
1
Z/XGm) factor through Br∗(Z/X). We

define ΨZ/X : Br∗(Z/X) → H1
ét(X,R

1
Z/XGm) as a limit of the maps ΨZ

n . Diagram (24) is replaced
by the corresponding diagram (27), and the the Roman IX Lemma 5.17 and rearrangement (Remark
5.18) yields the anticommutative pentagon

H1
ét(X,PGUZ

n )
ΨZn // H2

ét(X,R
1
Z/XGm)

H1
ét(X,GUZ

n )

33ggggggg

++WWWWWWWW

H1
ét(X,Gm)

c1 // H2
ét(X,R

1
Z/XGm)

of cohomology sets. Then following the similarity class of a regular line bundle-valued Z/X-hermitian
form (H , h,L ) around the anticommuting pentagon yields

ΨZ/X [End(H ), σh] = −c1(L ,R1
Z/XGm) ∈ H2

ét(X,R
1
Z/XGm).

Note that constructing a proof of 3.9b) was left to the reader in Parimala–Srinivas [85]. �

3.4. Involutive Brauer class of the even Clifford algebra. We present a generalization of results
of Parimala–Srinivas [85, §2] to even Clifford algebras of line bundle-valued quadratic forms. Given
a line bundle-valued quadratic form (E , q,L ), the type of the canonical involution (see 1.8) τ0 on
C0(E , q,L ) is given as in the classical case over fields.

Proposition 3.11. Let (E , q,L ) be a line bundle-valued quadratic form on X.
a) If n is odd, then C0(E , q,L ) is an Azumaya OX-algebra and

(a) if n ≡ 1, 7 mod 8 then τ0 is of orthogonal type, while
(b) if n ≡ 3, 5 mod 8 then τ0 is of symplectic type.

b) If n is even, then C̃0(E , q,L ) is an Azumaya OZ-algebra, where Z → X is the Arf covering of
(E , q,L ).
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(a) if n ≡ 0 mod 8 then τ0 is of orthogonal type on Z,
(b) if n ≡ 4 mod 8 then τ0 is of symplectic type on Z, while
(c) if n ≡ 2 mod 4 then τ0 is of Z/X-unitary type.

Proof. Since the type of an involution is local in the étale topology, we may reduce to the case of
symmetric bilinear forms on affine schemes, where we can appeal to [85, Lemma 2]. Of course, the
same proposition holds for even Clifford algebras of Azumaya algebras with orthogonal involution. �

Recall the notation of Example 2.6. For each even n = 2m ≥ 2 and each étale quadratic f : Z → X,
let (H , b) = hZn = (f∗OZ , hZ) ⊥ HOX (Om−1

X ), where (f∗OZ , hZ) is the norm form associated to
f : Z → X (see §5.1).

3.4.1. Canonical involutions of the first type. If n = 2m ≡ 0 mod 4, the even Clifford algebra gives
rise, via the involutive Brauer group, to a class

[C̃0(E , q,L ), τ0] ∈ H2
ét(Z,µ2)

where Z → X is the Arf invariant of (E , q,L ). If Z → X is split, then any choice of global
splitting idempotent induces a decomposition of OX -algebras with involution (C0(E , q,L ), τ0) ∼=
(C +

0 (E , q,L ), τ+
0 ) × (C−0 (E , q,L ), τ−0 ), where τ±0 are the restrictions of τ0. Note that C±0 (E , q,L )

are Azumaya OX -algebras of degree 2m−1, where n = 2m.
Recall that there’s an isomorphism of group schemes zZn ∼= RZ/Xµ2 for m even, see [69, VI.26.A]

for example. For Z/X split, the choice of an isomorphism zZn = zm,m ∼= µ2 ×µ2 (as in §2.8) yields a
fixed isomorphism zZn ∼−→ RZ/Xµ2. We now provide a generalization of [69, VII.31.11] to our setting,
which can be viewed as an involutive refinement of the Tits algebra in the 1Dm and 2Dm cases, for
m even.

Proposition 3.12. Let X be a scheme with 2 invertible, f : Z → X étale quadratic, and n = 2m ≡
0 mod 4. Then the coboundary map

H1
ét(X,PSOZ

n )→ H2
ét(X, z

Z
n ) ∼= H2

ét(X,RZ/Xµ2) ∼= H2
ét(Z,µ2)

has the following interpretation: a class associated to the adjoint involution of (E , q,L ) (for some
choice of orientation) maps to the involutive Brauer class [C0(E , q,L ), τ0].

Proof. As in Remark 1.10, the natural homomorphism PSOZ
n → RZ/XPIso(C̃0(hZn ), τ0) induces a

map

H1
ét(X,PSOZ

n )→ H1
ét(Z,PIso(C0(hZn ), τ0))

with the following interpretation: a class associated to the adjoint involution of (E , q,L ) maps to
the OZ-isomorphism class of its even Clifford algebra C0(E , q,L ). This homomorphism fits into a
commutative diagram

1 // zZn

��

// SpinZn

��

// PSOZ
n

��

// 1

1 // RZ/Xµ2 // RZ/XIso(C̃0(hZn ), τ0) // RZ/XPIso(C̃0(hZn ), τ0) // 1

of sheaves of groups on Xét with exact rows. The proposition then follows from chasing the class of
(End(E ), σq) around the diagram

H1
ét(X,PSOZ

n )

��

// H2
ét(X, z

Z
n )

��
H1

ét(Z,PIso(C0(hZn ), τ0)) // H2
ét(Z,µ2)

of coboundary maps. The statement (and proof) of the proposition hold, more generally, for even
Clifford algebras of Azumaya algebras of degree ≡ 0 mod 4 with orthogonal involution. �

Finally, we come the main result of this section. We will denote the following composition

H2
ét(X,κ

Z
n ) ∼= H2

ét(X,R
1
Z/Xµ4)→ H2

ét(X,RZ/Xµ4) ∼= H2
ét(Z,µ4)

by ϕ2, where the first isomorphism is induced from Example 2.6. Denote by i : µ2 → µ4 the canonical
homomorphism.
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Theorem 3.13. Let X be a scheme with 2 invertible, f : Z → X étale quadratic, and n = 2m ≡
0 mod 4. Let (E , q,L ) be a regular quadratic form of rank n and Arf invariant [Z/X]. Then we have

ϕ2gc(E , q,L ) = i2[C̃0(E , q,L ), τ0] + c1(f∗L ,µ4)

in H2
ét(Z,µ4).

Proof. This proof may be seen as a refinement of [69, VII Exer. 15a]. Let κ̃Zn be the subgroup scheme
of SΓZn defined by

κ̃Zn (U) = {x ∈ SΓZn (U) : N(x), r(x) ∈ µ2(U)}.

Note that κ̃Zn is the kernel in the short exact sequence of group schemes

(29) 1→ κ̃Zn → SΓZn → GSOZ
n/µ2 → 1

on Xét. Restricting the homomorphisms N and s = N · r to κ̃Zn yields exact sequences

1→ zZn
ı̃z−→ κ̃Zn

N−→ µ2 → 1
1→ κZn

ı̃κ−→ κ̃Zn
s−→ µ2 → 1

fitting into commutative diagrams with exact rows and columns

1

��

1

��

1

��
1 // z

��

// κ̃ //

��

µ2 //

��

1

1 // Spin

��

// SΓ //

��

Gm
//

��

1

1 // PSO

��

// GSO/µ2

��

// Gm

��

// 1

1 1 1

1

��
1

��

µ2

��
1 // κ //

��

SΓ // GSO

��

// 1

1 // κ̃

��

// SΓ // GSO/µ2

��

// 1

µ2

��

1

1

(30)

of sheaves of groups on Xét. The existence of these diagrams is guaranteed by the Nine Lemma 5.16.

Proposition 3.14. Let X be a scheme with 2 invertible and (E , q,L ) a regular L -valued quadratic
form of rank n on X. The groupoid of GO(E , q,L )/µ2-torsors is equivalent to the category of 2-
torsion data with involution, whose objects are tuples (A , σ,V , b,M , ϕ), where (A , σ) is an Azumaya
OX-algebra of degree n with orthogonal involution, (V , b,M ) is a regular M -valued quadratic form of
rank n2, and ϕ : (A , σ)⊗ (A , σ)→ (End(V ), σb) is an isomorphism of OX-algebras with involution
and whose morphisms between objects (A , σ,V , b,M , ϕ) and (A ′, σ′,V ′, b′,M ′, ϕ′) are tuples (ψ, g, λ)
consisting of an isomorphism ψ : (A , σ) → (A ′, σ′) of OX-algebras with involution and a similarity
(g, λ) : (V , b,M )→ (V ′, b′,M ′) satisfying ϕ′ ◦ (ψ ⊗ ψ) = Adg ◦ϕ.

Proof. This is similar (but slightly more involved) to the description of GLn/µ2-torsors in terms of
2-torsion data, see 4.2 and Auel [4]. �

The map of pointed sets α : H1
ét(X,GO)→ H1

ét(X,GO/µ2) induced from the quotient homomor-
phism has the following interpretation: the class of (E , q,L ) maps to the tuple (End(E ), σq,E ⊗E , q⊗
q,L ⊗2, ϕE ), where ϕE : End(E )⊗ End(E )→ End(E ⊗ E ) is the canonical OX -algebra isomorphism.

The map of pointed sets β : H1
ét(X,PGO) ∼= H1

ét(X,PO) → H1
ét(X,GO/µ2) has the following

interpretation: the class of (A , σ) maps to the tuple (A , σ,A ,Trd(A ,σ),OX , ϕA ), where Trd(A ,σ) is
the trace form

Trd(A ,σ) : A ⊗A → OX

a⊗ b 7→ TrdA (a σ(b)).
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Consider the commutative diagram with exact rows and columns

1

��

1

��
µ2

��

µ2

��
1 // Gm

2
��

// GO

��

// PGO // 1

1 // Gm

��

// GO/µ2

��

// PGO // 1

1 1

of sheaves of groups on Xét. There’s an induced action of PicX = H1
ét(X,Gm) on H1

ét(X,GO/µ2),
which is described by

L · (A , σ,V , b,M , ϕ) = (A , σ,L ⊗ V , id⊗ b,L ⊗2 ⊗M,ϕ)

where we consider ϕ : (A , σ) ⊗ (A , σ) → (End(V ), σb) = (End(L ⊗ V ), σid⊗b) via the canonical
identification End(L ⊗ V ) = End(V ).

By Remark 3.4, the map of pointed sets H1
ét(X,GO) → H1

ét(X,PGO) ∼= H1
ét(X,PO) induced

from the quotient homomorphism has the following interpretation: the class (E , q,L ) maps to its
adjoint involution (End(E ), σq).

Claim 3.15. Let (E , q,L ) be a regular symmetric bilinear form. We have the following formula

β(End(E ), σq) = L ∨ · α(E , q,L ).

Proof. By a generalization of [69, II Prop. 11.4], the composition of OX -module isomorphisms

E ⊗ E ⊗L ∨
ψ−1
q−−−→ E ⊗ E ∨

can−−→ End(E )

is an isometry of the symmetric bilinear forms

(E ⊗ E ⊗L ∨, q ⊗ q ⊗ idL∨ ,OX) ∼= (End(E ),Trd(End(E ),σq),OX),

where

q ⊗ q ⊗ idL∨ :
(
E ⊗ E ⊗L ∨

)
⊗
(
E ⊗ E ⊗L ∨

)
→ L ⊗2 ⊗ (L ∨)⊗2 ev−→ OX .

Through this isometry, the map β applied to the adjoint involution of (E , q,L ) is identified with
(End(E ), σq,E ⊗ E ⊗L ∨, q ⊗ q ⊗ idL∨ ,OX , ϕE ), where

ϕE : End(E )⊗ End(E )→ End(E ⊗ E ) ∼= End(E ⊗ E ⊗L ∨).

But this is precisely α applied to (E , q,L ) scaled by the class of L ∨. �

We leave it as an exercise to the reader to make the adjustments to Proposition 3.14, Claim 3.15,
and the above cohomological interpretations necessary to describe torsors corresponding to PGSO/µ2

(all objects and morphisms are oriented, preserving the discriminant form or center of the Clifford
algebra).

Let g̃c(A , σ,V , b,M , ϕ) ∈ H2
ét(X, κ̃

Z
n ) be the coboundary map arising from sequence (29) applied

to a choice of Z/X-orientation on the tuple (A , σ,V , b,M , ϕ). Similarly as in Definition 2.8, by
Lemma 5.15, the invariant g̃c is independent of the choice of orientation. Considering the central
rows of the right-hand diagram (30), we have g̃c ◦ α = ı̃2κ ◦ gc. Hence, by Proposition 3.12 and the
commutativity two left columns of the left-hand diagram (30), we have

(31) g̃c(L ∨ · α(E , q,L )) = g̃c(β(End(E ), σq)) = ı̃2z[C0(E , q,L ), τ0]

in H2
ét(X, κ̃

Z
n ).

Now we identify the effect of scaling by H1
ét(X,Gm) on the coboundary map of sequence (29).

Restricting the homomorphism r to κ̃Zn yields an exact sequence

1→ µ4

ı̃µ4−−→ κ̃Zn
r−→ µ2 → 1
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fitting into the commutative diagram with exact rows and columns

1

��

1

��

1

��
1 // µ4

��

// κ̃

��

// µ2

��

// 1

1 // Gm

��

// SΓ

��

// SO

��

// 1

1 // Gm

��

// GSO/µ2

��

// PSO

��

// 1

1 1 1

of sheaves of groups on Xét. For ξ ∈ H1
ét(X,GSO/µ2) and L ∈ H1

ét(X,Gm), we then have

g̃c(L ∨ · ξ) = c1(L ∨,µ4) + g̃c(ξ)

in H2
ét(X, κ̃

Z
n ), by an application of Lemma 5.19 to the above diagram. Applying this to (31) yields

(32) ı̃2µ4
c1(L ∨,µ4) + g̃c(α(E , q,L )) = ı̃2z [C0(E , q,L ), τ0]

in H2
ét(X, κ̃

Z
n ). This is, in fact, a refinement of the statement of the theorem. To finally finish

the proof, we construct an embedding j : κ̃Zn ↪→ RZ/Xµ4, so that applying j2 : H2
ét(X, κ̃

Z
n ) →

H2
ét(X,RZ/Xµ4) ∼= H2

ét(Z,µ4) to (32) yields the statement of the theorem.
To this end, first note that the diagram

κ̃Zn κZn
ı̃κoo

zZn

ı̃z

OO

µ2oo

OO

is a pushout in the category of sheaves of abelian groups on Xét. Indeed, the internal product of the
maps ı̃κ and ı̃z fits into an exact sequence

1→ µ2
∆−→ κZn × zZn

ı̃κ ·̃ız−−−→ κ̃Zn → 1

presenting κ̃Zn as the explicit pushout of the canonical inclusions of µ2 ↪→ SΓZn into κZn and zZn .
Considering the homomorphisms κZn

∼= R1
Z/Xµ4 → RZ/Xµ4 and zZn ∼= RZ/Xµ2 → RZ/Xµ4, the

universal property of the pushout supplies a unique homomorphism j : κ̃Zn → RZ/Xµ4.

Now denoting by N2 the composition of homomorphisms RZ/Xµ4
N−→ µ4

2−→ µ2, we can complete
the diagrams provided by the universal property of the pushout to the following commutative diagrams
with exact rows and columns

1

��

1

��
1 // κZn

∼

��

ı̃κ // κ̃
j

��

s // µ2

��

// 1

1 // R1
Z/Xµ4 // RZ/Xµ4

N2

��

N // µ4

2

��

// 1

µ2

��

µ2

��
1 1

1

��

1

��
1 // zZn

∼

��

ı̃z // κ̃
j

��

N // µ2

��

// 1

1 // RZ/Xµ2 // RZ/Xµ4

N2

��

2 // RZ/Xµ2

N

��

// 1

µ2

��

µ2

��
1 1
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of sheaves of abelian groups on Xét. Similarly, we have the commutative diagram with exact rows
and columns

1

��

1

��
1 // µ4

ı̃µ4 // κ̃

j
��

r // µ2

��

// 1

1 // µ4 // RZ/Xµ4

N2

��

id/ι // R1
Z/Xµ4

2
��

// 1

µ2

��

µ2

��
1 1

of sheaves of abelian groups onXét, the bottom square of which commutes since x2ι(x)2 = (x2/ι(x)2)ι(x)4 =
x2/ι(x)2 for sections x of RZ/Xµ4, where ι is the nontrivial automorphism of Z → X (see §2.2). In
particular, the compositions j ◦ ı̃κ, j ◦ ı̃z, and j ◦ ı̃µ4 are identified with the canonical inclusions of
the respective subgroups into RZ/Xµ4. As a consequence, we have identifications

j2 ◦ ı̃2κ = ϕ2, j2 ◦ ı̃2z = i2, j2 ◦ ı̃2µ4
= f∗

of the respective maps after taking H2
ét. Finally, applying j2 to (32) yields the statement of the

theorem. �

3.4.2. Canonical involutions of the second type. If n = 2m ≡ 2 mod 4, the even Clifford algebra gives
rise, via the Z/X-unitary involutive Brauer group, to a class

[C0(E , q,L ), τ0] ∈ H2
ét(X,R

1
Z/XGm)

where Z → X is the Arf covering of (E , q,L ). If Z → X is split (equivalently, d±(E , q,L ) is trivial),
then any choice of global splitting idempotent induces a decomposition of OX -algebras C0(E , q,L ) ∼=
C +

0 (E , q,L )× C−0 (E , q,L ). By a globalization of Bichsel [18, §5.3] (also see [68, IV Thm. 9.2.2] or
[69, I Prop. 2.14]), the canonical involution τ0 induces an OX -algebra isomorphism C +

0 (E , q,L )op ∼−→
C−0 (E , q,L ), and so C0(E , q,L ) is a hyperbolic ring.

There’s an isomorphism of group schemes zZn ∼= R1
Z/Xµ4 for m odd, see [69, VI.26.A]. In fact, for

Z/X split, the choice of an isomorphism zZn = zm,m ∼= µ4 (as in §2.8) yields a fixed isomorphism
zZn ∼−→ R1

Z/Xµ4 (using the method of Remark 2.6). We now provide a generalization of [69, VII.31.9]
to our setting, which can be viewed as a unitary involutive refinement of the Tits algebra in the 1Dm
and 2Dm cases, for m odd.

Proposition 3.16. Let X be a scheme with 2 invertible, f : Z → X étale quadratic, and n = 2m ≡
2 mod 4. Then the composition of maps

H1
ét(X,PSOZ

n )→ H2
ét(X, z

Z
n ) ∼= H2

ét(X,R
1
Z/Xµ4)→ H2

ét(X,R
1
Z/XGm)

has the following interpretation: a class associated to the adjoint involution of (E , q,L ) maps to the
Z/X-unitary involutive Brauer class [C0(E , q,L ), τ0].

Proof. The argument is similar to the proof of Proposition 3.12. As in Remark 1.10, the natural
homomorphism PSOZ

n → PU(C̃0(hZn ), τ0) induces a map

H1
ét(X,PSOZ

n )→ H1
ét(X,PU(C0(h), τ0))

with the following interpretation: a class associated to the adjoint involution of (E , q,L ) maps to
the OZ-algebra (C̃0(E , q,L ), τ0) with Z/X-unitary involution.

This homomorphism fits into a commutative diagram

1 // zZn

��

// SpinZn

��

// PSOZ
n

��

// 1

1 // R1
Z/XGm // U(C̃0(hZn ), τ0) // PU(C̃0(hZn ), τ0) // 1
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of sheaves of groups on Xét with exact rows. The proposition then follows by chasing the class of
(End(E ), σq) around the diagram

H1
ét(X,PSOZ

n )

��

// H2
ét(X, z

Z
n )

��
H1

ét(Z,PU(C0(hZn ), τ0)) // H2
ét(X,R

1
Z/XGm)

of coboundary maps. The statement (and proof) of the proposition hold, more generally, for even
Clifford algebras of Azumaya algebras of degree ≡ 2 mod 4 with orthogonal involution. �

Finally, we come the main result of this section, which is analogous to, but weaker than, Theorem
3.13. We will denote the following composition

H2
ét(X,κ

Z
n ) ∼= H2

ét(X,RZ/Xµ2) ∼= H2
ét(Z,µ2)→ H2

ét(Z,Gm)

by φ2, where the first isomorphism is induced from Example 2.6. Denote by i : µ2 → Gm the
canonical homomorphism.

Theorem 3.17. Let X be a scheme with 2 invertible, f : Z → X étale quadratic, and n = 2m ≡
2 mod 4. Let (E , q,L ) be a regular quadratic form of rank n and Arf invariant [Z/X]. Then we have

φ2gc(E , q,L ) = [C̃0(E , q,L )]

in H2
ét(Z,Gm).

Proof. The proof is similar to that of Theorem 3.13. Let G̃Z
n be the subgroup scheme of SΓZn defined

by

G̃Z
n (U) = {x ∈ SΓZn (U) : r(x) ∈ µ2(U)}.

Note that G̃Z
n is the kernel in the short exact sequence of group schemes

(33) 1→ G̃Z
n → SΓZn → PSOZ

n → 1

on Xét. Restricting the homomorphisms N and s = N · r to G̃Z
n yields exact sequences

1→ zZn
ı̃z−→ G̃Z

n
N−→ Gm → 1

1→ κZn
ı̃κ−→ G̃Z

n
s−→ Gm → 1

fitting into commutative diagrams with exact rows and columns

1

��

1

��
1 // z

��

// G̃Z
n

��

// Gm
// 1

1 // Spin

��

// SΓ

��

// Gm
// 1

1 // PSO

��

PSO

��
1 1

1

��

1

��
1 // κ // G̃Z

n

��

// Gm

��

// 1

1 // κ // SΓ

��

// GSO

��

// 1

PSO

��

∼ // PGSO

��
1 1

(34)

of sheaves of groups on Xét. The inclusion of the scalar torus Gm → G̃Z
n can be completed to an

exact sequence

1→ Gm
ı̃Gm−−−→ G̃Z

n → µ2 → 1
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which fits into the commutative diagram with exact rows and columns

1

��

1

��
1 // Gm

// G̃Z
n

��

// µ2

��

// 1

1 // Gm
// SΓ

��

// SO

��

// 1

PSO

��

PSO

��
1 1

of sheaves of groups on Xét. The existence of these diagrams is guaranteed by the Nine Lemma 5.16.
Let t : H1

ét(X,PSOZ
n ) ∼= H1

ét(X,PGOZ
n ) → H2

ét(X, z
Z
n ) be the coboundary map of (18). We will

write t(E , q,L ) = t(End(E ), σq). Now chasing the class of (End(E ), σq) through the upper rows of
the right-hand diagram and the left-most columns of the left-hand diagram (34), we have

(35) ı̃2κ gc(E , q,L ) = ı̃2z t(E , q,L )

in H2
ét(X, G̃

Z
n ). This is, in fact, a refinement of the statement of the theorem. To finally finish

the proof, we construct an embedding j : G̃Z
n → RZ/XGm, so that applying j2 : H2

ét(X, G̃
Z
n ) →

H2
ét(X,RZ/XGm) ∼= H2

ét(Z,Gm) to (35) yields the statement of the theorem.
To this end, first note that the diagram

G̃Z
n κZn

ı̃κoo

Gm

ı̃Gm

OO

µ2oo

OO

is a pushout in the category of sheaves of abelian groups on Xét. Indeed, the internal product of the
maps ı̃κ and ı̃Gm fits into an exact sequence

1→ µ2
∆−→ κZn ×Gm

ı̃κ ·̃ıGm−−−−→ G̃Z
n → 1

presenting G̃Z
n as the explicit pushout of the canonical inclusions of µ2 ↪→ SΓZn into κZn and Gm.

Considering the homomorphisms κZn
∼= RZ/Xµ2 → RZ/XGm and Gm → RZ/XGm, the universal

property of the pushout supplies a unique homomorphism j : G̃Z
n → RZ/XGm.

Now denoting by (id/ι)2 the composition of homomorphisms RZ/XGm
id/ι−−→ R1

Z/XGm
2−→ R1

Z/XGm,
we can complete the diagrams provided by the universal property of the pushout to the following
commutative diagrams with exact rows and columns

1

��

1

��
1 // κZn

∼

��

ı̃κ // G̃Z
n

j
��

s // Gm

��

// 1

1 // RZ/Xµ2 // RZ/XGm

(id/ι)2

��

2 // RZ/XGm

id/ι
��

// 1

R1
Z/XGm

��

R1
Z/XGm

��
1 1

1

��

1

��
1 // Gm

ı̃Gm // G̃Z
n

j

��

// µ2

��

// 1

1 // Gm
// RZ/XGm

(id/ι)2

��

id/ι // R1
Z/XGm

2
��

// 1

R1
Z/XGm

��

R1
Z/XGm

��
1 1
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of sheaves of abelian groups on Xét. Similarly, we have the commutative diagram with exact rows
and columns

1

��

1

��
1 // zZn

∼

��

ı̃z // G̃Z
n

j

��

N // Gm
// 1

R1
Z/Xµ4

��
1 // R1

Z/XGm

��

// RZ/XGm

(id/ι)2

��

N // Gm

R1
Z/XGm

��

R1
Z/XGm

��
1 1

of sheaves of abelian groups on Xét. In particular, the compositions j ◦ ı̃κ, j ◦ ı̃Gm , and j ◦ ı̃z are
identified with the canonical inclusions of the respective subgroups into RZ/XGm. As a consequence,
we have identifications

j2 ◦ ı̃2κ = φ2, j2 ◦ ı̃2Gm
= f∗, j2 ◦ ı̃2z = φ2

z

of the respective maps after takingH2
ét. Here, φ2

z is the composition of mapsH2
ét(X, z

Z
n ) ∼= H2

ét(X,R
1
Z/Xµ4)→

H2
ét(X,R

1
Z/XGm) from Proposition 3.16, which satisfies φ2

z t(E , q,L ) = [C̃0(E , q,L ), τ0] inH2
ét(Z,Gm).

Finally, applying j2 to (35) yields the statement of the theorem. �

4. Relationship to the Clifford bimodule

As usual, let X be a noetherian separated scheme with 2 invertible and let L be a fixed invertible
OX -module. While the results in §3 comparing the (refined) Tits algebra to (involutive Brauer classes
associated to) the even Clifford algebra were quite neat, the results comparing the similarity Clifford
invariant to the even Clifford algebra were less so. In this section, we shall see that the similarity
Clifford invariant much more elegantly reflects involutive structures arising from the Clifford bimodule.

4.1. Clifford bimodule. As in the case of central simple algebras with orthogonal involution, line
bundle-valued quadratic forms do not generally enjoy a “full” Clifford algebra, of which the even
Clifford algebra (see §1.8) is the even degree part. As a replacement, algebras with orthogonal
involution have a Clifford bimodule (see [69, II §9]) while line bundle-valued quadratic forms enjoy a
refinement of this notion of Clifford bimodule. If (E , q,L ) is a regular line bundle-valued quadratic
form, then there exists a locally free OX -module C1(E , q,L ) with the structure of an invertible
C0(E , q,L )-bimodule. The corresponding Clifford bimodule defined in [69] is then isomorphic to
E ⊗ C1(E , q,L ).

Let (E , q,L ) be a quadratic form on X and C ′(E , q,L ) its generalized Clifford algebra (see §1.8).
Define the Clifford bimodule C1(E , q,L ) of (E , q,L ) to be the degree 1 submodule of C ′(E , q,L ).
It’s also possible to construct the Clifford bimodule via a direct tensorial construction or by gluing
the odd degree parts of Clifford algebras over a Zariski cover trivializing L , as in §1.8.

Functorial properties. The Clifford bimodule has the following functorial properties (assuming that
(E , q,L ) is a regular quadratic form of rank n on X):

a) There is a canonical embedding of locally free OX -modules

i : E → C1(E , q,L ).

b) Via multiplication in the generalized Clifford algebra, C1(E , q,L ) is an invertible C0(E , q,L )-
bimodule and there’s a canonical isomorphism

m : C1(E , q,L )⊗C0(E ,q,L ) C1(E , q,L ) ∼−→ C0(E , q,L )⊗OX L

of C0(E , q,L )-bimodules (with trivial action on L ) satisfying

m(i(v)⊗ i(v)) = 1⊗ q(v)

for a section v of E . See [18, §2] or [17, Lemma 3.1].
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c) Any similarity transformation (ϕ, λ) : (E , q,L )→ (E ′, q′,L ′) induces an OX -module isomor-
phism

C1(ϕ, λ) : C1(E , q,L )→ C1(E ′, q′,L ′).

that is C0(ϕ, λ)-semilinear according to the diagram

C1(E , q,L )⊗C0(E ,q,L ) C1(E , q,L )

C1(ϕ,λ)⊗C1(ϕ,λ)

��

m // C0(E , q,L )⊗OX L

C0(ϕ,λ)⊗λ
��

C1(E , q,L )⊗C0(E ,q,L ) C1(E , q,L ) m // C0(E , q,L )⊗OX L

See [18, Prop. 2.6].
d) If n = 2m is even, and Z is the center of C0(E , q,L ) then C1(E , q,L ) is a Z -bimodule

satisfying x · z = ι(z) · x for sections z of Z and x of C1(E , q,L ), where ι is the nontrivial
element of Gal(Z /OX). See [68, IV Prop. 4.3.1(4)].

e) There is an OX -module isomorphism τ1 : C1(E , q,L )→ C1(E , q,L ) of order 2 satisfying

τ1(axb) = τ0(b)τ1(x)τ0(a), (τ0 ⊗ idL )(m(x⊗ y)) = m(τ1(y)⊗ τ1(x)), τ1(i(v)) = v

for sections a, b of C0(E , q,L ), x, y of C1(E , q,L ), and v of E .
f) Any regular bilinear form (N , n,N ⊗2) of rank 1, induces an OX -algebra isomorphism

C1(n⊗ idE ) : C1(E , q,L )⊗N → C1(N ⊗ E , n⊗ q,N ⊗2 ⊗L ).

g) For any morphism of schemes g : X ′ → X, there’s a canonical OX -module isomorphism

g∗C1(E , q,L ) ∼−→ C1(g∗(E , q,L )).

When a regular line bundle-valued quadratic form (E , q,L ) of rank n is fixed, we will write C0 for
the even Clifford algebra (as an OX -algebra) and C1 for the Clifford bimodule (as an OX -module).
When n is even, write Z = Spec Z with structure morphism f : Z → X, and denote by C̃0 and C̃1

the associated OZ-algebra (see §1.8) and C̃0-bimodule, respectively. Note that C̃1 has a left and right
OZ-module structure, which are interchanged by twisting by ι.

Given OZ-bimodules P and P ′, take care that P ⊗OZ P ′ stands for the tensor product with
respect to the right OZ-action of P and the left OZ-action of P ′, and is again an OZ-bimodule.

Given an étale quadratic f : Z → X with Galois group generated by ι and an OZ-module B,
consider the näıve “switch” morphism sB : B ⊗OZ B → B ⊗OZ B and the ι-semilinear “switch”
morphism

sιB : B ⊗OZ ι∗B → ι∗(B ⊗OZ ι∗B)

a⊗ ι∗b 7→ ι∗(b⊗ ι∗a).

Furthermore, if β : B → B is an OZ-module isomorphism, denote by Adβ : End(B) → End(B) the
induced OZ-algebra isomorphism ϕ 7→ τ ◦ ϕ ◦ τ−1; if β is a ι-semilinear isomorphism B → ι∗B′,
denote by

Adιβ : EndOZ (B)
Adβ−−−→ EndOZ (ι∗B′) ∼= ι∗ End(B′)

the induced ι-semilinear OZ-algebra automorphism.

4.2. Torsion data. The notion of a torsion datum on an Azumaya algebra is a way of rigidifying it’s
realizability as a torsion class in the Brauer group. This has many benefits when working in the groups
H2

ét(X,µn) as opposed to nBr(X). A torsion datum should also be thought of as a “preinvolution.”

2-torsion data. Consider the cokernel of the exact sequence of sheaves of groups

(36) 1→ µ2 → GLn → GLn/µ2 → 1,

on Xét. Since 2 is invertible on X, the sheaf of groups GLn/µ2 is representable by a smooth affine
reductive group scheme on X. Note that GL1/µ2

∼= Gm via the Kummer sequence, but that in
general, GLn/µ2 is not isomorphic to GLn for n ≥ 2. The category of GLn/µ2-torsors on Xét is
equivalent to the category of 2-torsion data, see Knus [68, III §9.3].

Definition 4.1. A 2-torsion datum of degree n on X is a triple (A ,P, ϕ), consisting of an Azumaya
OX -algebra A of degree n, a locally free OX -module P of rank n2, and an OX -algebra isomorphism
ϕ : A ⊗A ∼−→ End(P). In particular, the class of A in the Brauer group has period ≤ 2. A morphism
of 2-torsion data is a pair (ψ, β) : (A ,P, ϕ) → (A ′,P ′, ϕ′), where ψ : A → A ′ is an OX -algebra
isomorphism and β : P →P ′ is an OX -module isomorphism satisfying ϕ′ ◦ (ψ ⊗ ψ) = Adβ ◦ϕ.
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To every locally free OX -module V of rank n, we associate a split datum (End(V ),V ⊗ V , ϕV ) of
degree n, where

ϕV : End(V )⊗ End(V ) ∼−→ End(V ⊗ V )
is the canonical OX -algebra isomorphism.

Proposition 4.2. Let X be a scheme with 2 invertible. The category of 2-torsion data of degree n
on X is equivalent to the category of GLn/µ2-torsors for the étale topology.

Proof. The proof involves completing the exercise [69, VII Exer. 5] on Xét. See Auel [4]. �

The interpretation of exact sequence (36) on cohomology

H1
ét(X,GLn)→ H1

ét(X,GLn/µ2)→ H2
ét(X,µ2)

is as follows: the class associated to a locally free OX -module V of rank n maps to the class of the
associated split datum (End(V ),V ⊗ V , ϕV ); the class of 2-torsion datum (A ,P, ϕ) maps (by the
2nd coboundary) to a class [A ,P, ϕ] ∈ H2

ét(X,µ2), which we call the involutive class associated to
(A ,P, ϕ), and which we shall now describe.

Given a 2-torsion datum (A ,P, ϕ), Knus–Parimala–Srinivas [67, Thm. 4.1] construct a canonical
involution σϕ of the first kind (in fact, of orthogonal type) on the OX -algebra EndA (A ⊕P), hence
an involutive Brauer class.

Lemma 4.3. We have an equality of classes [A ,P, ϕ] = Ψ[EndA (A ⊕P), σϕ] in H2
ét(X,µ2).

Proof. Restricting the homomorphism H from the proof of Theorem 2.11 to GLn yields GLn → On,n

fitting into a morphism of short exact sequences

1 // µ2 // GLn

��

// GLn/µ2

��

// 1

1 // µ2 // On,n
// POn,n

// 1

of sheaves of groups on Xét. The map H1
ét(X,GLn/µ2)→ H1

ét(X,POn,n) has the following interpre-
tation: the class associated to a 2-torsion datum (A ,P, ϕ) of rank n is mapped to the class of the
OX -algebra with orthogonal involution (End(A ⊕P), σϕ). This is stated, for example, in [69, VII
Exer. 6]. A comparison of the coboundary maps finishes the proof. �

Z/X-torsion data. Now, let f : Z → X be étale quadratic. Via the central inclusion RZ/XGm →
RZ/XGLn, consider the cokernel of the exact sequence of sheaves of groups

(37) 1→ R1
Z/XGm → RZ/XGLn → RZ/XGLn/R1

Z/XGm → 1,

on Xét. Note that RZ/XGL1/R1
Z/XGm

∼= Gm via the norm map.
Recall the definition of the norm or corestriction OX -module (resp. algebra) NZ/X(A ) of an OZ-

module (resp. algebra) A . The norm is a functor from the category of OZ-modules (resp. algebras)
to the category of OX -modules (resp. algebras).

Definition 4.4 ([69, VII Exer. 7]). A Z/X-torsion datum of degree n on X is a triple (A ,P, ϕ),
consisting of an Azumaya OZ-algebra A of degree n, a locally free OX -module P of rank n2, and
an OX -algebra isomorphism ϕ : NZ/X(A ) ∼−→ End(P). A morphism of Z/X-torsion data is a
pair (ψ, β) : (A ,P, ϕ) → (A ′,P ′, ϕ′), where ψ : A → A ′ is an OZ-algebra isomorphism and
β : P →P ′ is an OX -module isomorphism satisfying ϕ′ ◦NZ/X(ψ) = Adβ ◦ϕ.

To every locally free OZ-module V of rank n, we associate a split datum (End(V ), NZ/X(V ), ϕV ),
where

ϕV : NZ/X(End(V )) ∼−→ End(NZ/X(V ))
is the canonical OX -algebra isomorphism.

Proposition 4.5. Let X be a scheme with 2 invertible and f : Z → X étale quadratic. The category
of Z/X-torsion data of degree n is equivalent to the category of RZ/XGLn/R1

Z/XGm-torsors on Xét.

Proof. The proof involves completing the exercise [69, VII Exer. 7] on Xét. See Auel [4]. �

The interpretation of exact sequence (37) on cohomology

H1
ét(Z,GLn)→ H1

ét(X,RZ/XGLn/R1
Z/XGm)→ H2

ét(X,R
1
Z/XGm)

is as follows: the class associated to a locally free OX -module V of rank n maps to the class of
the associated split datum (End(V ),V ⊗ V , ϕV ); the class of 2-torsion datum (A ,P, ϕ) maps (by
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the 2nd coboundary) to a class [A ,P, ϕ] ∈ H2
ét(X,R

1
Z/XGm), which we call the involutive class

associated to (A ,P, ϕ), and which we shall now describe.
Given a Z/X-torsion datum (A ,P, ϕ), Knus–Parimala–Srinivas [67, Thm. 4.2] construct a canon-

ical Z/X-unitary involution σϕ on the OZ-algebra EndA (A ⊕P), hence a Z/X-unitary involutive
Brauer class.

Lemma 4.6. We have an equality of classes [A ,P, ϕ] = ΨZ/X [EndA (A⊕P), σϕ] in H2
ét(X,R

1
Z/XGm).

Proof. A Z/X-hermitian variant of the homomorphism H from the proof of Theorem 2.11 gives rise
to RZ/XGLn → Un,n, which fits into a morphism of short exact sequences

1 // R1
Z/XGm // RZ/XGLn

��

// RZ/XGLn/R1
Z/XGm

��

// 1

1 // R1
Z/XGm // Un,n // PUn,n // 1

of sheaves of groups on Xét, where Un,n denotes the unitary group of the rank 2n hyperbolic Z/X-
hermitian form. The map H1

ét(X,R
1
Z/XGLn/R1

Z/XGm) → H1
ét(X,PUn,n) has the following inter-

pretation: the class associated to a Z/X-torsion datum (A ,P, ϕ) of rank n is mapped to the class
of the OZ-algebra with Z/X-unitary involution (End(A ⊕P), σϕ). This is stated, for example, in
[69, VII Exer. 7]. A comparison of the coboundary maps finishes the proof. �

Remark 4.7. Any 2-torsion datum (A0,P0, ϕ0) on X defines a Z/X-torsion datum (f∗A0,P0, ϕ0)
with respect to an isomorphism NZ/X(f∗A0) ∼= A0⊗A0. Conversely, it is not true that a Z/X-torsion
datum (A ,P, ϕ) with A ∼= f∗A0 is equivalent to a 2-torsion datum on X, see Knus–Parimala–
Srinivas [67].

4.3. Clifford data. Axiomatizing the properties of the even Clifford algebra and Clifford bimodule
of a line bundle-valued quadratic form lead to the notion of a Clifford datum, a mixture of having an
involution and a torsion datum.

Definition 4.8. Let n = 2m be even. A Clifford datum of rank n consists of a tuple (Z/X,A , σ,P, ϕ),
where:

• (if m is odd) Z → X is étale quadratic, (A , σ) is an Azumaya OZ-algebra of degree 2m−1 with
Z/X-unitary involution, and (A ,P, ϕ) is a 2-torsion datum of degree 2m−1 on Z

• (if m is even) Z → X is étale quadratic, (A , σ) is an Azumaya OZ-algebra of degree 2m−1

with involution of the first kind of type (−1)m/2, and (A ,P, ϕ) is a Z/X-torsion datum of
degree 2m−1.

A morphism of Clifford data of rank n = 2m is a tuple (g, ψ, β) : (Z/X,A , σ,P, ϕ)→ (Z ′/X,A ′, σ′,P ′, ϕ′),
where g : Z → Z ′ is an X-isomorphism, ψ : (A , σ) → g∗(A ′, σ′) is an OZ-algebra isomorphism pre-
serving the involutions, and (ψ, β) : (A ,P, ϕ)→ g∗(A ′,P ′, ϕ′) is a morphism of torsion data.

Given a regular line bundle-valued quadratic form (E , q,L ) of rank n = 2m and Arf covering
f : Z → X, we construct an associated Clifford datum (Z/X, C̃0, τ0, B̃1, ν) of rank n as follows:

For m odd, by Proposition 3.11, (C̃0, τ0) is an Azumaya OZ-algebra with Z/X-unitary Clifford
involution; let B̃1 = C̃1, then by the functorial properties in §4.1, B̃1 is an invertible C̃0-bimodule
(in particular is locally free of rank 2n−2) with an OZ-module automorphism τ1 : B̃1 → B̃1. The
C̃0-bimodule structure on B̃1 yields a canonical map

ν : C̃0 ⊗OZ C̃0 → EndOZ (B̃1)

a⊗ b 7→ x 7→ τ1(b τ1(ax)) = “a x τ0(b)”

which is an OZ-algebra isomorphism (since its a nontrivial homomorphism between Azumaya algebras
of the same degree). Thus (Z/X, C̃0, τ0, B̃1, ν) is a 2-torsion datum on Z of degree n.

For m even, by Proposition 3.11, (C̃0, τ0) is an Azumaya OZ-algebra with Clifford involution of
the first kind of type (−1)m/2; by the functorial properties in §4.1, C̃1 is an invertible C̃0-bimodule
(in particular is locally free of rank 2n−2) with an (ι-semilinear) OZ-module automorphism τ1 : C̃1 →
ι∗C̃1. The C̃0-bimodule structure on C̃1 yields a canonical map

ν̃ : C̃0 ⊗OZ ι∗C̃0 → EndOZ (C̃1)

a⊗ ι∗b 7→ x 7→ τ1(ι∗b τ1(ax)) = “a x τ0(b)”
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which is an OZ-algebra isomorphism (since its a nontrivial homomorphism between Azumaya algebras
of the same degree). The following compatibility condition

ι∗ν ◦ sιeC0
= Adιτ1 ◦ ν̃

holds, ensuring that ν̃ descends to an OX -algebra isomorphism

ν : NZ/X(C̃0)→ EndOX (Sym(C̃1, τ1))

where Sym(C̃1, τ1)) is the descent of the OZ-submodule of C̃1 of elements fixed by τ1, see [68, V
Lemma 4.2.4] (and its preceding discussion) or (the Claim contained in the proof of) [69, II Thm.
9.12]. Thus, letting B̃1 = Sym(C̃1, τ1), the tuple (Z/X, C̃0, τ0, B̃1, ν) is a Z/X-torsion datum of
degree n.

4.4. Clifford invariants and Clifford data. In this section, we provide some general interpreta-
tions of the similarity Clifford invariant in terms of Clifford data. Our main result of this section
shows that the similarity Clifford invariant naturally captures the “torsion data” part of the Clifford
data of a regular line bundle-valued quadratic form, while the results of §3.4 show that (the refinement
of) the Tits algebra naturally captures the “involution” part. Recall from §4.2 that a torsion datum
(A ,P, ϕ) has an associated involutive class [A ,P, ϕ].

Theorem 4.9. Let X be a scheme with 2 invertible and (E , q,L ) a regular line bundle-valued qua-
dratic form of even rank n = 2m and with Arf cover f : Z → X. We have:

a) if m is odd then gc(E , q,L ) = [C̃0, B̃1, ν] in H2
ét(X,κ

Z
n ) ∼= H2

ét(Z,µ2)

b) if m is even then i2gc(E , q,L ) = [C̃0, B̃1, ν] in H2
ét(X,R

1
Z/XGm)

where i : κZn
∼= R1

Z/Xµ4 → R1
Z/XGm.

Proof. We have a graded isomorphism of (full) Clifford OX -algebras

C (hZn ) ∼= C (hn−2)⊗̂C (hZ2 ) ∼= M2m−1(OX)⊗̂EndOX (f∗OZ)

see [68, IV Prop. 2.11, V §2.3], in particular, we have an OZ-algebra isomorphism C̃0(hZn ) ∼= M2m−1(OZ).
After pulling back to Z, a choice of half-spin representation

ρ+ : f−1ΓZn ∼= Γm,m → EndOZ (f∗C̃0(hZn )) ∼= GL2m−1

induces, by the universal property of Weil restriction, a homomorphism ρ : ΓZn → RZ/XGL2m−1 .
For m odd, ρ fits into a commutative diagram with exact rows (but not exact columns)

1 // κZn

∼

��

// ΓZn

��

// GSOZ
n

��

// 1

1 // RZ/Xµ2 // RZ/XGL2m−1

��

// RZ/XGL2m−1/µ2

��

// 1

1 // RZ/Xµ2 // RZ/XO2m−1,2m−1 // RZ/XPO2m−1,2m−1 // 1

on Xét. The interpretation of the right vertical maps on cohomology

H1
ét(X,GSOZ

n )→ H1
ét(Z,GL2m−1/µ2)→ H1

ét(Z,PO2m−1,2m−1)

is as follows: the class of a regular line bundle-valued quadratic form (E , q,L ) of rank n and Arf
invariant [Z/X] maps to the 2-torsion datum (C̃0, B̃1, ν) on Z; a 2-torsion datum (A ,P, ϕ) of
degree n on Z maps to the involutive Brauer class of (EndA (A ⊕P), σϕ). Finally, chasing the class
of (E , q,L ) around the diagram of coboundary maps yields the statement in a).

Similarly for m even, ρ fits into a commutative diagram with exact rows (but not exact columns)

1 // κZn

∼

��

// ΓZn

��

// GSOZ
n

��

// 1

1 // RZ/XGm // RZ/XGL2m−1

��

// RZ/XGL2m−1/R1
Z/XGm

��

// 1

1 // RZ/XGm // U2m−1,2m−1 // PU2m−1,2m−1 // 1

on Xét. The interpretation of the right vertical maps on cohomology

H1
ét(X,GSOZ

n )→ H1
ét(X,RZ/XGL2m−1/R1

Z/XGm)→ H1
ét(X,PU2m−1,2m−1)
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is as follows: the class of a regular line bundle-valued quadratic form (E , q,L ) of rank n and Arf
invariant [Z/X] maps to the Z/X-torsion datum (C̃0, B̃1, ν); a Z/X-torsion datum (A ,P, ϕ) of
degree n maps to the Z/X-unitary involutive Brauer class of (EndA (A ⊕P), σϕ). Finally, chasing
the class of (E , q,L ) around the diagram of coboundary maps yields the statement in b). �

In the case of where m is even, we can further describe the similarity Clifford invariant. We will
first need a presentation of the group H2

ét(X,R
1
Z/Xµ4) analogous to the involutive Brauer group(s).

For such a description when X is the spectrum of a field, see [69, VII Prop. 30.13] or Colliot-Thélène–
Gille-Parimala [28, Prop. 2.10]. Given an Azumaya OX -algebra (B, σ) with orthogonal involution,
the Azumaya OZ-algebra f∗B = OZ⊗f−1OX f

∗A has a natural Z/X-unitary involution σZ/X = ι]⊗σ
(see §3.2).

Proposition 4.10. Let X be a scheme with 2 invertible and f : Z → X étale quadratic. Denote
by Br∗4(Z/X) the abelian group of pairs

(
[A , τ ], [B, σ]

)
∈ Br∗(Z/X) × Br∗(X) such that [A , τ ]⊗2 =

[f∗B, σZ/X ] Then there is a canonical homomorphism

ΨZ/X,4 : Br∗4(Z/X)→ H2
ét(X,R

1
Z/Xµ4)

which fits into a commutative diagram with exact rows

H1
ét(X,R

1
Z/XGm) // Br∗4(Z/X)

ΨZ/X,4
��

// Br∗(Z/X)

ΨZ/X
��

4 // Br∗(Z/X)

ΨZ/X
��

H1
ét(X,R

1
Z/XGm) // H2

ét(X,R
1
Z/Xµ4) // H2

ét(X,R
1
Z/XGm) 4 // H2

ét(X,R
1
Z/XGm)

of abelian groups. Finally, ΨZ/X,4 is surjective if and only if every 4-torsion element of ker
(
NZ/X :

H2
ét(Z,Gm) → H2

ét(X,Gm)
)

is represented by an Azumaya OZ-algebra and every 2-torsion element
of H2

ét(X,Gm) is represented by an Azumaya OX-algebra.

Proof. Applying étale cohomology to the commutative diagram with exact rows

1 // R1
Z/Xµ4

��

// R1
Z/XGm

2
��

4 // R1
Z/XGm // 1

1 // µ2 // R1
Z/XGm

2 // R1
Z/XGm // 1

yields a commutative a diagram of abelian groups with exact rows

H1
ét(X,R

1
Z/XGm)

��

// H2
ét(X,R

1
Z/Xµ4)

2
��

// H2
ét(X,R

1
Z/XGm)

2
��

4 // H2
ét(X,R

1
Z/XGm)

��
H1

ét(X,R
1
Z/XGm) // H2

ét(X,µ2) // H2
ét(X,R

1
Z/XGm) 2 // H2

ét(X,R
1
Z/XGm)

of which the central square is cartesian by a simple diagram chase. Composing the projections from
Br∗4(Z/X) with the maps Ψ and ΨZ/X (from Theorem 3.9), the universal property of cartesian squares
provides the homomorphism ΨZ/X,4. Moreover, since Br∗4(Z/X) is defined as a fiber product, the
maps Ψ, ΨZ/X , and ΨZ/X,4 define a morphism of cartesian squares. In particular, this extends to the
sought after commutative diagram. The final statement of the Proposition follows from considerations
similar to Remark 3.10. �

Remark 4.11. Similar to Remark 3.10, if we consider the fiber Br∗4(Z/X)+ of Br∗4(Z/X) over Br+(X)
via the projection, then the restriction Ψ+

Z/X,4 is an isomorphism whenever the conditions stated at
the end of Proposition 4.10 hold.

By Theorem 3.9a), Ψ[End(E ), σb] = c1(L ,µ2) ∈ H2
ét(X,µ2) for any regular L -valued ε-symmetric

bilinear form. By abuse of notation, we will write c1(L ,µ2) ∈ Br∗(X).

Theorem 4.12. Let X be a scheme with 2 invertible and (E , q,L ) a regular line bundle-valued
quadratic form of rank n = 2m ≡ 0 mod 4 and Arf cover f : Z → X. Then

gc(E , q,L ) = ΨZ/X,4

(
[C̃0, B̃1, ν], c1(L ,µ2)

)
in H2

ét(X,κ
Z
4 ) ∼= H2

ét(X,R
1
Z/Xµ4).

Proof. This follows by a combination of Theorem 4.9b), Theorem 2.10a), and the construction of
Br∗4(Z/X) as a cartesian square in Proposition 4.10. �
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5. Low dimensional exceptional isomorphisms

In the context of quadratic forms over schemes, low rank usually means of rank ≤ 6. In this
interval, the isomorphisms of Dynkin diagrams A1 = B1 = C1, D2 = A2

1, B2 = C2, and A3 = D3,
have beautiful reverberations in the theory of quadratic forms of rank 3, 4, 5, and 6, respectively.
Over rings, these isomorphisms were deeply investigated by Knus, Ojanguren, Parimala, Paques, and
Sridharan in the 1980s and 1990s. Now, a standard reference on this work is Knus [68, Ch. V]. Over
fields, a wonderful reference is [69, IV §15]. Over general schemes, much of the theory over rings can
be globalized, but a unified treatment did not yet exist in the literature until Auel [4].

As usual, let X be a noetherian separated scheme with 2 invertible and let L be a fixed invertible
OX -module.

5.1. Norm forms. A normed algebra or composition algebra (A , n) on X is a locally free OX -algebra
A of finite rank together with a multiplicative quadratic form n : A → OX . A globalization of
Hurwitz’s theorem (see Petersson [86, Prop. 1.7d]) states that if the norm n is regular (as a quadratic
form) then A is either OX , an étale quadratic OX -algebra, or an Azumaya quaternion OX -algebra
(or a generalized octonion algebra if A is not assumed to be associative). An involution σ of the first
kind on an OX -algebra A is called a standard involution if the multiplicative map

nσ : A
∆−→ A ×A

id×σ−−−→ A ×A op m−→ A

has image in the identity subalgebra OX ↪→ A . In this case, (A , nσ) is a normed algebra. For results
about the existence and uniqueness of standard involutions in the affine setting, see Voight [95].

For a fixed normed algebra (A , n), a norm form of type (A , nA ) is a tuple (P, q,M ) consisting
of a right A -module P, an OX -module M , and an M -valued quadratic form q : P → M that is
n-semilinear for the action of A on P, i.e. there’s a commutative diagram of maps

P ⊗A

·
��

q⊗n // M ⊗ OX

·
��

P
q // M

or equivalently, that q(xa) = q(x)n(a) locally on sections. A morphism (ψ, λ) : (P, q,M ) →
(P ′, q′,M ′) between norm forms of type (A , σ) consists of OX -module morphisms ψ : P →P ′ and
λ : M →M ′ such that q′ ◦ ψ = λ ◦ q.

Theorem 5.1. Let (A , n) be a normed algebra. Then for any right A -module P, there exists an
OX-module N (P) and a norm form (P, nP ,N (P)), universal for the property that given any
norm form (P, q,M ) there exists an OX-module morphism ψ : N (P)→M such that q = ψ ◦ nP .
Furthermore:

a) if P = A with the standard right action, then then there’s a canonical isomorphism (P, nP ,N (P)) ∼=
(A , n,OX),

b) the construction of the triple (P, nP ,N (P)) commutes with arbitrary base change,
c) if P is an invertible A -module then N (P) is an invertible OX-module.

Proof. Bichsel [18, 3.1] and Knus [68, III.7] give a tensorial construction in the affine setting, which
can be globalized. Knus–Ojanguren–Sridharan [62] give a construction by faithfully flat descent in
the affine setting, which can also be globalized. �

5.2. Forms of rank 2. In this section, we will review the classification of regular line bundle-valued
quadratic forms of rank 2 in terms of norm forms associated to quadratic normed algebras and relate
the Clifford invariant to this classification.

Any Clifford datum of rank 2 is isomorphic to (Z/X,OZ , ι],P, < 1 >), where f : Z → X is
étale quadratic, P is an invertible OZ-module, and where we consider < 1>: OZ ⊗OZ OZ → OZ ∼=
EndOZ (P). We will denote this Clifford datum simply by (Z/X,P).

Conversely, given (Z/X,P), the norm form construction produces a unique similarity class of
regular line bundle-valued quadratic form of rank 2. Indeed, the OX -algebra f∗OZ has a unique
standard involution induced from ι, with corresponding norm nf . The locally free OX -module f∗M
is an invertible f∗OZ-module, and so defines a universal norm form (f∗M , nf∗M ,N (f∗M )) of type
(f∗OZ , nf ).

Remark 5.2. This recaptures (in the case of locally free OX -algebras of rank 2) a general “norm
functor” construction due to Ferrand [36, §5.3].
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Theorem 5.3 (Kneser [60, §6 Prop. 2], Ferrand [37, §5.4], Bichsel–Knus [17, §4.2]). Let X be a
scheme with 2 invertible. The norm form and Clifford datum define inverse equivalence functors
between the following categories:
• objects are Clifford data (Z/X,P) of rank 2 and morphisms are isomorphisms of Clifford data
• objects are regular line bundle-valued quadratic forms (E , q,L ) of rank 2 and morphisms are

similarity transformations,
Under this equivalence, [Z/X] maps to d±(E , q,L ) under H1

ét(X,Z/2Z) → H1
ét(X,µ2) from Propo-

sition 1.13.

Remark 5.4. The generalization of Theorem 5.3 to flat quadratic coverings and nondegenerate forms
is established by Ferrand [37] over an arbitrary scheme with 2 invertible.

The norm for associated to (Z/X,OZ) is our standard form hZ2 and there’s a canonical isomorphism
of short exact sequences

1 // R1
Z/XGm

��

// RZ/XGm

��

N // Gm

��

// 1

1 // SOZ
2

// GSOZ
2

µ // Gm
// 1

given by the right multiplication map ρ : RZ/XGm → GSOZ
2 . Then since hZ2 is of type (f∗OZ , nf ),

we verify that nOZ (ρz(v)) = nOZ (v ·z) = nOZ (v)nf (z), so that indeed ρz is a similarity transformation
with multiplier nf (z), and the diagram commutes. The fact that ρ is an isomorphism may be checked
locally, the affine case being verified in [17, §6.1].

Also, there’s a canonical isomorphism of short exact sequences

1 // RZ/Xµ2

��

// RZ/XGm

��

2 // RZ/XGm

��

// 1

1 // κZ2
// ΓZ2

s // GSOZ
2

// 1

(38)

which follows from the above, and from [68, V Lemma 2.5.2].

Proposition 5.5. Let X be a scheme with 2 invertible, f : Z → X étale quadratic, P and invertible
OZ-module, and (E , q,L ) the corresponding norm form. Then we have

gc(E , q,L ) = c1(P,µ2)

in H2
ét(X,κ

Z
2 ) ∼= H2

ét(Z,µ2).

Proof. This follows from Theorem 4.9, or directly by chasing a class associated to a regular line bundle-
valued quadratic form (E , q,L ) around the commutative diagram of coboundary maps induced from
diagram 38. �

Note that Theorem 2.10b) is then a consequence of the isomorphism of exact sequences

1 // µ2 // RZ/Xµ2

��

// µ2 // 1

1 // µ2 // κZ2
// µ2 // 1

and Proposition 5.5. Using the classification of regular line bundle-valued forms of rank 2, we can
immediately give a generalization of [68, V Ex. 9.2.3].

Corollary 5.6. If a regular quadratic form (E , q,L ) of rank 2 has trivial signed discriminant, then
it’s similar to an L -valued hyperbolic form HL (V ) for an invertible OX-module V . Furthermore,
gc(q) is trivial if and only if L and V are both squares in Pic(X).

Proof. If (E , q,L ) has trivial discriminant, then by Theorem 5.3, it’s a norm form (Z/X,P) with
Z/X split and P ∼= (P1,P2) in Pic(Z) ∼= Pic(X) × Pic(X). Then E ∼= f∗P ∼= P1 ⊕P2 and
L ∼= Nf (P) ∼= det(f∗P) ∼= P1 ⊗P2. It’s then easy to verify, using Remark 5.2, that (E , q,L )
is similar to the form (P1 ⊕ P2,⊗,P1 ⊗ P2), which in turn is similar to the hyperbolic form
HP1⊗P2(P1). This proves the first claim, which is a generalization of [68, IV.9.2.3 Ex.].

By Proposition 5.5, gc(q) is trivial if and only P is a square in Pic(Z) if and only if P1 and
P2 are squares in Pic(X). But this is also equivalent to both V ∼= P1 and L ∼= P1 ⊗P2 being
squares. �
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5.3. Forms of rank 4. In this section, we will review the classification of regular line bundle-valued
quadratic forms of rank 4 in terms of norm forms associated to Azumaya quaternion algebras and
relate the Clifford invariant to this classification.

Any symplectic involution on an Azumaya quaternion OZ-algebra A is isomorphic to the standard
involution σA (this follows from Pumplün [87, Theorem 2.6], for example), and thus any Clifford da-
tum of rank 4 is isomorphic to (Z/X,A , σA ,P, ϕ), which we will denote simply by (Z/X,A ,P, ϕ).
Thus a Clifford datum of rank 4 is equivalent to a 2-torsion datum on Z.

Every regular line bundle-valued quadratic form gives rise to a Clifford datum of rank 4. Conversely,
a “twisted” version of the universal norm form functor can reconstruct the similarity class of a
quadratic form of rank 4 from its associated Clifford datum. This functor is essentially described in
[65, §10] or [68, V §4.2] and can be viewed as a refinement of [69, IV.15.B]. For a precise definition of
the twisted norm form, see Auel [4].

Theorem 5.7. Let X be a scheme with 2 invertible. The twisted norm form and Clifford datum
define inverse equivalence functors between the following categories:
• objects are Clifford data (Z/X,A ,P, ϕ) of rank 4 and morphisms are isomorphisms of Clifford

data
• objects are regular line bundle-valued quadratic forms (E , q,L ) of rank 4 and morphisms are

similarity transformations.
Under this equivalence, [Z/X] is mapped to d±(E , q,L ) under H1

ét(X,Z/2Z) ∼= H1
ét(X,µ2) from

Proposition 1.13.

To compute the Clifford invariant in terms of the classification in Theorem 5.7, we use the following
torsorial reinterpretation. Recall the notation hZ4 = HOX (OX) ⊥ (f∗OZ , hZ). There’s a canonical
isomorphism SpinZ4 ∼= RZ/XSL1(C̃0(hZ4 )) by [68, V.4.4.1] (see also [69, IV Prop. 15.10]), which gen-
eralizes immediately from the affine case. In particular, we have an isomorphism SpinZ4 ∼= RZ/XSL2

for any choice of OZ-algebra isomorphism C̃0
∼= M2(OZ) (a canonical choice is furnished from the

graded OX -algebra isomorphism C (hZ2 ) ∼= C (h2)⊗̂C (hZ4 ) of (full) Clifford algebras).
The Weil restriction functor induces the following exact sequence of groups schemes

1→ RZ/XSL2 → RZ/XGL2

RZ/X det
−−−−−−→ RZ/XGm → 1

on Xét. Set G = RZ/XGL2/R1
Z/XGm (see §4.2) and denote by Γ the sheaf kernel of the composite

epimorphism RZ/XGL2 → RZ/XGm
id/ι−−→ R1

Z/XGm. Hence we have exact sequences

1→ R1
Z/XGm → RZ/XGL2 → G→ 1 1→ Γ→ RZ/XGL2

id/ι−−→ R1
Z/XGm → 1

of sheaves of groups on Xét.
Finally, restricting the quotient map RZ/XGL2 → G to Γ yields a homomorphism s : Γ → G,

restricting RZ/X det to Γ yields a homomorphism Γ → Gm, and restricting NZ/X ◦RZ/X det to G
yields a homomorphism G→ Gm.

Theorem 5.8. There are canonical isomorphisms

Γ ∼= SΓZ4 , RZ/XSL2
∼= SpinZ4

and
G ∼= GSOZ

4 , (RZ/XSL2)/µ2
∼= SO(h2

Z/X)

making the even fundamental diagram (15) associated to the form hZ4 isomorphic to

1

��

1

��

1

��
1 // µ2

��

// RZ/XSL2

��

// RZ/XSL2/µ2

��

// 1

1 // R1
Z/Xµ4

��

// Γ

��

// G

��

// 1

1 // µ2

��

// Gm

��

2 // Gm

��

// 1

1 1 1
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Proof. See Auel [4]. We have the following commutative diagram

1

��

1

��
1 // R1

Z/Xµ4

��

// R1
Z/XGm

��

// R1
Z/XGm // 1

1 // Γ

��

// RZ/XGL2

��

// R1
Z/XGm // 1

Γ/R1
Z/Xµ4

��

∼ // G

��
1 1

(39)

of sheaves of groups on Xét. In particular, the morphism Γ→ G can be identified with the cokernel
of the inclusion R1

Z/Xµ4 → Γ. �

Proposition 5.9. Let X be a scheme with 2 invertible, f : Z → X étale quadratic, (Z/X,A ,P, ϕ)
a Clifford datum of rank 4, and (E , q,L ) the associated twisted norm form. Then

gc(E , q,L ) = ΨZ/X,4

(
[A ,P, ϕ], c1(L ,µ2)

)
in H2

ét(X,κ
Z
4 ) ∼= H2

ét(X,R
1
Z/Xµ4).

Proof. This is a consequence of Theorem 4.12. �

To every locally free OZ-module V of rank 2, we can associate the split Clifford datum (Z/X,End(V ),V ⊗
ι∗V , ϕV ) of rank 4, where ϕV is the composition of canonical OZ-algebra isomorphisms

End(V )⊗OZ ι∗ End(V ) can−−→ End(V )⊗OZ End(ι∗V )→ End(V ⊗ ι∗V ).

The map
H1

ét(Z,GL2) ∼= H1
ét(X,RZ/XGL2)→ H1

ét(X,G) ∼= H1
ét(X,GSOZ

4 )
has the following interpretation: a locally free OZ-module of rank 2 is sent to the twisted norm form
of its split Clifford datum.

The twisted norm form of the split Clifford datum associated to V is isometric toNZ/X(V ,∧,det V ) =
(NZ/X(V ), NZ/X(∧), NZ/X(det V )), which we can think of as the “bilinear form norm” applied the
canonical skew-symmetric form ∧ : V ⊗ V → det V on Z. When f : Z → X is split, then a lo-
cally free OZ-module of rank 2 can be though of as a pair of locally free OX -modules (V ,W ) of
rank 2, and the twisted norm for of the associated Clifford datum is similar to the tensor product
V ⊗W → det V ⊗ det W of the canonical skew-symmetric wedging forms.

Corollary 5.10. With the notations of Proposition 5.9, the class gc(E , q,L ) vanishes if and only
if (E , q,L ) is similar to NZ/X(V ,∧,det V ) for some locally free OZ-module of rank 2 such that
det V ∼= ι∗ det V .

Proof. This follows from the above description of twisted norm forms of split Clifford data of rank 4,
along with a diagram chase involving the cohomology of diagram (39). �

When f : Z → X is split, then RZ/XGL2 = GL2×GL2 and Γ = GL2×GmGL2 (pairs of invertible
transformations with equal determinant), making the even fundamental diagram is isomorphic to

1

��

1

��

1

��
1 // µ2

��

// SL2 × SL2

��

// SO2,2

��

// 1

1 // µ4

��

// GL2 ×Gm GL2

��

// GSO2,2

��

// 1

1 // µ2

��

// Gm

��

2 // Gm

��

// 1

1 1 1

compare with Knus [68, V §4.5–4.6]. Furthermore, Clifford data of rank 4 (with Z/X split) can be
viewed as tuples (A ,B,P, ϕ) of degree 2, where A and B are Azumaya quaternion OX -algebras,
P is a locally free OX -module of rank 4, and ϕ : A ⊗B → End(P) is an OX -algebra isomorphism.
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The category of such tuples are (GL2 ×GL2)/Gm-torsors on Xét. In this case, the twisted norm
form is just the universal or reduced norm form, and is studied in [18], [65], [64], and [17].

5.4. Forms of rank 6. In this section, we will review the classification of regular line bundle-valued
quadratic forms of rank 6 in terms of the pfaffian forms (or discriminant algebras) associated to
Azumaya algebras of degree 4 relate the Clifford invariant to this classification.

Any regular line bundle-valued quadratic form of rank 6 determines a Clifford datum of rank 6.
Conversely, a “twisted” version of the reduced pfaffian form functor can reconstruct the quadratic
form from the associated Clifford datum. This functor is essentially described in [61], [65, §7], [66,
§5], [68, V §5.5], and can be viewed as a refinement of [69, IV.15.D]. For a precise definition of the
twisted pfaffian form, see Auel [4].

Theorem 5.11. Let X be a scheme with 2 invertible. The twisted pfaffian form and Clifford datum
define inverse equivalence functors between the following categories:
• objects are Clifford data (Z/X,A , σ,P, ϕ) of rank 6 and morphisms are isomorphisms of

Clifford data
• objects are regular line bundle-valued quadratic forms (E , q,L ) of rank 6 and morphisms are

similarity transformations.
Under this equivalence, [Z/X] maps to d±(E , q,L ) under H1

ét(X,Z/2Z) ∼= H1
ét(X,µ2) from Proposi-

tion 1.13.

To compute the Clifford invariant in terms of the classification in Theorem 5.11, we use the following
torsorial reinterpretation. Recall the notation hZ6 = HOX (O2

X) ⊥ (f∗OZ , hZ). There are canonical
isomorphisms SpinZ6 ∼= SU2,2 and ΓZ6 ∼= SGU2,2, by [68, V §5.6] (see also [69, IV Prop. 15.27]),
where GU2,2 is the general unitary group of the hyperbolic Z/X-hermitian form of rank 4.

Theorem 5.12. The above isomorphisms make the even fundamental diagram (15) associated to the
form hZ6 isomorphic to

1

��

1

��

1

��
1 // µ2

��

// SU2,2

��

// SU2,2/µ2

��

// 1

1 // RZ/Xµ2

��

// SGU2,2

��

// SGU2,2/RZ/Xµ2

��

// 1

1 // µ2

��

// Gm

��

2 // Gm

��

// 1

1 1 1

Proposition 5.13. Let X be a scheme with 2 invertible, f : Z → X étale quadratic, (Z/X,A , τ,P, ϕ)
a Clifford datum of rank 6, and (E , q,L ) the associated twisted pfaffian form. Then

gc(E , q,L ) = [A ,P, ϕ]

in H2
ét(X,κ

Z
6 ) ∼= H2

ét(X,RZ/Xµ2) ∼= H2
ét(Z,µ2).

Proof. This is a consequence of Theorem 4.9a). �

To every regular line bundle-valued Z/X-hermitian form (H , h,L ) of rank 4, we can associate a
split Clifford datum (Z/X,End(H ), τh,H ⊗H , ϕH ) of rank 6, where (End(H ), τh) is the associated
Z/X-unitary adjoint involution (see §3.2), and ϕH is the canonical OZ-algebra isomorphism

End(H )⊗ End(H )→ End(H ⊗H ).

The map
H1

ét(X,GU2,2)→ H1
ét(X,SGU2,2/RZ/Xµ2) ∼= H1

ét(X,GSO(hZ6 ))

has the following interpretation: a regular line bundle-valued Z/X-hermitian form is sent to the
twisted pfaffian form of its split Clifford datum.

Corollary 5.14. With the notations of Proposition 5.13, the class gc(E , q,L ) vanishes if and only
if there exists a regular line bundle-valued Z/X-hermitian form (H , h,M ) of rank 4 with trivial
hermitian discriminant such that f∗(E , q,L ) is similar (with the pullback Z/X-hermitian structure)
to the canonical quadratic form (

∧2H ,∧,det H ).
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When f : Z → X is split, then GU2,2
∼= Gm × GL4, SGU2,2

∼= Gm ×Gm GL2,2 (pairs (a,A)
with detA = a2), and SU2,2

∼= SL4. We also have SGU2,2/(µ2 × µ2) ∼= GL4/µ2. Hence the even
fundamental diagram is isomorphic to

1

��

1

��

1

��
1 // µ2

��

// SL4

��

// SL4/µ2

��

// 1

1 // µ2 × µ2

��

// Gm ×Gm GL4

��

// GL2,2/µ2

��

// 1

1 // µ2

��

// Gm

��

2 // Gm

��

// 1

1 1 1

and diagram (21), which defines the oriented invariants, is isomorphic to

1

��

1

��
1 // µ2 // SL4

��

// SL4/µ2

��

// 1

1 // µ2 // GL4

det
��

// GL4/µ2

µ
��

// 1

Gm

��

Gm

��
1 1

In particular the oriented invariants gc± are described as in Example 2.20. Furthermore, Clifford
data of rank 6 (with Z/X split) can be viewed simply as 2-torsion data (A ,P, ϕ) of degree 4 on X.
In this case, the twisted pfaffian form is just the reduced pfaffian form, which is studied in [61], [65],
and [17]. Actually, not only can the similarity class of a quadratic form be recovered from a Clifford
datum, but also a choice of orientation.
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Appendix

Lemma 5.15. Consider a commutative diagram with exact rows

1 // κ // Γ+

��

// G+

��

// 1

1 // κ // Γ // G // 1

of sheaves of groups on a site X. Suppose that κ → Γ+ is central and G+ → G is a normal
monomorphism. Then the coboundary map H1(X,G+) → H2(X,κ) is constant on the fibers of the
map H1(X,G+)→ H1(X,G).

Proof. If g : G+ → G is a normal monomorphism, then so is Γ+ → Γ and there’s a natural
homomorphism Γ/Γ+ → G/G+ of sheaves of groups, which is an isomorphism by the Nine Lemma
5.16.

First we show that the coboundary map is constant on the kernel of g1. We have a commutative
diagram

H0(X,Γ/Γ+)

��

∼ // H0(X,G/G+)
δG

��
H1(X,Γ+)

��

// H1(G+)
g1

��

δ // H2(k)

H1(X,Γ) // H1(G) // H2(k)

of pointed sets. In particular, ker(g1) equals the image of δG. By the commutativity of the top
square in the diagram, ker(g1) can be lifted to H1(X,Γ+), i.e. the coboundary map δ is trivial (hence
constant) on ker(g1).

Now, for each fixed ξ ∈ H1(X,G) we can reduce to the previous case, where ξ is the neutral
element. Indeed, if ξ is not in the image of g1 the statement of the lemma is vacuous, otherwise, let
ξ+ ∈ H1(X,G+) map to ξ. If ξ+

ij ∈ Z1(U ,G+) is a Čech 1-cocycle representing ξ+ for a cover U of
X, then ξij ∈ Z1(U ,G), where ξij = g(ξ+

ij), is a Čech 1-cocycle representing ξ. Finally, twisting the
exact sequences by ξ+

ij and ξij accomplishes the reduction. �

Lemma 5.16 (Nine Lemma). Consider a commutative diagram

1

��

1

��

1

��
1 // A1

��

// B1

��

// C1

��

// 1

1 // A2

��

// B2

��

// C2

��

// 1

1 // A3

��

// B3

��

// C3

��

// 1

1 1 1

of sheaves of groups on a site X. If all columns and the two bottom rows are exact then the top row
is exact; if all columns and the two top rows are exact then the bottom row is exact.

Lemma 5.17 (Roman IX Lemma). Consider a commutative diagram with exact rows and diagonals

1

%%KKKKKK 1

1 // µ // A

%%KKKKKK // B

99tttttt // 1

C

99ssssss

%%KKKKKK

1 // µ // D

99ssssss // E

%%JJJJJJ // 1

1

99ssssss
1
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of sheaves of groups on a site X. Assume that µ → A and µ → C are central. Then the induced
diagram on cohomology

H1(X,µ) // H1(X,A)

))SSSSSSS
// H1(X,B) // H2(X,µ)

H1(X,C)

55kkkkkkk

))SSSSSSS

H1(X,µ) // H1(X,D)

55kkkkkkk
// H1(X,E) // H2(X,µ)

is commutative, except for the right hand pentagon, which is anticommutative.

Remark 5.18 (Roman IX rearrangement). Given a commutative diagram

1

��

1

��
1 // µ

��

// A

��

α // B′

β
��

// 1

1 // D
δ ��

// C

��

// B // 1

E′

��

γ // E

��
1 1

of sheaves of groups on a site X, whose top two rows and left two columns are exact, then by the
Nine Lemma 5.16, β and γ are isomorphisms, and there’s a rearranged commutative diagram with
exact rows and diagonals

1

%%KKKKKK 1

1 // µ // A

%%KKKKKK
f // B

99tttttt // 1

C

99ssssss

%%KKKKKK

1 // µ // D

99ssssss g // E

%%JJJJJJ // 1

1

99ssssss
1

where f = β ◦ α and g = γ ◦ δ. Hence the Roman IX Lemma 5.17 applies.

Lemma 5.19. Let

1 // k

��

// Γ

��

// G

��

// 1

1 // k′ // Γ′ // G′ // 1

be a commutative diagram of sheaves of groups on a site X with central and exact rows and cen-
tral columns. Let δ and δ′ be the second coboundary maps associated to the first and second rows,
respectively. Then for each ξ ∈ H1(X,G) and ξ′ ∈ H1(X,G′), we have

δ′(ξ · ξ′) = δ(ξ) + δ′(ξ′)

where · and + represent the action of H1(X,G) on H1(X,G′) and of H2(X,k) on H2(X,k′), re-
spectively.

Proof. Let U = {Ui → X}i∈I be a cover of X. Let ξij ∈ Z1(U ,G) and ξ′ij ∈ Z1(U ,G′) be 1-
cocycles, and γij ∈ C1(U ,Γ) and γ′ij ∈ C1(U ,Γ′) be 1-cochains lifting ξij and ξ′ij , respectively.
Then we have

δ′(ξij · ξ′ij) = (γijk · γ′ijk) (γijk · γ′ijk) (γijk · γ′ijk)−1

= γijkγijkγ
−1
ijk + γ′ijkγ

′
ijkγ

′−1
ijk

= δ(ξij) + δ′(ξ′ij)

since Γ→ Γ′ is central. Also see Giraud [47, IV Cor. 3.3.4(ii)]. �
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