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Abstract.

The Milnor conjecture has been a driving force in the theory of qua-
dratic forms over fields, guiding the development of the theory of coho-
mological invariants, ushering in the theory of motivic cohomology, and
touching on questions ranging from sums of squares to the structure of ab-
solute Galois groups. Here, we survey some recent work on generalizations
of the Milnor conjecture to the context of schemes (mostly smooth vari-
eties over fields of characteristic 6= 2). Surprisingly, a version of the Milnor
conjecture fails to hold for certain smooth complete p-adic curves with no
rational theta characteristic (this is the work of Parimala, Scharlau, and
Sridharan). We explain how these examples fit into the larger context of
the unramified Milnor question, offer a new approach to the question, and
discuss new results in the case of curves over local fields and surfaces over
finite fields.

The first cases of the (as of yet unnamed) Milnor conjecture were studied
in Pfister’s Habilitationsschrift [87] in the mid 1960s. As Pfister [88, p. 3]
himself points out, “[the Milnor conjecture] stimulated research for quite
some time.” Indeed, it can be seen as one of the driving forces in the theory
of quadratic forms since Milnor’s original formulation [69] in the early 1970s.

The classical cohomological invariants of quadratic forms (rank, dis-
criminant, and Clifford–Hasse–Witt invariant) have a deep connection with
the history and development of the subject. In particular, they are used
in the classification (Hasse–Minkowski local-global theorem) of quadratic
forms over local and global fields. The first “higher invariant” was de-
scribed in Arason’s thesis [1], [3]. The celebrated results of Merkurjev [65]
and Merkurjev–Suslin [67] settled special cases of the Milnor conjecture in
the early 1980s, and served as a starting point for Voevodsky’s development
of the theory of motivic cohomology. Other special cases were settled by
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Arason–Elman–Jacob [5] and Jacob–Rost [49]. Voevodsky’s motivic coho-
mology techniques [104] ultimately led to a complete solution of the Milnor
conjecture, for which he was awarded the 2002 Fields Medal.

The consideration of quadratic and symmetric bilinear forms over rings
(more general than fields) has its roots in the number theoretic study of
lattices (i.e. symmetric bilinear forms over Z) by Gauss as well as the alge-
braic study of division algebras and hermitian forms (i.e. symmetric bilinear
forms over algebras with involution) by Albert. A general framework for the
study of quadratic and symmetric bilinear forms over rings was established
by Bass [18], with the case of (semi)local rings treated in depth by Baeza
[10]. Bilinear forms over Dedekind domains (i.e. unimodular lattices) were
studied in a number theoretic context by Fröhlich [37], while the considera-
tion of quadratic forms over algebraic curves (and their function fields) was
initiated by Geyer, Harder, Knebusch, Scharlau [47], [41], [58], [56]. The
theory of quadratic and symmetric bilinear forms over schemes was devel-
oped by Knebusch [55], [57], and utilized by Arason [2], Dietel [29], Parimala
[79], [80], Fernández-Carmena [34], Sujatha [98], [86], Arason–Elman–Jacob
[6], [7], and others. A theory of symmetric bilinear forms in additive and
abelian categories was developed by Quebbemann–Scharlau–Schulte [90],
[91]. Further enrichment came eventually from the triangulated category
techniques of Balmer [11], [12], [13], and Walter [107]. This article will
focus on progress in generalizing the Milnor conjecture to these contexts.

These remarks grew out of a lecture at the RIMS-Camp-Style semi-
nar “Galois-theoretic Arithmetic Geometry” held October 19-23, 2010, in
Kyoto, Japan. The author would like to thank the organizers for their won-
derful hospitality during that time as well as the National Science Founda-
tion for conference support under grant DMS-1044746. He would also like
to thank S. Gille, M. Kerz, R. Parimala, and V. Suresh for many helpful
conversations as well as the anonymous referee for useful comments. The
author acknowledges the generous support of the Max Plank Institute for
Mathematics in Bonn, Germany where this article was written under excel-
lent working conditions. This author is also partially supported by the NSF
grant MSPRF DMS-0903039.

Conventions. A graded abelian group or ring
⊕

n≥0M
n will be denoted

by M•. If 0 ⊂ · · · ⊂ N2 ⊂ N1 ⊂ N0 = M is a decreasing filtration of a ring
M by ideals, denote by N•/N•+1 =

⊕
n≥0N

n/Nn+1 the associated graded
ring. Denote by 2M the elements of order 2 in an abelian group M . All
abelian groups will be written additively.

§1. The Milnor conjecture over fields

Let F be a field of characteristic 6= 2. The total MilnorK-ringK•M(F ) =
T •(F×)/〈a ⊗ (1 − a) : a ∈ F×〉 was introduced in [69]. The total Galois
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cohomology ring H•(F,µ⊗•2 ) =
⊕

n≥0H
n(F,µ⊗n2 ) is canonically isomor-

phic, under our hypothesis on the characteristic of F , to the total Galois
cohomology ring H•(F,Z/2Z) with coefficients in the trivial Galois module
Z/2Z. The Witt ring W (F ) of nondegenerate quadratic forms modulo hy-
perbolic forms has a decreasing filtration 0 ⊂ · · · ⊂ I1(F ) ⊂ I0(F ) = W (F )
generated by powers of the fundamental ideal I(F ) of even rank forms.
The Milnor conjecture relates these three objects: Milnor K-theory, Galois
cohomology, and quadratic forms.

The quotient map K1
M(F ) = F× → F×/F×2 ∼= H1(F,µ2) induces

a graded ring homomorphism h• : K•M(F )/2 → H•(F,µ⊗•2 ) called the
norm residue symbol by Bass–Tate [19]. The Pfister form map K1

M(F ) =
F× → I(F ) given by a 7→� a �=< 1,−a > induces a group homo-
morphism K1

M(F )/2 → I1(F )/I2(F ) (see Scharlau [95, 2 Lemma 12.10]),
which extends to a surjective graded ring homomorphism s• : K•M(F )/2→
I•(F )/I•+1(F ), see Milnor [69, Thm. 4.1].

Theorem 1 (Milnor conjecture). Let F be a field of characteristic
6= 2. There exists a graded ring homomorphism e• : I•(F )/I•+1(F ) →
H•(F,µ⊗•2 ) called the higher invariants of quadratic forms, which fits into
the following diagram

K•M(F )/2
h• //

s•

��

H•(F,µ⊗•2 )

I•(F )/I•+1(F )

e•

66

of isomorphisms of graded rings.

Many excellent introductions to the Milnor conjecture and its proof exist
in the literature. For example, see the surveys of Kahn [50], Friedlander–
Rapoport–Suslin [36], Friedlander [35], Pfister [89], and Morel [71].

The conjecture breaks up naturally into three parts: the conjecture
for the norm residue symbol h•, the conjecture for the Pfister form map
s•, and the conjecture for the higher invariants e•. Milnor [69, Question
4.3, §6] originally made the conjecture for h• and s•, which was already
known for finite, local, global, and real closed fields, see [69, Lemma 6.2].
For general fields, the conjecture for h1 follows from Hilbert’s theorem 90,
and for s1 and e1 by elementary arguments. The conjecture for s2 is easy,
see Pfister [87]. Merkurjev [65] proved the conjecture for h2 (hence for e2

as well), with alternate proofs given by Arason [4], Merkurjev [66], and
Wadsworth [106]. The conjecture for h3 was settled by Merkurjev–Suslin
[67] (and independently by Rost [92]). The conjecture for e• can be divided
into two parts: to show the existence of maps en : In(F ) → Hn(F,µ⊗n2 )
(which are a priori only defined on generators, the Pfister forms), and then
to show they are surjective. The existence of e3 was proved by Arason [1],
[3]. The existence of e4 was proved by Jacob–Rost [49] and independently
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Szyjewski [97]. Voevodsky [104] proved the conjecture for h•. Orlov–Vishik–
Voevodsky [76] proved the conjecture for s•, with different proofs given by
Morel [72] and Kahn–Sujatha [51].

1.1. Classical invariants of quadratic forms

The theory of quadratic forms over a general field has its genesis in
Witt’s famous paper [110]. Because of the assumption of characteristic
6= 2, we do not distinguish between quadratic and symmetric bilinear forms.
The orthogonal sum (V, b) ⊥ (V ′, b′) = (V ⊕ V ′, b + b′) and tensor product
(V, b) ⊗ (V ′, b′) = (V ⊗ V ′, b ⊗ b′) give a semiring structure on the set of
isometry classes of symmetric bilinear forms over F . The hyperbolic plane is
the symmetric bilinear form (H,h), where H = F 2 and h((x, y), (x′, y′)) =
xy′ + x′y. The Witt ring of symmetric bilinear forms is the quotient of the
Grothendieck ring of nondegenerate symmetric bilinear forms over F with
respect to ⊥ and ⊗, modulo the ideal generated by the hyperbolic plane,
see Scharlau [95, Ch. 2].

The rank of a bilinear form (V, b) is the F -vector space dimension of V .
Since the hyperbolic plane has rank 2, the rank modulo 2 is a well defined
invariant of an element of the Witt ring, and gives rise to a surjective ring
homomorphism

e0 : W (F ) = I0(F )→ Z/2Z = H0(F,Z/2Z)

whose kernel is the fundamental ideal I(F ).
The signed discriminant of a non-degenerate bilinear form (V, b) is de-

fined as follows. Choosing an F -vector space basis v1, . . . , vr of V , we con-
sider the Gram matrix Mb of b, i.e. the matrix given by Mb = (b(vi, vj)).
Then b is given by the formula b(v, w) = vtMbw, where v, w ∈ F r ∼= V . The
Gram matrix of b, with respect to a different basis for V with change of basis
matrix T , is T tMbT . Thus detMb ∈ F×, which depends on the choice of
basis, is only well-defined up to squares. For a ∈ F×, denote by (a) its class
in the abelian group F×/F×2. The signed discriminant of (V, b) is defined
as (−1)r(r−1)/2 detMb ∈ F×/F×2. Introducing the sign into the signed
discriminant ensures its vanishing on the ideal of hyperbolic forms, hence it
descents to the Witt group. While the signed discriminant is not additive
on W (F ), its restriction to I(F ) gives rise to a group homomorphism

e1 : I(F )→ F×/F×2 ∼= H1(F,µ2)

which is easily seen to be surjective. It’s then not difficult to check that
its kernel coincides with the square I2(F ) of the fundamental ideal. See
Scharlau [95, §2.2] for more details.

The Clifford invariant of a non-degenerate symmetric bilinear form
(V, b) is defined in terms of its Clifford algebra. The Clifford algebra C(V, b)
of (V, b) is the quotient of the tensor algebra T (V ) =

⊕
r≥0 V

⊗r by the

two-sided ideal generated by {v ⊗ w + w ⊗ v − b(v, w) : v, w ∈ V }. Since
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the relations are between elements of degree 2 and 0 (in the tensor algebra),
the parity of an element is well-defined, and C(V, b) = C0(V, b) ⊕ C1(V, b)
inherits the structure of a Z/2Z-graded F -algebra, where C0(V, b) is the
subalgebra of elements of even degree. By the structure theory of the Clif-
ford algebra, if (V, b) has rank r, then C(V, b) is a semisimple F -algebra
of F -dimension 2r, and C(V, b) or C0(V, b) is a central simple F -algebra
depending on whether r is even or odd rank, respectively, see Scharlau
[95, §9.2]. The Clifford invariant c(V, b) ∈ Br(F ) is defined as the class of
C(V, b) or C0(V, b), respectively, in the Brauer group of finite-dimensional
central simple F -algebras. Since the Clifford algebra and its even subalge-
bra carry canonical involutions of the first kind, their respective classes in
the Brauer group are of order 2, see Knus [59, §IV.7.8]. While the Clifford
invariant is not additive on W (F ), its restriction to I2(F ) gives rise to a
group homomorphism

e2 : I2(F )→ 2Br(F ) ∼= H2(F,µ2) ∼= H2(F,µ⊗2
2 ),

see Knus [59, IV Prop. 8.1.1].
Any symmetric bilinear form (V, b) over a field of characteristic 6= 2

can be diagonalized, i.e. a basis can be chosen for V so that the Gram ma-
trix Mb is diagonal. For a1, . . . , ar ∈ F×, we write < a1, . . . , ar > for the
standard symmetric bilinear form with associated diagonal Gram matrix.
For a, b ∈ F×, denote by (a, b)F the (quaternion) F -algebra generated by
symbols x and y subject to the relations x2 = a, y2 = b, and xy = −yx.
For example, (−1,−1)R is Hamilton’s ring of quaternions. Then the dis-
criminant and Clifford invariant can be conveniently calculated in terms of
a diagonalization. For (V, b) ∼=<a1, . . . , ar>, we have

d±(V, b) = ((−1)r(r−1)/2a1 · · · ar) ∈ F×/F×2

and

(1) c(V, b) = α(r)(−1, a1 · · · ar)F +β(r)(−1,−1)F +
∑
i<j

(aj , aj)F ∈ 2Br(F )

where

α(r) =
(r − 1)(r − 2)

2
, β(r) =

(r + 1)r(r − 1)(r − 2)

24
,

see Lam [62], Scharlau [95, II.12.7], or Esnault–Kahn–Levine–Viehweg [32,
§1].

§2. Globalization of cohomology theories

Generalizations (what we will call globalizations) of the Milnor conjec-
ture to the context of rings and schemes have emerged from many sources,
see Parimala [78], Colliot-Thélène–Parimala [24], Parimala–Sridharan [82],
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Monnier [70], Pardon [77], Elbaz-Vincent–Müller-Stach [30], Gille [43], and
Kerz [52]. To begin with, one must ask for appropriate globalizations of
the objects in the conjecture: Milnor K-theory, Galois cohomology theory,
and the Witt group with its fundamental filtration. While there are many
possible choices of such globalizations, we will focus on two types: global
and unramified.

2.1. Global globalization

Let F be a field of characteristic 6= 2. Let FieldF (resp. RingF ) be the
category of fields (resp. commutative unital rings) with an F -algebra struc-
ture together with F -algebra homomorphisms. Let SchF be the category
of separated F -schemes, and SmF the category of smooth F -schemes. We
will denote, by the same names, the associated (large) Zariski sites. Let Ab
(resp. Ab•) be the category of abelian groups (resp. graded abelian groups),
we will always consider Ab as embedded in Ab• in degree 0.

Let M• : FieldF → Ab• be a functor. A globalization of M• to rings
(resp. schemes) is a functor M̃• : RingF → Ab• (resp. contravariant functor

M• : SchF → Ab•) extending M•. If M̃• is a globalization of M• to
rings, then we can define a globalization to schemes by taking the sheafM•
associated to the presheaf U 7→ M̃•(Γ(U,OU )) on SchF (always considered
with the Zariski topology).

“Näıve” Milnor K-theory. For a commutative unital ring R, mimicking
Milnor’s tensorial construction (with the additional relation that a⊗(−a) =
0, which is automatic for fields) yields a graded ring K•M(R), which should
be referred to as “näıve” Milnor K-theory. This already appears in Guin
[45, §3] and later studied by Elbaz-Vincent–Müller-Stach [30]. Näıve Milnor
K-theory has some bad properties when R has small finite residue fields,
see Kerz [53] who also provides a improved Milnor K-theory repairing these
defects. Thomason [101] has shown that there exists no globalization of
Milnor K-theory to smooth schemes that satisfies A1-homotopy invariance
and has a functorial homomorphism to algebraic K-theory.

Étale cohomology. Étale cohomology provides a natural globalization
of Galois cohomology to schemes. We will thus consider the functor X 7→
H•ét(X,µ

⊗•
2 ) on SchF .

Global Witt group. For a scheme X with 2 invertible, the global Witt
group W (X) of regular symmetric bilinear forms (modulo metabolic forms)
introduced by Knebusch [57] provides a natural globalization of the Witt
group to schemes. A regular symmetric bilinear form (V , b) on X consists
of a locally free OX -module V of finite constant rank together with an
OX -module homomorphism b : S2V → OX such that the induced map
ψb : V → V ∨ is an OX -module isomorphism. Metabolic is the correct
globalization to schemes of the notion of hyperbolic, see Knebusch [57, I.3].

Other possible globalizations are obtained from the Witt groups of tri-
angulated category with duality introduced by Balmer [11], [12], [13], [14].
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These include: the derived Witt group of the bounded derived category of
coherent locally free OX -modules; the coherent Witt group of the bounded
derived category of quasicoherent OX -modules with coherent cohomology
(assuming X has a dualizing complex, see Gille [42, §2.5], [43, §2]); the per-
fect Witt group of the derived category of perfect complexes of OX -modules.
The global and derived Witt groups are canonically isomorphic by Balmer
[13, Thm. 4.7]. All of the above Witt groups are isomorphic (though not
necessarily canonically) if X is assumed to be regular.

Fundamental filtration and the classical invariants. Globalizations of
the classical invariants of symmetric bilinear forms (which are briefly re-
viewed in the context of global Witt groups in Balmer [14, §1.3]) are defined
as follows. Let (V , b) be a regular symmetric bilinear form of rank n on X.

Taking the rank (modulo 2) of V gives rise to a functorial homomor-
phism

e0 : W (X)→ Homcont(X,Z/2Z) = H0
ét(X,Z/2Z),

whose kernel I1(X) is called the fundamental ideal of W (X).
Taking the signed discriminant form (det V , (−1)n(n−1)/2 detψb) gives

rise to a functorial homomorphism

e1 : I1(X)→ H1
ét(X,µ2)

see Knus [59, III §4.2]. Here, we identify H1
ét(X,µ2) with the group (un-

der tensor product) of regular symmetric bilinear forms of rank 1, as in
Milne [68, III §4]. Alternatively, let C (V , b) = C0(V , b) ⊕ C1(V , b) be the
Clifford algebra of (V , b), which is a locally free Z/2Z-graded OX -algebra
whose definition is analogous to the classical one, see for example [31, §1.9].
Then the center of C (V , b) or C0(V , b) is an étale quadratic OX -algebra,
depending on the whether V has odd or even rank, respectively. This cen-
ter defines a class in H1

ét(X,Z/2Z) called the Arf or discriminant invariant,
which coincides with the signed discriminant under the canonical morphism
H1

ét(X,Z/2Z) → H1
ét(X,µ2), see Knus [59, IV Prop. 4.6.3] or Parimala–

Srinivas [85, §2.2]. Denote the kernel of e1 by I2(X), which is an ideal of
W (X). Note that I2(X) may not be the square of the ideal I1(X).

Taking the Clifford OX -algebra C (V , b), which is an Azumaya algebra
if (V , n) has even rank as in §1.1, gives rise to a functorial homomorphism

e2 : I2(X)→ 2Br(X)

called the Clifford invariant, see Knus–Ojanguren [60] and Parimala–Srinivas
[85, §2]. Here, Br(X) is the group of Brauer equivalence classes of Azumaya
OX -algebras (OX -algebras which are étale locally isomorphic to endomor-
phism algebras of locally free OX -modules) and there is a canonical injective
homomorphism Br(X) → H2

ét(X,Gm), see Milne [68, IV §2]. Denote the
kernel of e2 by I3(X), which is an ideal of W (X).
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Classical invariants for Grothendieck–Witt groups. As Parimala–Srinivas
[85, p. 223] point out, there is no functorial map I2(X)→ H2

ét(X,µ2) lifting
the Clifford invariant. Instead, we can work with the Grothendieck–Witt
group GW (X) of regular symmetric bilinear forms modulo the equivalence
relation splitting all metabolic forms, see Knebusch [57, I.4] or Walter [107]
for precise definitions. This group sits in an exact sequence

K0(X)
H−→ GW (X)→W (X)→ 0

where K0(X) is the Grothendieck group of locally free OX -modules of finite
rank and H is the hyperbolic form functor V 7→ H(V ). The hyperbolic
form H(V ) is defined as

(
V ⊕ V ∨, ((v, f), (w, g)) 7→ f(w) + g(x)

)
.

Taking the rank (modulo 2) gives rise to a functorial homomorphism

ge0 : GW (X)→ H0
ét(X,Z/2Z)

whose kernel is denoted by GI(X).
Taking the signed discriminant gives rise to a functorial homomorphism

ge1 : GI1(X)→ H1
ét(X,µ2)

whose kernel is denoted by GI2(X).
Taking the class of the Clifford OX -algebra, together with it’s canonical

involution (via the “involutive” Brauer group construction of Parimala–
Srinivas [85, §2]), gives rise to a functorial homomorphism

ge2 : GI2(X)→ H2
ét(X,µ2)

also see Knus–Parimala–Sridharan [61]. Denote the kernel of ge2 byGI3(X),
which is an ideal of GW (X).

Lemma 2.1. Let X be a scheme. Under the quotient map GW (X)→
W (X), the image of the ideal GIn(X) is precisely the ideal In(X) for n ≤ 3.

Proof. For n = 1, 2 this is a consequence of the following diagram

K0(X)

H
��

K0(X)

H
��

0 // GIn(X)

��

// GIn−1(X)
gen−1

//

��

Hn−1
ét (X,Z/2Z) // 0

0 // In(X)

��

// In−1(X)

��

en−1
// Hn−1

ét (X,Z/2Z) // 0

0 0

whose rows are exact by definition, whose upper left square (hence lower
right square) is commutative since hyperbolic spaces have even rank and
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trivial signed discriminant, and whose lower left vertical arrows exist by a
diagram chase (first considering n = 1 then n = 2).

For n = 3, we have the formula ge2(H(V )) = c1(V ,µ2), which fol-
lows from Esnault–Kahn–Viehweg [31, Prop. 5.5] combined with (1). Here
c1(−,µ2) is the 1st Chern class modulo 2, defined as the first coboundary
map in the long-exact sequence in étale cohomology

· · · → Pic(X)
2−→ Pic(X)

c1−→ H2
ét(X,µ2)→ H2

ét(X,Gm)
2−→ H2

ét(X,Gm)→ · · ·

arising from the étale Kummer exact sequence

1→ µ2 → Gm
2−→ Gm → 1,

see Grothendieck [44]. The claim then follows by considering the following
diagram

0

��

0 // K ′0(X)

H
��

// K0(X)

H
��

det // Pic(X)/2

c1
��

// 0

0 // GI3(X)

��

// GI2(X)

��

ge2
// H2

ét(X,µ2)

��

0 // I3(X)

��

// I2(X)

��

e2 //
2H

2
ét(X,Gm)

��

0 0 0

whose right vertical column arises from (and is exact by) the Kummer
sequence (here e2 is considered as a map I2(X) → 2H

2
ét(X,Gm) via the

canonical injection 2Br(X) → 2H
2
ét(X,Gm), see for example Milne [68,

IV Thm. 2.5]), whose central column is exact by the diagram in the case
n = 2, whose top horizontal rows are exact by definition (here K ′0(X) is the
subgroup of K0(X) generated by locally free OX -modules whose determi-
nant is a square), and whose lower left vertical arrows exists by a diagram
chase. Q.E.D.

Remark 2.1. In fact 2Br(X) = 2H
2
ét(X,Gm) is satisfied if X is a quasi-

compact quasi-separated scheme admitting an ample invertible sheaf by de
Jong’s extension [27] (see also Lieblich [64, Th. 2.2.2.1]) of a result of Gabber
[38].

The existence of global globalizations of the higher invariants (e.g. a
globalization of the Arason invariant) remains a mystery. Esnault–Kahn–
Levine–Viehweg [32] have shown that for a regular symmetric bilinear form
(V , b) that represents a class in GI3(X), the obstruction to having an Ara-
son invariant in H3

ét(X,Z/2Z) is precisely the 2nd Chern class c2(V ) ∈
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CH2(X)/2 in the Chow group modulo 2 (note that the invariant c(V ) ∈
Pic(X)/2 of [32] is trivial if (V , b) represents a class in GI3(X)). They
also provide examples where this obstruction does not vanish. On the other
hand, higher cohomological invariants always exist in unramified cohomol-
ogy.

2.2. Unramified globalization

A functorial framework for the notion of “unramified element” is estab-
lished in Colliot-Thélène [22, §2]. See also the survey by Zainoulline [111,
§3]. Rost [93, Rem. 5.2] gives a different perspective in terms of cycle mod-
ules, also see Morel [72, §2]. Assume that X has finite Krull dimension and
is equidimensional over a field F . For simplicity of exposition, assume that
X is integral. Denote by X(i) its set of codimension i points.

Denote by LocalF the category of local F -algebras together with local
F -algebra morphisms. Given a functor M• : LocalF → Ab•, call

M•ur(X) =
⋂

x∈X(1)

im
(
M•(OX,x)→M•(F (X))

)
the group of unramified elements of M• over X. Then X 7→ M•ur(X) is a
globalization of M• to schemes.

Given a functor M• : SchF → Ab•, there is a natural map M•(X) →
M•ur(X). If this map is injective, surjective, or bijective we say that the in-
jectivity, weak purity, or purity property hold, respectively. Whether these
properties hold for various functors M• and schemes X is the subject of
many conjectures and open problems, see Colliot-Thélène [22, §2.2] for ex-
amples.

Unramified Milnor K-theory. Define the unramified Milnor K-theory
(resp. modulo 2) ofX to be the graded ring of unramified elementsK•M,ur(X)

(resp. K•M,ur/2(X)) of the “näıve” Milnor K-theory (resp. modulo 2) functor

K•M (resp. K•M/2) restricted to LocalF , see §2.1. Let K•M be the Zariski sheaf
on SchF associated to “näıve” Milnor K-theory and K•M/2 the associate
sheaf quotient, which is also the Zariski sheaf associated to the presheaf U 7→
K•M(Γ(U,OU ))/2, see Morel [72, Lemma 2.7]. Then K•M,ur(X) = Γ(X,K•M)

and K•M,ur/2(X) = Γ(X,K•M/2) when X is smooth over an infinite field

(compare with the remark in §2.1) by the Bloch–Ogus–Gabber theorem
for Milnor K-theory, see Colliot-Thélène–Hoobler–Kahn [23, Cor. 5.1.11,
§7.3(5)]. Also, see Kerz [52]. Note that the long exact sequence in Zariski
cohomology associated to the short exact sequence

0→ K•M
2−→ K•M → K•M/2→ 0

of sheaves on SchF yields a short exact sequence

0→ K•M,ur(X)/2→ K•M,ur/2(X)→ 2H
1(X,K•M)→ 0

assuming X is smooth over an infinite field.
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Unramified cohomology. Define the unramified étale cohomology (mod-
ulo 2) of X to be the graded ring of unramified elements H•ur(X,µ

⊗•
2 ) of

the functor H•ét(−,µ
⊗•
2 ). Letting H•ét be the Zariski sheaf on SchF associ-

ated to the functor H•ét(−,µ
⊗•
2 ), then Γ(X,H•ét) = H•ur(X,Z/2Z) when X

is smooth over a field of characteristic 6= 2 by the exactness of the Gersten
complex (also known as the “arithmetic resolution”) for étale cohomology,
see Bloch–Ogus [21, Thm. 4.2, Ex. 2.1, Rem. 4.7].

Unramified fundamental filtration of the Witt group. Assume that F has
characteristic 6= 2. Define the unramified Witt group of X to be the abelian
group of unramified elements Wur(X) of the global Witt group functor W .
LettingW be the Zariski sheaf associated to the global Witt group functor,
then Wur(X) = Γ(X,W) when X is regular over a field of characteristic
6= 2 by Ojanguren–Panin [74] (also see Morel [72, Thm. 2.2]). Writing
Inur(X) = In(F (X))∩Wur(X), then the functors Inur(−) are Zariski sheaves
on SchF , denoted by In, which form a filtration of W, see Morel [72, Thm.
2.3].

Note that the long exact sequence in Zariski cohomology associated to
the short exact sequence

0→ In+1 → In → In/In+1 → 0

of sheaves on SchF yields a short exact sequence

0→ Inur(X)/In+1
ur (X)→ In/In+1(X)→ H1(X, In+1)′ → 0

where H1(X, In+1)′ = ker
(
H1(X, In)→ H1(X, In+1)

)
assuming X is reg-

ular (over a field of characteristic 6= 2). If the obstruction groupH1(X, In+1)′

is nontrivial, then not every element of In/In+1(X) is represented by a
quadratic form on X. If X is the spectrum of a regular local ring, then
Inur(X)/In+1

ur (X) = In/In+1(X), see Morel [72, Thm. 2.12].

Remark 2.2. As before, the notation Inur(X) does not necessarily mean
the nth power of Iur(X). This is true, however, when X is the spectrum
of a regular local ring containing an infinite field of characteristic 6= 2, see
Kerz–Müller-Stach [54, Cor. 0.5].

2.3. Gersten complexes

Gersten complexes (Cousin complexes) exists in a very general frame-
work. For the purposes of defining unramified globalizations of the norm
residue symbol, Pfister form map, and higher cohomological invariants, we
will only need Gersten complexes for Milnor K-theory, étale cohomology,
and (the fundamental filtration of) the Witt group.

Gersten complex for Milnor K-theory. Let X be a regular excellent
integral F -scheme. Let C(X,Kn

M) denote the Gersten complex for Milnor
K-theory

0 // Kn
M(F (X))

∂Kn
M
//
⊕

x∈X(1)

Kn−1
M (F (x))

∂K
n−1
M
//
⊕

y∈X(2)

Kn−2
M (F (y)) // ···
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where ∂KM is the “tame symbol” homomorphism defined in Milnor [69,
Lemma 2.1]. We have that H0(C(X,Kn

M)) = Kn
M,ur(X). See Rost [93, §1]

or Fasel [33, Ch. 2] for more details. We will also consider the Gersten
complex C(X,Kn

M/2) for Milnor K-theory modulo 2, for which we have
that H0(C(X,Kn

M/2)) = Kn
M,ur/2(X).

Gersten complex for étale cohomology. Let X be a smooth integral F -
scheme, with F of characteristic 6= 2. Let C(X,Hn) denote the Gersten
complex for étale cohomology

0 // Hn(F (X))
∂Hn

//
⊕

x∈X(1)

Hn−1(F (x))
∂Hn−1

//
⊕

y∈X(2)

Hn−2(F (y)) // ···

where Hn(−) = Hn(−,µ⊗n2 ) and ∂H is the homomorphism induced from
the spectral sequence associated to the coniveau filtration, see Bloch–Ogus
[21]. Then we have that C(X,Hn) is a resolution of Hn

ur(X,µ
⊗n
2 ).

Gersten complex for Witt groups. Let X be a regular integral scheme
(of finite Krull dimension) over a field F of characteristic 6= 2. Let C(X,W )
denote the Gersten–Witt complex

0 // W (F (X))
∂W
//
⊕

x∈X(1)

W (F (x))
∂W
//
⊕

y∈X(2)

W (F (y)) // ···

where ∂W is the homomorphism induced from the second residue map for
a set of choices of local parameters, see Balmer–Walter [17]. Because of
these choices, C(X,W ) is only defined up to isomorphism, though there is
a canonical complex defined in terms of Witt groups of finite length modules
over the local rings of points. Over the local ring of a regular point, the
sequence is exact (after the zeroth term) by Balmer–Gille–Panin–Walter
[16]. We have that H0(C(X,W )) = Wur(X).

Fundamental filtration. The filtration of the Gersten complex for Witt
groups induced by the fundamental filtration was first studied methodically
by Arason–Elman–Jacob [5], see also Parimala–Sridharan [82], Gille [43],
and Fasel [33, §9].

The differentials of the Gersten complex for Witt groups respect the
fundamental filtration as follows:

∂I
n
( ⊕
x∈X(p)

In(F (x))
)
⊂

⊕
y∈X(p+1)

In−1(F (y)),

see Fasel [33, Thm. 9.2.4] and Gille [43]. Thus for all n ≥ 0 we have
complexes C(X, In)

0 // In(F (X))
∂In

//
⊕

x∈X(1)

In−1(F (x))
∂In−1

//
⊕

y∈X(2)

In−2(F (y)) // ···

which provide a filtration of C(X,W ) in the category of complexes of
abelian groups. Here we write In(−) = W (−) for n ≤ 0. We have that
H0(C(X, In)) = Inur(X).
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The canonical inclusion C(X, In+1) → C(X, In) respects the differen-
tials, and so defines a cokernel complex C(X, In/In+1)

0 // In/In+1(F (X)) //
⊕

x∈X(1)

In−1/In(F (x)) //
⊕

y∈X(2)

In−2/In−1(F (y)) // ···

see Fasel [33, Déf. 9.2.10], where In/In+1(L) = In(L)/In+1(L) for a field
L. We have that H0(C(X, In/In+1)) = In/In+1(X)

For the rest of this section, we assume X is a smooth integral scheme
(of finite Krull dimension) over a field F of characteristic 6= 2.

Unramified norm residue symbol. The norm residue symbol for fields
provides a morphism of complexes hn : C(X,Kn

M/2) → C(X,Hn), where
the map on terms of degree j is hn−j . By the Milnor conjecture for fields,
this is an isomorphism of complexes. Upon restriction, we have an isomor-
phism

(2) hnur : Kn
M,ur/2(X)→ Hn

ur(X,µ
⊗n
2 ),

further restricting to an injection hnur : Kn
M,ur(X)/2→ Hn

ur(X,µ
⊗n
2 ).

Unramified Pfister form map. The Pfister form map for fields provides
a morphism of complexes sn : C(X,Kn

M/2) → C(X, In/In+1), where the
map on terms of degree j is sn−j . By the Milnor conjecture for fields, this
is an isomorphism of complexes. Upon restriction, we have an isomorphism

(3) snur : Kn
M,ur/2(X)→ In/In+1(X).

See Fasel [33, Thm. 10.2.6].

Unramified higher cohomological invariants. By the Milnor conjecture
for fields, there exists a higher cohomological invariant morphism of com-
plexes en : C(X, In) → C(X,Hn), where the map on terms of degree
j is en−j . Upon restriction, we have homomorphisms enur : Inur(X) →
Hn

ur(X,µ
⊗n
2 ) factoring through to enur : Inur(X)/In+1

ur (X)→ Hn
ur(X,µ

⊗n
2 ).

Furthermore, on the level of complexes, the higher cohomological invari-
ant morphism factors through to a morphism of complexes en : C(X, In/In+1)→
C(X,Hn), which by the Milnor conjecture over fields, is an isomorphism.
Upon restriction, we have isomorphisms

(4) enur : In/In+1(X)→ Hn
ur(X,µ

⊗n
2 ).

Also see Morel [72, §2.3].

2.4. Motivic globalization

There is another important globalization of Milnor K-theory and Galois
cohomology, but we only briefly mention it here. Conjectured to exist by
Bĕılinson [20] and Lichtenbaum [63], and then constructed by Voevodsky
[104], motivic complexes modulo 2 give rise to Zariski and étale motivic
cohomology groups Hn

Zar(X,Z/2Z(m)) and Hn
ét(X,Z/2Z(m)) modulo 2.
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For a field F , Nesterenko–Suslin [73] and Totaro [102] establish a canon-
ical isomorphism Hn

Zar(SpecF,Z/2Z(n)) ∼= Kn
M(F )/2. The work of Bloch,

Gabber, and Suslin (see the survey by Geisser [39, §1.3.1]) establishes an
isomorphism Hn

ét(SpecF,Z/2Z(n)) ∼= Hn(F,µ⊗n2 ) for F of characteristic
6= 2. The natural pullback map

ε∗ : Hn
Zar(SpecF,Z/2Z(n))→ Hn

ét(SpecF,Z/2Z(n))

induced from the change of site ε : Xét → XZar is then identified with the
norm residue homomorphism. ThusHn

Zar(−,Z/2Z(n)) andHn
ét(−,Z/2Z(n))

provide motivic globalizations of the mod 2 Milnor K-theory and Galois co-
homology functors, respectively. On the other hand, there does not seem
to exist a direct motivic globalization of the Witt group or its fundamental
filtration.

§3. Globalization of the Milnor conjecture

Unramified. Let F be an infinite field of characteristic 6= 2. Combining
the results of §2.2–2.3, we have that for any smooth F -scheme X, the maps
(2), (3), and (4) yield a commuting triangle

Γ(X,K•M/2) = K•M,ur/2(X)
h•ur //

s•ur

��

H•ur(X,µ
•
2) = Γ(X,H•ét)

Γ(X, I•/I•+1) = I•/I•+1(X)

e•ur

33

of functorial isomorphisms of graded abelian groups. Thus there’s a com-
mutative triangle of isomorphisms

K•M/2
h• //

s•

��

H•ét

I•/I•+1

e•

;;

of sheaves of graded abelian groups on SmF . What we will consider as a
globalization of the Milnor conjecture — the unramified Milnor question —
is a refinement of the above triangle of global sections.

Question 3.1 (Unramified Milnor question). Let X be a smooth scheme
over a field of characteristic 6= 2. Consider the following diagram:

K•M,ur(X)/2

?

��

� � i•K // K•M/2(X)
h•ur //

s•ur

��

H•ur(X,µ
⊗•
2 )

I•ur(X)/I•+1
ur (X) �

� i•I // I•/I•+1(X)

e•ur

66
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(1) Is the inclusion i•I surjective?
(2) Is the inclusion i•K surjective?
(3) Does the restriction of s•ur to K•M,ur(X)/2 have image contained in

I•ur(X)/I•+1
ur (X)? If so, is it an isomorphism?

Note that in degree n, Questions 3.1 (1), (2), and (3) can be rephrased
in terms of the obstruction groups, respectively: does H1(X, In+1)′ van-
ish; does 2H

1(X,Kn
M) vanish; and does the restriction of snur yield a map

2H
1(X,Kn

M)→ H1(X, In+1)′ and is it an isomorphism?
From now on we shall focus mainly on the unramified Milnor question

for quadratic forms (i.e. Question 3.1(1)), which was already explicitly asked
by Parimala–Sridharan [82, Question Q]. Note that for this question, since
we avoid Milnor K-theory, we not require the hypothesis that F be infinite.

Global Grothendieck–Witt. We mention a global globalization of the
Milnor conjecture for quadratic forms. Because of the conditional definition
of the global cohomological invariants, we restrict ourselves to the classical
invariants on Grothendieck–Witt groups defined in §2.1.

Question 3.2 (Global Merkurjev question). Let X be a regular scheme
with 2 invertible. For n ≤ 2, consider the homomorphisms

gen : GIn(X)/GIn+1(X)→ Hn
ét(X,Z/2Z)

induced from the (classical) cohomological invariants on Grothendieck–Witt
groups. Is this an isomorphism for n = 2?

This question can be viewed as a natural globalization of Merkurjev’s
theorem (though to the author’s knowledge, Merkurjev never posed the
question): is every 2-torsion Brauer class represented by the Clifford algebra
of a regular quadratic form over X? Indeed, a consequence of Lemma 2.1
is that ge2 : GI2(X)→ H2

ét(X,Z/2Z) is surjective if and only e2 : I2(X)→
2Br(X) is surjective. Question 3.2 is thus a consequence of a positive answer
to Question 3.1(1) for a smooth scheme X over a field of characteristic 6= 2
that satisfies weak purity for the Witt group, see §3.1 for details. Note that
the analogue of Question 3.2 for n = 0 and 1 has a positive answer.

Motivic. Finally, we mention a globalization of the Milnor conjecture
for the norm residue symbol using Zariski and étale motivic cohomology
modulo 2 (see §2.4). This is the (n, n) modulo 2 case of the Bĕılinson–
Lichtenbaum conjecture: for a smooth variety X over a field, the canonical
map Hn

Zar(X,Z/2Z(m))→ Hn
ét(X,Z/2Z(m)) is an isomorphism for n ≤ m.

The combined work of Suslin–Voevodsky [100] and Geisser–Levine [40] show
the Bĕılinson–Lichtenbaum conjecture to be a consequence of the Bloch–
Kato conjecture, which is now proved using ideas of Voevodsky [105] and
Rost [94] with various details being filled in by Haesemeyer–Weibel [46],
Suslin–Joukhovitski [99], and Weibel [108], [109].
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3.1. Some purity results

In this section we review some of the purity results (see §2.2) relating
the global and unramified Witt groups and cohomology.

Purity for Witt groups. For a survey on purity results for Witt groups,
see Zainoulline [111]. Purity for the global Witt group means that the
natural map W (X)→Wur(X) is an isomorphism.

Theorem 2. Let X be a regular integral noetherian scheme with 2
invertible. Then purity holds for the global Witt group functor under the
following hypotheses:

(1) X is dimension ≤ 3,
(2) X is the spectrum of a regular local ring of dimension ≤ 4,
(3) X is the spectrum of a regular local ring containing a field.

Weak purity for the global Witt group functor holds for X of dimension ≤ 4.

For part (1), the case of dimension ≤ 2 is due to Colliot-Thélène–Sansuc
[26, Cor. 2.5], the case of dimension 3 and X affine is due to Ojanguren–
Parimala–Sridharan–Suresh [75], and for the general case (as well as (2) and
the final assertion) see Balmer–Walter [17]. For (3), see Ojanguren–Panin
[74].

Purity for étale cohomology. For X geometrically locally factorial and
integral, purity holds for étale cohomology in degree ≤ 1, i.e.

H0
ét(X,Z/2Z) = H0

ur(X,Z/2Z) = Z/2Z, and H1
ét(X,µ2) = H1

ur(X,µ2)

see Colliot-Thélène–Sansuc [25, Cor. 3.2, Prop. 4.1].
For X smooth over a field of characteristic 6= 2, weak purity holds

for étale cohomology in degree 2. Moreover, there’s a canonical identifi-
cation 2Br(X) = H2

ur(X,µ2) by Bloch–Ogus [21] such that the canonical
map H2

ét(X,µ2) → H2
ur(X,µ2) = 2Br(X) arises from the Kummer exact

sequence already considered in the proof of Lemma 2.1.

Purity for the classical invariants. Considering the commutative dia-
gram with exact rows

0 // I3(X) //

��

I2(X)

��

e2 //
2Br(X)

��

0 // I3
ur(X) // I2

ur(X)
e2ur // H2

ur(X,µ2)

(and similar diagrams for n = 0 and 1) note that weak purity for the Witt
group (resp. purity for the Witt group and injectivity for étale cohomol-
ogy) implies weak purity (resp. purity) for the global fundamental filtration
In(X) ⊂W (X) for n ≤ 3.
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3.2. Positive results

We now survey some of the known positive cases of the unramified
Milnor question in the literature.

Theorem 3 (Kerz–Müller-Stach [54, Cor. 0.8], Kerz [52, Thm. 1.2]).
Let R be a local ring with infinite residue field of characteristic 6= 2. Then
the unramified Milnor question (all parts of Question 3.1) has a positive
answer over SpecR.

Hoobler [48] had already proved this in degree 2.
The following result was communicated to us by Stefan Gille (who was

inspired by Totaro [103]).

Theorem 4. Let X be a proper smooth integral variety over an infinite
field F of characteristic 6= 2. If X is F -rational then the unramified Milnor
question (all parts of Question 3.1) has a positive answer over X.

Proof. The groups Kn
M,ur(X), Hn

ur(X,µ
⊗n
2 ), and Inur(X) are birational

invariants of smooth proper F -varieties. To see this, one can use Colliot-
Thélène [22, Prop. 2.1.8e] and the fact that the these functors satisfy weak
purity for regular local rings (see Theorem 2). Another proof uses the fact
that the complexes C(X,Kn

M), C(X,Hn), and C(X, In) are cycle modules
in the sense of Rost, see [93, Cor. 12.10]. In any case, by Colliot-Thélène
[22, Prop. 2.1.9] the pullback induces isomorphisms Kn

M(F ) ∼= Kn
M,ur(¶m)

(first proved by Milnor [69, Thm. 2.3] for ¶1), Hn(F,µ⊗n2 ) ∼= Hn
ur(¶m,µ⊗n2 ),

and Inur(F ) ∼= Inur(¶m) for all n ≥ 0 and m ≥ 1. In particular, Kn
M(F )/2 ∼=

Kn
M,ur(X)/2 and Inur(F )/In+1

ur (F ) ∼= Inur(X)/In+1
ur (X), and the theorem fol-

lows from the Milnor conjecture over fields. The hypothesis that F is infinite
may be dropped when only considering Question 3.1(1). Q.E.D.

The following positive results are known for low dimensional schemes.
Recall the notion of cohomological dimension cd(F ) of a field (see Serre
[96, I §3.1]), virtual cohomological 2-dimension vcd2(F ) = cd2(F (

√
−1))

and their 2-primary versions. Denoting by d(F ) any of these notions of
dimension, note that if d(F ) ≤ k and dimX ≤ l then d(F (X)) ≤ k + l.

Theorem 5 (Parimala–Sridharan [82], Monnier [70]). Let X be a smooth
integral curve over a field F of characteristic 6= 2. Then the unramified Mil-
nor question for quadratic forms (Question 3.1(1)) has a positive answer
over X in the following cases:

(1) cd2(F ) ≤ 1,
(2) vcd(F ) ≤ 1,
(3) cd2(F ) = 2 and X is affine,
(4) vcd(F ) = 2 and X is affine.

Proof. For (1), this follows from Parimala–Sridharan [82, Lemma 4.1]
and the fact that e1 is always surjective. For (2), the case vcd(F ) = 0
(i.e. F is real closed) is contained in Monnier [70, Cor. 3.2] and the case
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vcd(F ) = 1 follows from a straightforward generalization to real closed
fields of the results in [82, §5] for the real numbers. For (3), see [82, Lemma
4.2]. For (4), the statement follows from a generalization of [82, Thm.
6.1]. Q.E.D.

We wonder whether vcd can be replaced by vcd2 in Theorem 5. Parimala–
Sridharan [82, Rem. 4] ask whether there exist affine curves (over a well-
chosen field) over which the unramified Milnor question has a negative an-
swer.

For surfaces, there are positive results are in the case of vcd(F ) = 0. If
F is algebraically closed, then the unramified Milnor question for quadratic
forms (Question 3.1(1)) has a positive answer by a direct computation, see
Fernández-Carmena [34]. If F is real closed, one has the following result.

Theorem 6 (Monnier [70, Thm. 4.5]). Let X be smooth integral surface
over a real closed field F . If the number of connected components of X(F )
is ≤ 1 (i.e. in particular if X(F ) = ∅), then the unramified Milnor question
for quadratic forms (Question 3.1(1)) has a positive answer over X.

Examples of surfaces with many connected components over a real
closed field, and over which the unramified Milnor question still has a pos-
itive answer, are also given in Monnier [70].

Finally, as a consequence of [9, Cor. 3.4], the unramified Milnor question
for quadratic forms (Question 3.1(1)) has a positive answer over any scheme
X such that 2Br(X) is generated by quaternion Azumaya algebras. In
particular, this recovers the known cases of curves over finite fields (using
class field theory) and surfaces over algebraically closed fields (using de Jong
[28]).

§4. Negative results

Alex Hahn asked if there exists a ring R over which the global Merkurjev
question (Question 3.2) has a negative answer, i.e. e2 : I2(R) → 2Br(R) is
not surjective. The results of Parimala, Scharlau, and Sridharan [81], [82],
[83], show that there exist smooth complete curves X (over p-adic fields
F ) over which the unramified Milnor question (Question 3.1(1)) in degree 2
(and hence, by purity, the global Merkurjev question) has a negative answer.

Remark 4.1. The assertion (in Gille [43, §10.7] and Pardon [77, §5]) that
the unramified Milnor question (Question 3.1(1)) has a positive answer over
any smooth scheme (over a field of characteristic 6= 2) is incorrect. In these
texts, the distinction between the groups Inur(X)/In+1

ur (X) and In/In+1(X)
is not made clear.

Definition 4.1 (Parimala–Sridharan [82]). A scheme X over a field
F has the extension property for symmetric bilinear forms if there exists
x0 ∈ X(F ) such that every regular symmetric bilinear form on X r {x0}
extends to a regular symmetric bilinear form on X.
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Proposition 4.1 (Parimala–Sridharan [82, Lemma 4.3]). Let F be a
field of characteristic 6= 2 and with cd2F ≤ 2 and X a smooth integral F -
curve. Then the unramified Milnor question for quadratic forms (Question
3.1(1)) has a positive answer for X if and only if X has the extension
property.

The extension property holds for any curve X having an F -rational
point and whose Witt group has a residue theorem (or reciprocity law): an
F -vector space T together with a nontrivial F -linear map tx : W (F (x))→ T
for each x ∈ X(1) and satisfying

∑
x∈X(1) tx ◦ ∂x = 0. Indeed, if x0 ∈ X(F )

and b is a regular symmetric bilinear form on U = Xr{x0}, then considering
b ∈ W (F (X)) we have ∂x(b) = 0 for all x ∈ U , hence tx0

(∂x0
(b)) = 0 by

the reciprocity property, which implies that ∂x0
(b) = 0 since tx0

: F (x0) ∼=
F → T is injective. Thus b ∈Wur(X) extends to X by purity.

There is a standard residue theorem for X = ¶1 due to Milnor [69, §5]
(independently proven by Harder [47, Satz 3.5] and Knebusch [55, §13]).
For nonrational curves, the choice of local parameters inherent in defining
the residue maps is eliminated by considering quadratic forms with values
in the canonical bundle ωX/F .

Definition 4.2. Let X be a scheme and L an invertible OX -module.
A regular (L -valued) symmetric bilinear form on X is a triple (V , b,L ),
where V is a locally free OX -module of finite rank and b : S2V → L is an
OX -module morphism such that the canonical map ψb : V →Hom(V ,L )
is an OX -module isomorphism.

The Witt groupW (X,L ) of regular L -valued symmetric bilinear forms
is the quotient of the Grothendieck group of such forms under orthogonal
sum by the subgroup generated by L -valued metabolic forms (having a half-
dimensional isotropic OX -submodule), see [8, §1.7]. See Balmer [11], [12],
[13], [14] for generalizations. We remark that any choice of isomorphism
ϕ : L ′ ⊗N ⊗2 ∼= L induces a group isomorphism W (X,L ′) → W (X,L )
via (V , b,L ′) 7→ (V ⊗N , ϕ ◦ (b⊗ idN ),L ), see also Balmer–Calmès [15].

Theorem 7 (Geyer–Harder–Knebusch–Scharlau [41]). Let X be a smooth
proper integral curve over a perfect field F of characteristic 6= 2. Then there
is a canonical complex (which is exact at the first two terms)

0 // W (X,ωX/F ) // W (F (X),ωF (X)/F )
∂ωX
//
⊕

x∈X(1)

W (F (x),ωF (x)/F )
TrX/F
// W (F )

and thus in particular W (X,ωX/F ) has a residue theorem.

Now any choice of theta-characteristic (i.e. isomorphism N ⊗2 ∼= ωX/F )
induces a group isomorphism W (X) → W (X,ωX/F ). Thus in particular,
if ωX/F is a square in Pic(X), then X has a residue theorem (thus the
extension property), hence Question 3.1(1) has a positive answer for X.
Conversely we have the following.
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Theorem 8 (Parimala–Sridharan [83, Thm. 3]). Let F be a local field
of characteristic 6= 2 and X a smooth integral hyperelliptic F -curve of genus
≥ 2 with X(F ) 6= ∅. Then the unramified Milnor question for quadratic
forms (Question 3.1(1)) holds over X if and only if ωX/F is a square.

Example 4.1. Let X be the smooth proper hyperelliptic curve over Q3

with affine model y2 = (x2+3)(x4+x3+x2+x+1). One can show using [81,
Thm. 2.4] that ωX/Q3

is not a square. The point (x, y) = (−1, 2) defines
a Q3-rational point of X. Hence by Theorem 8, the unramified Milnor
question has a negative answer over X. Compare with Parimala–Sridharan
[83, Rem. 3].

Note that possible counter examples which are surfaces could be ex-
tracted from the following result.

Theorem 9 (Monnier [70, Thm. 4.5]). Let X be a smooth integral
surface over a real closed field F . Then the unramified Milnor question for
quadratic forms (Question 3.1(1)) has a positive answer over X if and only
if the cokernel of the mod 2 signature homomorphism is 4-torsion.

§5. Total invariants of line bundle-valued quadratic forms

Let X be a smooth scheme over a field F of characteristic 6= 2. Let
Wtot(X) =

⊕
L W (X,L ) be the total Witt group of regular line bundle-

valued symmetric bilinear forms, where the sum is taken over a set of rep-
resentative invertible OX -modules L of Pic(X)/2. While this group is only
defined up to non-canonical isomorphism depending on our choice of rep-
resentatives, none of our cohomological invariants depend on such isomor-
phisms, see [9, §1.2]. Furthermore, we will not consider any ring structure
on this group. Thus we will not need to descend into the important consid-
erations of Balmer–Calmès [15].

Taking the rank modulo 2 gives rise to a functorial homomorphism

e0
tot : Wtot(X)→ Z/2Z = H0

ur(X,Z/2Z)

whose kernel is denoted by I1
tot(X) = ⊕L I

1(X,L ).
Taking the generalization to regular line bundle-valued forms of the

signed discriminant (see Parimala–Sridharan [84] or [8, Def. 1.11]) gives rise
to a functorial homomorphism

e1
tot : I1

tot(X)→ H1
ét(X,µ2) = H1

ur(X,µ2).

Denote by I2(X,L ) ⊂ I1(X,L ) the subgroup generated by forms of trivial
signed discriminant and I2

tot(X) = ⊕L I
2(X,L ).

As defined in [9, §1.4], there exists a total Clifford invariant for regular
line bundle-valued quadratic forms, which gives rise to a functorial homo-
morphism

e2
tot : I2

tot(X)→ 2Br(X) = H2
ur(X,µ2)
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that coincides with the Clifford invariant (see §2.1) of (OX -valued) qua-
dratic forms when restricted to I2(X) = I2(X,OX) ⊂ I2

tot(X), see [9, Rem.
1.6]. The surjectivity of the total Clifford invariant can be viewed as a ver-
sion of the global Merkurjev question (Question 3.2) for line bundle-valued
quadratic forms.

Theorem 10 ([9]). Let X be a smooth integral curve over a local field
of characteristic 6= 2 or a smooth integral surface over a finite field of char-
acteristic 6= 2. Then the total Clifford invariant

e2
tot : I2

tot(X)→ 2Br(X)

is surjective.

The surjectivity of the total Clifford invariant can also be reinterpreted
as the statement that while not every class in I2/I3(X) ∼= H2

ur(X) is rep-
resented by a quadratic form on X, every class is represented by a line
bundle-valued quadratic form on X.
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[ 37 ] A. Fröhlich, On the K-theory of unimodular forms over rings of algebraic
integers, Quart. J. Math. Oxford Ser. (2), 22 (1971), 401–423.

[ 38 ] O. Gabber, Some theorems on Azumaya algebras, In The Brauer group (Sem.,
Les Plans-sur-Bex, 1980), volume 844 of Lecture Notes in Math., 1981,
Springer, Berlin, pp. 129–209.

[ 39 ] T. Geisser, Motivic cohomology, K-theory and topological cyclic homology, In
Handbook of K-theory. Vol. 1, 2, 2005, Springer, Berlin, pp. 193–234.

[ 40 ] T. Geisser and M. Levine, The Bloch-Kato conjecture and a theorem of Suslin-
Voevodsky, J. Reine Angew. Math., 530 (2001), 55–103.

[ 41 ] W.-D. Geyer, G. Harder, M. Knebusch, and W. Scharlau, Ein Residuensatz
für symmetrische Bilinearformen, Invent. Math., 11 (1970), 319–328.

[ 42 ] S. Gille, On Witt groups with support, Math. Ann., no. 1, 322 (2002), 103–
137.

[ 43 ] S. Gille, A graded Gersten-Witt complex for schemes with a dualizing complex
and the Chow group, J. Pure Appl. Algebra, no. 2, 208 (2007), 391–419.

[ 44 ] A. Grothendieck, Dix exposés sur la cohomologie des schémas, chapter VIII
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1968, pp. 215–305.

[ 45 ] D. Guin, Homologie du groupe linéaire et K-théorie de Milnor des anneaux,
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