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ABSTRACT

Cohomological invariants of line bundle-valued symmetric bilinear forms

Asher Auel

Ted Chinburg, Advisor

The object of this dissertation is to construct cohomological invariants for symmetric bilinear

forms with values in a line bundle L on a scheme X . These generalize the classical Hasse-Witt

(or Stiefel-Whitney) invariants when L is the trivial line bundle. In this case, Jardine computes

the étale cohomology ring of the classifying scheme of the orthogonal group to define univer-

sal invariants. There is no comparable theory when L is not trivial. Our approach is to utilize

coboundary maps on nonabelian cohomology sets arising from covers of the orthogonal simil-

itude group scheme. A new feature of this construction is a four-fold cover of the orthogonal

similitude group by the Clifford group which “interpolates” between the Kummer double cover

of the multiplicative group and the classical spin cover of the orthogonal group. This four-fold

cover allows us to define an analogue of the 2nd Hasse-Witt invariant for L -valued forms.

As for calculating the new invariants, we provide explicit formulas in the cases of odd rank

forms and L -valued metabolic forms. We also relate the invariants to parametrizations of L -

valued forms arising from exceptional isomorphisms of algebraic groups. One interesting case

concerns forms of rank 6 with trivial Arf invariant. These arise from the reduced pfaffian con-

struction of Knus, Parimala, and Sridharan, applied to 2-torsion Azumaya algebras of degree 4.

We relate the new invariant of a reduced pfaffian form to the class of the corresponding Azumaya

algebra in a refined involutive Brauer group defined by Parimala and Srinivas.
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Introduction

The object of this dissertation is the construction of cohomological invariants for symmetric bi-
linear forms with values in a line bundle L over an arbitrary scheme in which 2 is invertible.
These generalize the classical Hasse-Witt (or Stiefel-Whitney) invariants when L is the trivial
line bundle.

The analogue of the 1st Hasse-Witt invariant, or discriminant, for even rank L -valued forms
is already contained in Parimala/Sridharan [40]. We construct an analogue of the 2nd Hasse-Witt
invariant for L -valued forms of arbitrary rank. Such invariants, as in the classical case, find
their usefulness both in classifying L -valued forms and in the study of Brauer group classes of
arithmetic significance.

Why have these cohomological invariants not been constructed before? When L is the trivial
line bundle, one can use the work of Jardine [27] on the étale cohomology ring (with Z/2Z coeffi-
cients) of the simplicial classifying scheme of the orthogonal group to define universal Hasse-Witt
invariants. The orthogonal group scheme (of a standard sum-of-squares form) on X is the base
change of a smooth affine algebraic group scheme on Spec Z[12 ] (even on Spec Z). This enables
the étale cohomology ring of the simplicial classifying scheme to be computed–in analogy with
the topological case–by utilizing the injectivity on cohomology of restriction to the “maximal
torus” for the orthogonal group. When L is not trivial this approach breaks down. When L
is not a square in the Picard group, there is no known calculation of the étale cohomology ring
of the simplicial classifying scheme of the orthogonal group of an L -valued form. The orthog-
onal group scheme of such an L -valued form is not the base change of any group scheme on
Spec Z[12 ]. It is an outer form of the standard orthogonal group, i.e. a twist by a cocycle of auto-
morphisms that cannot be lifted to a cocycle of inner automorphisms. As Serre famously points
out, the cohomology of a group has in general no relation to the cohomology of an outer form.†

There is obviously much work to be done in this direction.
Below, we employ a different approach. While isometry classes of L -valued forms are torsors

for an outer form of the orthogonal group, their similarity classes are torsors for a standard (i.e.
definable over Spec Z[12 ]) group of orthogonal similitudes. A recent calculation of Holla/Nitsure
[25], [26] shows that (over Spec C) the Z/2Z-cohomology of the classifying space of the even
rank orthogonal similitude group does not contain an element analogous to the universal 2nd
Hasse-Witt invariant. We may interpret this as the nonexistence of a natural “pin” double cover
of the even rank orthogonal similitude group. Our contribution is the realization that, while there

†After proving that the cohomology groups of inner forms are bijective, concerning outer forms [47, I, §5.5, Re-
marque] Serre warns, “Par contre, H1(G, aA) n’a en général aucune relation avec H1(G, A).” Then later in [47, I,
§5.7, Remarque 1], Serre feels the need to reiterate himself, “Ici encore, il est faux en général que H1(G, cB) soit en
correspondance bijective avec H1(G, B).” This is indeed an important point.
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is no natural double cover, there is a natural four-fold cover of the orthogonal similitude group by
the Clifford group, which “interpolates” between the Kummer double cover of the multiplicative
group and the classical pin cover of the orthogonal group (see §2.1.3). The kernel κ of this
cover is in general a nonconstant group scheme and it defines a new cohomological invariant
in H2

ét(X,κ) for similarity classes of L -valued symmetric bilinear forms that “interpolates”
between the classical 2nd Hasse-Witt invariant and the 1st Chern class modulo 2. The group
scheme κ is locally isomorphic to µ2 × µ2 when the rank is ≡ 2, 3 mod 4 and to µ4 when the
rank is ≡ 0, 1 mod 4 (see Propositions 2.8 and 2.11).

As for calculating this invariant, we provide explicit formulas for the general cases of forms
of odd rank (see Theorem 2.19) and L -valued metabolic forms (see Theorem 2.25). One in-
teresting case concerns forms of rank 6 with trivial Arf invariant (see §3.1 and Theorem 3.5).
These arise from the reduced pfaffian construction of Knus [31] and Knus/Parimala/Sridharan
[32] applied to 2-torsion Azumaya algebras of degree 4. We relate the new invariant of a reduced
pfaffian form to the class of the corresponding Azumaya algebra in the involutive Brauer group
of Parimala/Srinivas [41].

There are two main ingredients in these calculations. First, we utilize the implications on
categories of torsors of well-chosen commutative diagrams relating Clifford groups to orthogonal
and orthogonal similitude groups (see the fundamental diagram (2.10)). Especially important for
rank 6 forms is the relationship between a particular half-spin representation of the even Clifford
group of a hyperbolic space, the second exterior power map, and the reduced pfaffian construction
(see Proposition 3.6). Second, we perform explicit cocycle calculations in the Clifford group (see
Theorem 2.25). These calculations require lifting similitudes to the Clifford group explicitly as
well as computing products of such lifts.

Motivation

The rest of this introduction will outline, as motivation, how L -valued forms arise naturally in
the theory of symmetric bilinear forms over schemes, and some situations in which the classical
Hasse-Witt invariants have arithmetic interest.

L -valued forms

For a scheme X with 2 invertible and L an invertible OX -module, the notion of a symmetric
bilinear form over X with values in L dates back to the early 1970s. Geyer/Harder/Knebusch/
Scharlau [20] introduced the notion of a symmetric bilinear form over a global function field with
values in the module of Kähler differentials. This notion enabled a consistent choice of local
traces in order to generalize established residue theorems for forms over rational function fields.
Mumford [37] introduced the notion of a locally free OX -module with a pairing into the sheaf of
differentials, Ω1

X , to study theta characteristics on proper algebraic curves. A symmetric bilinear
form (E , b,L ) with values in L consists of a locally free OX -module E and a symmetric OX -
bilinear morphism b : E ⊗OX

E → L . Such a form is called nonsingular if the associated adjoint
morphism ψb : E → HomOX

(E ,L ) is an OX -module isomorphism.
The above two examples arise from trying to generalize the classical transfer (or trace) maps

from the theory of forms over fields to the theory of forms over algebraic varieties. The general
context in which transfer maps exist between Grothendieck-Witt groups of schemes has recently
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been established by the work of Gille [22], Nenashev [38], [39], and Calmès/Hornbostel [9], [10].
If f : X → Y is a proper morphism of connected, noetherian, regular SpecZ[12 ]-schemes of
relative dimension d, then the total derived direct image functor gives rise to a transfer map,

f∗ : GW i+d(X,ωf ) → GW i(Y,OY ),

between the shifted derived (or coherent) Grothendieck-Witt groups introduced by Balmer [3],
[4], [5], and Walter [52]. Here, ωf is the relative dualizing sheaf and we use Grothendieck duality.
In particular, in order to define the transfer along a proper morphism f : X → Y , one is forced
to consider ωf -valued bilinear forms on X .

Hasse-Witt invariants

The OX -valued Grothendieck-Witt group is the algebraic analog of the KO-group of real vector
bundles. Just as the classical Stiefel-Whitney invariants are important for studying real vector
bundles on topological spaces, the analogous Hasse-Witt invariants are important for studying
symmetric bilinear forms on schemes. The total Hasse-Witt invariant extends to a multiplicative
map

GW 0(X,OX) wi−→ H∗
ét(X,µ2),

into the total mod 2 étale cohomology ring of X . The invariants help to classify symmetric
bilinear forms. For example, if X is the spectrum of a global field (not of characteristic 2),
then symmetric bilinear forms are exactly classified up to isometry by their rank, signatures at
archimedean places, discriminant (1st Hasse-Witt invariant), and 2nd Hasse-Witt invariant. The
1st and 2nd Hasse-Witt invariants also lift to invariants e1 (the signed discriminant) and e2 (the
Clifford invariant) on the first and second fundamental filtration of the Witt group of a scheme.
They are related to the Milnor conjecture over fields. Over arbitrary schemes, there is currently
much activity around finding the right generalization of the Milnor conjecture.

In the 1980s, Serre [46] gave a formula relating the 2nd Hasse-Witt invariant of the trace form
of a finite separable extension K/k, of fields of odd characteristic to a Galois theoretic charac-
teristic class–the obstruction to an embedding problem in inverse Galois theory. For instance,
this answers the question, “When can a Klein four Galois extension of fields be embedded in
a quaternion extension?” Fröhlich [18] generalized this formula to arbitrary symmetric bilinear
forms and Galois representations. Deligne [13] then related the Galois theoretic characteristic
class (thus also the 2nd Hasse-Witt invariant, by Serre’s formula) to the local root number of a
Galois representation. The root number arises as part of the sign of the functional equation of the
corresponding Artin L-function. In another direction, Esnault/Kahn/Viehweg [17] and Cassou-
Noguès/Erez/Taylor [11], [12] generalized Serre’s formula to finite tamely ramified coverings
of schemes with odd ramification indices. Finally, Saito [44] has hinted at a version for proper
morphisms of schemes, which extends to arbitrary orthogonal motives.

When L is not trivial, the corresponding Grothendieck-Witt groups are the algebraic ana-
logues of twisted KO-groups. There is a substantial literature in physics applying twisted KO-
theory to quantum field theory. In different guises, classes in twisted KO-theory can represent
charges in boundary topological field theory and spaces of momenta of states in lattice models in
solid state physics. For example, Kane/Mele [29] recently used an invariant in the twisted KO-
theory of elliptic curves to define a new topological classification of the quantum spin Hall phase.

3



Topological analogues of the constructions in this dissertation could provide new cohomological
invariants in twisted KO-theory and may in turn carry physical significance.
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Chapter 1

Line bundle-valued symmetric bilinear
forms

Throughout, let X be a noetherian and separated scheme. For simplicity of exposition, we will
assume thatX is connected. Invertible OX -modules (resp. locally free OX -modules of finite con-
stant rank) will simply be referred to as line bundles (resp. vector bundles) on X . All unadorned
tensor products and all internal hom sheaves between OX -modules will be over OX . We say that 2
is invertible onX or 1

2 ∈ OX if multiplication by 2 on the structure sheaf has an inverse, or equiv-
alently, if 2 is a unit in all local rings of points ofX . We will eventually make this assumption. All
sheaves, unless otherwise stated, will be considered in the étale topology. By convention, group
schemes that come from base change from Spec Z[12 ] (e.g. µ2 and Gm) to X will be denoted by
the same symbol.

Concerning “sheafified” linear algebra, we wish to point out here that most of the work of this
chapter is devoted to careful examination of exactly how familiar concepts from linear algebra
and the theory of quadratic forms over fields and rings generalize to schemes. Almost every
linear algebra construction applied to a vector bundle on a scheme is the sheaf associated to the
correspondingly constructed presheaf. Accordingly, we will often define morphisms of sheaves
associated to presheaves by defining a morphism of presheaves, and then implicitly consider the
associated morphism of associated sheaves (sheafification is an exact functor).

1.1 Generalities on L -valued bilinear forms

1.1.1 Definitions and notations

Bilinear forms

Let X be a scheme and L a line bundle on X . An (L -valued) bilinear form on X will mean a
triple (E , b,L ), where E is a vector bundle and b : E × E → L is an OX -bilinear morphism,
equivalently, b : E ⊗E → L is an OX -module morphism, equivalently, a choice of global section
of Hom(T 2E ,L ). For sections v, w ∈ E (U) over U → X , we will often write b(v, w) in place
of b(U)(v ⊗ w).

An (L -valued) bilinear form on X is called symmetric if b : E ⊗ E → L is invariant under
the naive switch morphism E ⊗E → E ⊗E and is called alternating if b vanishes when restricted
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to the diagonal tensors ∆ : E → E ⊗ E . Equivalently b is symmetric (resp. alternating) if
it corresponds to a global section of Hom(S2E ,L ) (resp. Hom(

∧2E ,L )) as a subsheaf of
Hom(T 2E ,L ).

An (L -valued) quadratic form onX will mean a triple (E , q,L ), where E is a vector bundle
and q : E → L is a map of sheaves satisfying the following two conditions:

• The following diagram of maps of sheaves is commutative,

OX ⊗ E
∼

- E

OX ⊗L

(−)2 ⊗ q
? ∼

- L

q
?

equivalently, on sections over U → X , we have

q(av) = a2q(v), for all a ∈ OX(U), v ∈ E (U).

• The corresponding polar form bq : E ⊗ E → L , defined on sections over U → X by

bq(v, w) = q(v + w)− q(v)− q(w), for all v, w ∈ E (U),

is an L -valued bilinear form on X .

Equivalently, q is a choice of global section of the sheaf cokernel of the exact sequence

0 → Hom(
∧2E ,L ) → Hom(T 2E,L ) → Quad(E ,L ) → 0. (1.1)

This is the globalized version of the characterization of quadratic forms as equivalence classes
of bilinear forms modulo alternating forms, see Knus [34, I §5.3.5] for further remarks on this
characterization over rings.

Given an L -valued bilinear form b : E ⊗ E → L , the associated quadratic form

qb : E
∆−→ E ⊗ E

b−→ L , (1.2)

is the image of b under the map on global sections of exact sequence (1.1). Note that in general,
not all quadratic forms are induced from global bilinear forms. The obstruction is the coboundary
map to H1

ét(X,Hom(
∧2E ,L )), though this only causes a problem if 2 is not invertible.

Lemma 1.1. Let X be a scheme with 1
2 ∈ OX . Every quadratic form is the associated quadratic

form of a (symmetric) bilinear form on X .

Proof. This is a globalized version of the argument for rings. Via the various canonical isomor-
phisms, the dual of the defining quotient morphism T 2(E ∨) →

∧2(E ∨), gives rise to a morphism∧2E → T 2E . One checks that on sections over U → X , this morphism is given by

v ∧ w 7→ v ⊗ w − w ⊗ v.

Composing with 1
2 yields a section of the defining quotient morphism T 2E →

∧2E . Upon apply-
ing the exact functor Hom(−,L ), we find that the sequence (1.1) splits, and hence the cohomo-
logical coboundary maps vanish. Similarly, one may construct a morphism Hom(S2E ,L ) →
Quad(E ,L ), which is invertible if 2 is invertible.
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Adjoint morphism

An L -valued bilinear form b : E ⊗ E → L has a corresponding adjoint morphism of OX -
modules

ψb : E → Hom(E ,L ),

defined on sections over U → X by ψb(v)(w) = b(v, w) for v, w ∈ E (U). A bilinear form
b is called non-singular, regular, or a bilinear space if its adjoint ψb is an isomorphism of OX -
modules. A quadratic form is called non-singular if its corresponding polar form is non-singular.
Note that if 2 is not invertible on X then every regular quadratic form has even rank.

On the category of coherent OX -modules, denote by (−)∨L the exact (contravariant) functor
Hom(−,L ). Note that there is a canonical morphism of functors

canL : id → ((−)∨L )∨L ,

which is an isomorphism on the subcategory of locally free OX -modules. The category of vector
bundles on X together with (−)

∨L
and canL form an exact category with duality in the language

of Balmer [3].
Define the (L -valued) transpose of a morphism ψ : F → Hom(F ,L ) of OX -modules by

ψt : F
canL

−−−→ Hom(Hom(F ,L ),L )
ψ∨L

−−−→ Hom(F ,L ). (1.3)

Then a bilinear form b is symmetric if and only if ψb = ψtb. A bilinear form b is called skew-
symmetric if ψb = −ψtb. Note that every alternating form is skew-symmetric, and conversely if
1
2 ∈ OX .

Involutions on endomorphism algebras

If (E , b,L ) is a bilinear space, define the associated OX -algebra anti-automorphism

σb : End(E ) → End(E )op

by the formula
σb(ϕ) = ψb|−1

U ◦ ϕ∨L |U ◦ ψb|U , for ϕ : E |U → E |U
on sections over U → X . If b is symmetric or alternating, then in fact σb will be an OX -
algebra involution (of the first kind), i.e. an OX -algebra anti-automorphism of order 2. In fact, the
converse is true, see Knus/Parimala/Srinivas [33].

Proposition 1.2. Let X be a scheme and E a vector bundle on X . If σ is an OX -algebra anti-
automorphism of End(E ) then there exists the structure of a bilinear space (E , b,L ) on the
vector bundle E such that σ = σb, moreover, the isomorphism class of L is uniquely determined
and b is determined up to multiplication by a global unit. If σ is an involution on End(E ) then
the bilinear space (E , b,L ) is either symmetric or alternating.

Note however, that End(N ⊗ E ) ∼= End(E ) as OX -algebras for any line bundle N on
X (see Remark 1.3 below). Thus an anti-automorphism σ on End(E ) that corresponds to a
bilinear space (E , b,L ) will also be an anti-automorphism on End(N ⊗ E ) (via any choice
of isomorphism of the endomorphism algebras), and so also corresponds to a bilinear space
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(N ⊗ E , b′,N ⊗2 ⊗ L ). Thus the isomorphism class of an endomorphism algebra with anti-
automorphism (End(E ), σ) determines a bilinear space (E , b,L ) only up to transformations of
the form (N ⊗ E , n⊗ b,N ⊗2 ⊗L ) where (N , n,N ⊗2) is a bilinear space of rank 1.

Later on, we will also consider Azumaya algebras with involution (of the first kind) on X .
A locally free OX -algebra A of finite rank is an Azumaya algebra if the canonical OX -algebra
homomorphism

A ⊗ A op → End(A )
a ⊗ b 7→ c 7→ acb

is an isomorphism, where A op is the opposite algebra, and where End(A ) is the endomorphism
sheaf of A as an OX -module. For example, the endomorphism algebra End(E ) of a vector
bundle E on X is an Azumaya algebra. In fact every Azumaya algebra is locally isomorphic in
the étale topology to an endomorphism algebra, see Milne [36, IV Proposition 2.3]. An Azumaya
algebra thus has rank n2 for some n, which is called the degree. An anti-automorphism σ on an
Azumaya algebra A , i.e. an OX -algebra isomorphism σ : A → A op, is called an involution (of
the first kind) if σop ◦ σ = id. An Azumaya algebra with involution (A , σ) is locally isomorphic
in the étale topology to an endomorphism algebra with involution, and thus by Proposition 1.2
corresponds to a bilinear space of either symmetric or alternating type. We say that an involution
σ on an Azumaya algebra is of orthogonal type or symplectic type, respectively.

Orthogonal sum

For bilinear forms (E , b,L ) and (E ′, b′,L ), define the orthogonal sum

(E , b,L )⊥(E ′, b′,L ) = (E ⊕ E ′, b+ b′,L )

on section over U → X by

(b+ b′)((v, v′), (w,w′)) = b(v, w) + b′(v′, w′)

for v, w ∈ E (U) and v′, w′ ∈ E ′(U). There’s a similar notion of orthogonal sum for quadratic
forms. The orthogonal sum of two symmetric forms is symmetric, two alternating forms is alter-
nating, and two quadratic forms is quadratic.

Tensor product

For bilinear forms (E , b,L ) and (E ′, b′,L ′), define the tensor product

(E , b,L )⊗ (E ′, b′,L ′) = (E ⊗ E ′, b⊗ b′,L ⊗L ′)

on sections over U → X by

(b⊗ b′)(v ⊗ v′, w ⊗ w′) = b(v, w)⊗ b′(v′, w′) ∈ L (U)⊗L ′(U)

for v, w ∈ E (U) and v′, w′ ∈ E ′(U). There’s a similar notion of tensor product for quadratic
forms. The tensor product of two symmetric forms is symmetric, two alternating forms is sym-
metric, two quadratic forms is quadratic, a symmetric form with an alternating form is alternating,
and a symmetric form with a quadratic form is quadratic.
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Diagonal forms

For global sections a1, . . . , an of Gm define the L -valued symmetric bilinear space

〈a1, . . . , an〉L = (L ⊕n, 〈a1, . . . , an〉L ,L ⊗2)

by
L ⊕n ⊗ L ⊕n → L ⊗2

(v1, . . . , vn) ⊗ (w1, . . . , wn) 7→
∑n

i=1 ai vi ⊗ wi

on sections over U → X . It’s the tensor product of the classical OX -valued symmetric bilinear
space 〈a1, . . . , an〉 with the L ⊗2-valued space (L , 〈1〉L ,L ⊗2) of rank 1 on X .

Isometries

An isometry of L -valued bilinear forms ϕ : (E , b,L ) ∼−→ (E ′, b′,L ) is an OX -module isomor-
phism ϕ : E ∼−→ E ′ such that either of the following (equivalent) diagrams,

E ⊗ E
b
- L

E ′ ⊗ E ′

ϕ⊗ ϕ
? b′

- L

wwwwww
E

ψb- Hom(E ,L )

E ′

ϕ
? ψb′- Hom(E ′,L )

ϕ∨L
6

(1.4)

of OX -modules commute. Note that the commutativity of the left-hand diagram (1.4) takes on
the familiar formula,

b′(ϕ(v), ϕ(w)) = b(v, w), for all v, w ∈ E (U),

on sections over U → X . An isometry of L -valued quadratic forms ϕ : (E , q,L ) ∼−→
(E ′, q′,L ) is an OX -module isomorphism ϕ : E ∼−→ E ′ such that the following diagram,

E
q
- L

E ′

ϕ
? q′

- L

wwwwww (1.5)

of maps of OX -modules commutes. For bilinear or quadratic forms, we denote the group of
isometries between (E , b,L ) and (E ′, b′,L ) by IsomX((E , q,L ), (E ′, q′,L )).

Similarity transformations

A similarity (transformation) or similitude between bilinear forms (E , b,L ) and (E ′, b′,L ′) is a
pair (ϕ, µϕ) of OX -module isomorphisms ϕ : E ∼−→ E ′ and µϕ : L ∼−→ L ′ such that either of
the following (equivalent) diagrams,

E ⊗ E
b
- L

E ′ ⊗ E ′

ϕ⊗ ϕ
? b′

- L ′

µϕ
?

E
ψb- Hom(E ,L )

E ′

ϕ
? ψb′- Hom(E ′,L ′)

µ−1
ϕ ϕ∨L

6
(1.6)
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of OX -modules commute, where

µ−1
ϕ ϕ∨L : Hom(E ′,L ′)(U) → Hom(E ,L )(U)

ψ 7→ µ−1
ϕ |U ◦ ψ ◦ ϕ|U

on sections over U → X . Note that the commutativity of the left-hand diagram (1.6) takes on the
familiar formula,

b′(ϕ(v), ϕ(w)) = µϕ(b(v, w)), for all v, w ∈ E (U)

on sections over U → X . There’s a similar notion of similarity transformation for quadratic
forms. We denote the group of similarity transformations between (E , b,L ) and (E ′, b′,L ′) by
SimX((E , b,L ), (E ′, b′,L ′)).

1.1.2 The group schemes of isometries and similitudes

Let (E , q,L ) be an L -valued bilinear space onX . The presheaf of groups Isom(E , b,L ) given
by

U 7→ IsomU ((E |U , b|U ,L |U ), (E |U , b|U ,L |U ))

is a sheaf for the étale topology on X and is representable by a smooth group scheme on X
(see Demazure/Gabriel [14, III §5.2.3]) called the group scheme of isometries of (E , b,L ). If b
is symmetric (resp. alternating), we also call Isom(E , b,L ) the orthogonal group O(E , b,L )
(resp. symplectic group Sp(E , b,L )).

The presheaf of groups Sim(E , b,L ) given by

U 7→ SimU ((E |U , b|U ,L |U ), (E |U , b|U ,L |U ))

is a sheaf for the étale topology on X and is representable by a smooth group scheme on X called
the group scheme of similitudes of (E , b,L ). If b is symmetric (resp. alternating), we also call
Sim(E , b,L ) the orthogonal similitude group GO(E , b,L ) (resp. symplectic similitude group
GSp(E , b,L )).

There’s a natural (central) group scheme embedding Gm(E ) → Sim(E , b,L ) given by ho-
motheties, which defines the projective similitude group scheme as the sheaf quotient via the exact
sequence

1 → Gm(E ) → Sim(E , b,L ) → PSim(E , b,L ) → 1.

of group schemes in the étale topology on X . If b is symmetric (resp. alternating), we write
PGO(E , b,L ) (resp. PGSp(E , b,L )) for this group scheme.

When (E , b,L ) is fixed and no confusion will arise, we will simply write Isom, O, Sp,
Sim, GO, GSp, PSim, PGO, and PGSp respectively, for the above groups. The group
schemes of isometries and similitudes can be analogously defined for quadratic spaces.

Remark 1.3. If E is a vector bundle of rank n on a scheme X , we will denote by GL(E ) the
general linear group scheme E . The group schemes GL(E ) and GL(E ′) are isomorphic if and
only if E ′ ∼= E ⊗L for some line bundle L . In particular, for any two line bundles L and L ′

on X , the group schemes GL(L ) and GL(L ′) are isomorphic. For any line bundle L , there’s
a canonical isomorphism Gm ∼−→ GL(L ), through which we shall identify Gm = GL(L ). The

10



only subtlety inherent in this identification arises when considering the pointed set of isomorphism
classes of GL(L )-torsors, for which the distinguished point is canonically the isomorphism class
of L . A similar remark should be made for identifications µ2 = O(E , b,L ) where (E , b,L ) is
a bilinear space of rank 1. In what follows, we will keep track of these identifications, if not in
our notation, then in our statements about torsors.

1.1.3 Torsor interpretations

Now assume that 1
2 ∈ OX and that X is endowed with the étale topology. For the abstract notion

of (right) torsor for a group scheme over X see Giraud [23], and for a down-to-earth summary
in the case we’re concerned with (including a translation into the language of stacks and gerbes),
see Appendix A.

Theorem 1.4. Let X be a scheme with 1
2 ∈ OX and endowed with the étale topology. Let

(E , b,L ) be a fixed L -valued symmetric bilinear space of rank n on X .

a) The category of O(E , b,L )-torsors is equivalent to the category of whose objects are L -
valued symmetric bilinear spaces of rank n and whose morphisms are isometries.

b) The category of GO(E , b,L )-torsors is equivalent to the category whose objects are all
symmetric bilinear spaces of rank n with values in a line bundle and whose morphisms are
similarity transformations.

c) The category of PGO(E , b,L )-torsors is equivalent to the category whose objects are
Azumaya algebras of degree n on X with involution of orthogonal type and whose mor-
phisms are involution preserving OX -algebra isomorphisms.

Proof. We could not find an explicit proof of parts a) and b in the literature. For full details, see
Theorem A.7.

1.1.4 The multiplier sequence

The map assigning (ϕ, µϕ) 7→ µϕ on sections in the étale topology induces a group scheme
homomorphism µ : Sim(E , b,L ) → GL(L ). Identifying GL(L ) = Gm, we define the
multiplier coefficient µ : Sim(E , b,L ) → Gm. There’s a canonical multiplier sequence.

Proposition 1.5. For any scheme X with 1
2 ∈ OX , the sequence of group schemes,

1 → Isom(E , b,L ) → Sim(E , b,L )
µ−→ Gm → 1,

is exact in the étale topology on X .

Proof. The only non-obvious part is that µ is an epimorphism, but this follows from the fact that
µ restricted to the central subgroup of homotheties is the squaring map and that the Kummer
sequence in exact in the étale topology if 2 is invertible.

Remark 1.6. The interpretation of the multiplier sequence on isomorphism classes of torsors is a
follows. If (E , b,L ) is a fixed L -valued symmetric bilinear space of rank n on X , then the map

H1
ét(X, Isom(E , b,L )) → H1

ét(X,Sim(E , b,L ))
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takes the isometry class of an L -valued symmetric bilinear space of rank n on X to its similarity
class. Under the identification GL(L ) = Gm the map

H1
ét(X,Sim(E , b,L )) → H1

ét(X,Gm) ∼= Pic(X)

takes the similarity class of an L ′-valued symmetric bilinear space of rank n on X to the class of
the line bundle L ′ ⊗L ∨ in Pic(X).

In the previous proof, we implicitly considered a canonical commutative diagram with exact
rows and columns,

1 1

1 - µ2

?
- Gm

? 2
- Gm

- 1

1 - Isom
?

- Sim
? µ

- Gm

wwwww
- 1

PIsom
?

- PSim
?

1
?

1
?

of group schemes in the étale topology on X , where the quotient group scheme PIsom(E , b,L )
is called the projective isometry group of the bilinear form (E , b,L ). As usual, if b is symmet-
ric (resp. alternating), we write PO(E , q,L ) (resp. PSp(E , q,L )). From the above diagram,
there’s an induced isomorphism of group schemes,

PIsom(E , b,L ) ∼−→ PSim(E , b,L ),

in the étale topology on X (if 2 is invertible).

1.2 Proper similarity transformations

From now on we will assume that 1
2 ∈ OX and that X is endowed with the étale topology. In

particular, by Lemma 1.1, the notions of symmetric bilinear form and quadratic form on X are
equivalent. Many of our results have analogies if 2 is not invertible on X , but require moving to
the flat site and making slightly different constructions. This should be a project for future work.

1.2.1 The discriminant form

The determinant

Let (E , b,L ) be an L -valued bilinear space on of rank n onX . Applying the determinant functor
to the adjoint morphism

ψb : E ∼−→ Hom(E ,L ),
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yields an OX -module morphism

det E
detψb−−−→ det Hom(E ,L ) can−−→ Hom(detE ,L ⊗n),

of line bundles on X . Here can : detHom(E ,L ) ∼−→ Hom(detE ,L ⊗n) is the canonical
isomorphism of line bundles given by

f1 ∧ · · · ∧ fn 7→ (v1 ∧ · · · ∧ vn 7→ det(fi(vj))ij)

on sections over U → X . We will write det(E , b,L ) = (det E ,det b,L ⊗n) for the L ⊗n-
valued bilinear form of rank 1 on X whose adjoint morphism is the above canonical composition
can ◦ detψb. We call det(E , b,L ) the determinant form of (E , b,L ). Then det(E , b,L ) is
regular if (E , b,L ) is regular. Note that under the above identifications, det b is given by

det E ⊗ det E
det b−−−→ L ⊗n

v1 ∧ · · · ∧ vn ⊗ w1 ∧ · · · ∧ wn 7−−−→ det(b(vi, wj))ij

on section over U → X .
The determinant form is functorial with respect to similarity transformations. Indeed, if

(ϕ, µϕ) : (E , b,L ) → (E ′, b′,L ′) is a similarity transformation, then there’s an induced sim-
ilarity transformation (detϕ, µ⊗nϕ ) : (det E ,det b,L ⊗n) → (detE ′,det b′,L ′⊗n). The in-
duced homomorphism of group schemes det : Sim(E , b,L ) → Sim(detE ,det b,L ⊗n) fac-
tors through the forgetful embedding into the general linear group,

Sim(E , b,L ) - GL(E )

Sim(detE ,det b,L ⊗n)

det
?

∼−→ GL(detE )

det
?

Identifying Sim(detE ,det b,L ⊗n) = GL(detE ) = Gm, we define the determinant homomor-
phism

det : Sim(E , b,L ) → Gm.

The discriminant

For forms of even rank, the classical discriminant form generalizes to bilinear forms with val-
ues in line bundles. The analogue of the signed discriminant for L -valued forms appears in
Parimala/Sridharan [40, §4], where it was used to construct the discriminant form of a general
Azumaya algebra with involution over an arbitrary scheme.

Definition 1.7. Let (E , b,L ) be an L -valued bilinear space of even rank n = 2m on X . Define
the discriminant form of (E , b,L ) as the OX -valued bilinear space disc(E , b,L ) = (L ∨⊗m ⊗
det E ,disc b,OX) of rank 1 given by the composition of the tensor product of the determinant
form of with 〈1〉L⊗m

disc b : (L ∨⊗m ⊗ det E )⊗ (L ∨⊗m ⊗ det E )
〈1〉L∨⊗m⊗det b
−−−−−−−−−−→ L ∨⊗n ⊗L ⊗n ev−→ OX ,

with the canonical evaluation pairing.
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The discriminant form has a finer functorial behavior with respect to similarity transforma-
tions than does the determinant form.

Proposition 1.8. Let (ϕ, µϕ) : (E , b,L ) → (E ′, b′,L ′) be a similarity transformation of bilin-
ear spaces of even rank on X . Then there’s an induced isometry disc(ϕ, µϕ) : disc(E , b,L ) →
disc(E ′, b′,L ′), of discriminant forms.

Proof. For a similarity (ϕ, µϕ) : (E , b,L ) → (E ′, b′,L ′) of bilinear spaces of even rank n =
2m, define

disc(ϕ, µϕ) = (µ−1
ϕ

∨)⊗m ⊗ detϕ : L ∨⊗m ⊗ det E → L ′∨⊗m ⊗ det E ′

and then using a routine diagram chase on sections, check that the following diagram,

L ∨⊗m ⊗ det E ⊗L ∨⊗m ⊗ det E
〈1〉L ∨⊗m ⊗ det b

- L ∨⊗n ⊗L ⊗n ev
- OX

L ′∨⊗m ⊗ det E ′ ⊗L ′∨⊗m ⊗ det E ′

(disc(ϕ, µϕ))⊗2

? 〈1〉L ′∨⊗m ⊗ det b′
- L ′∨⊗n ⊗L ′⊗n

µ−1
ϕ

∨⊗n ⊗ µ⊗nϕ

? ev
- OX

wwwwwwwwww
of OX -module morphisms is commutative.

Proposition 1.9. Let (E , b,L ) be a bilinear space of rank n (for any n) on X . Then the group
scheme homomorphisms det and µ : Sim(E , b,L ) → Gm, are related by

det2 = µn.

Proof. Note that in the case of n even, this is a corollary of Proposition 1.8. We give a different
argument that works in all cases. For a section (ϕ, µϕ) of Sim(E , b,L ) over U → X , we
have canonically identified sections det(ϕ), µϕ ∈ Gm(U). By the commutativity of right-hand
diagram (1.6), we have(

µ−1
ϕ ϕ∨L |U

)
◦ (ab|U ◦ ϕ ◦ ab|−1

U ) = idU : Hom(E ,L )(U) → Hom(E ,L )(U).

Note that as sections of Gm, we have the equalities

det
(
µ−1
ϕ ϕ∨L |U

)
= det(ϕ) (µ−1

ϕ )n, det(ab|U ◦ ϕ ◦ ab−1|U ) = det(ϕ)

and hence from above we see that det(ϕ)2 = µnϕ ∈ Gm(U).

1.2.2 Proper similarity transformations

For bilinear spaces of even rank, similarity transformations that induce, via Proposition 1.9, the
identity on the discriminant form are called proper.
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Alternating case

The existence of the pfaffian makes the discriminant form uninteresting for alternating spaces and
all similarity transformations proper, see Knus [34, §9.5.4]. We say that a discriminant form is
trivial if it’s isometric to the standard multiplication isomorphism 〈1〉 : OX ⊗ OX ∼−→ OX .

Proposition 1.10. For any alternating space (E , b,L ) of (necessarily even) rank n on X , the
discriminant form is trivial and any similarity transformation (ϕ, µϕ) : (E , b,L ) → (E , b,L )
induces the identity on the discriminant form.

Symmetric case

For L -valued symmetric bilinear spaces (E , b,L ) of even rank n = 2m on X , the sheaf mor-
phism GO(E , b,L ) → O(disc(E , b,L )) induced by Proposition 1.8, defines the similitude
discriminant homomorphism,

disc : GO(E , b,L ) → µ2,

via the identification O(disc(E , b,L )) = µ2. The determinant, discriminant, and multiplier
homomorphisms for the similitude groups are related by the formula,

det = disc ·µm

under the multiplication homomorphism µ2 ×Gm → Gm. This justifies the formula,

disc =
det
µm

,

that is often found in the literature.

Definition 1.11. Let (E , b,L ) be an L -valued symmetric bilinear space of even rank n on X .

a) Define the group scheme GSO(E , b,L ) of proper orthogonal similitudes as the sheaf
kernel of the similitude discriminant homomorphism disc : GO(E , b,L ) → µ2.

b) Define the special orthogonal (or the proper orthogonal) group scheme SO(E , b,L ) as
the intersection of GSO(E , b,L ) and O(E , b,L ) inside GO(E , b,L ).

Remark 1.12. The determinant form is also functorial with respect to isometries. Indeed, if
ϕ : (E , b,L ) → (E ′, b′,L ) is an isometry of L -valued bilinear space (of any rank) on X ,
then there’s an induced isometry detϕ : det(E , b,L ) → det(E ′, b′,L ) of determinant forms.
The induced group scheme homomorphism det : O(E , b,L ) → O(det(E , b,L )) defines the
determinant homomorphism for the orthogonal group det : O(E , b,L ) → µ2 via the identifi-
cation O(det(E , b,L )) = µ2. The determinant homomorphism for the orthogonal group fits
together with the determinant and discriminant (in the case of even rank) homomorphisms for the
similitude group in commutative diagrams,

O(E , b,L )
det

- µ2

GO(E , b,L )
? det

- Gm

?

O(E , b,L )
det

- µ2

GO(E , b,L )
? disc

- µ2

wwwwww
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of group schemes. It is for this reason that we make the identification det = disc |O(E ,b,L ) of
the determinant homomorphism for the orthogonal group and the restriction (which we also call
disc) of the discriminant homomorphism to the orthogonal group of an even rank form, though
they are not canonically equal. In particular, in the case of even rank, the special orthogonal group
SO(E , b,L ) is also the kernel of the determinant homomorphism for the orthogonal group.

Proposition 1.13. Let (E , b,L ) be an L -valued symmetric bilinear space of rank n = 2m on
X .

a) There’s an exact sequence,

1 → SO(E , b,L ) → O(E , b,L ) det−−→ µ2 → 1, (1.7)

of group schemes in the étale topology on X , called the determinant sequence for the or-
thogonal group.

b) There are exact sequences,

1 → SO(E , b,L ) → GSO(E , b,L )
µ−→ Gm → 1,

(called the proper multiplier sequence), and

1 → GSO(E , b,L ) → GO(E , b,L ) disc−−→ µ2 → 1,

(called the discriminant sequence for the similitude group) and a commutative diagram
with exact rows and columns,

1 1

1 - SO
?

- GSO
? µ

- Gm
- 1

1 - O
?

- GO
? µ

- Gm

wwwww
- 1

µ2

det
?

==== µ2

disc
?

1
?

1
?

of group schemes in the étale topology on X .

Proof. To show that det (resp. disc) is an epimorphism, it’s sufficient to find an improper isometry
(resp. similitude), which is standard. To show that µ is an epimorphism in the proper multiplier
sequence, we follow the proof of Proposition 1.5 noting that homotheties are proper similitudes.
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1.2.3 Proper torsor interpretations

Theorem 1.14. Let X be a scheme with 1
2 ∈ OX and endowed with the étale topology. Let

(E , b,L ) be a fixed L -valued symmetric bilinear form of rank n on X .

a) The category of SO(E , b,L )-torsors is equivalent to the category whose objects are pairs
((E ′, b′,L ), ψ′) consisting of an L -valued symmetric bilinear space of rank n together
with an isometry ψ′ : disc(E , b,L ) → disc(E ′, b′,L ) of discriminant forms, and whose
morphisms between objects ((E ′, b′,L ), ψ′) and ((E ′′, b′′,L ), ψ′′) are isometries ϕ :
(E ′, b′,L ) → (E ′′, b′′,L ) such that ψ′′ = disc(ϕ) ◦ ψ′.

b) Let n be even. The category of GSO(E , b,L )-torsors is equivalent to the category whose
objects are pairs ((E ′, b′,L ′), ψ′) consisting of an L ′-valued symmetric bilinear space of
rank n (for some line bundle L ′ on X) together with an isometry ψ′ : disc(E , b,L ) →
disc(E ′, b′,L ′) of discriminant forms, and whose morphisms between any two objects
((E ′, b′,L ′), ψ′) and ((E ′′, b′′,L ′′), ψ′′) are similarities ϕ : (E ′, b′,L ′) → (E ′′, b′′,L ′′)
such that ψ′′ = disc(ϕ) ◦ ψ′.

Proof. We could not find an explicit proof of this assertion in the literature. For full details, see
Theorem A.7.

1.3 Bilinear forms of odd rank

We assume that 1
2 ∈ OX and that X is endowed with the étale topology. The study of bilinear

forms of odd rank reduces to the study of OX -valued bilinear forms.

Theorem 1.15. If L is not a square in the Picard group Pic(X) of X , then any L -valued
bilinear space has even rank.

Proof. Let (E , b,L ) be a bilinear space of rank n. Comparing determinants (via the polar form
ψb) yields an isomorphism det(E)⊗2 ∼= L ⊗n of line bundles. Thus we see that either r must
be even or L is a square in Pic(X) (up to an r-torsion element, which is itself a square). An
alternate proof can be found in [7, Theorem 3.7], also see Proposition 1.38.

Thus every bilinear space of odd rank has values in the square of some line bundle. As we
shall see, the simple structure of the odd rank similitude orthogonal group allows for a canonical
choice of square root.

1.3.1 The similitude group in odd rank

While there is no similitude discriminant for bilinear forms of odd rank, the simple structure of
the similitude group scheme in odd rank provides an analogue.

The similitude absolute value

The following construction is quite classical, see Dieudonné [15, II §13], yet there is no standard
name for it in the literature.
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Definition 1.16. Let (E , b,L ) be an L -valued bilinear space of odd rank n = 2m + 1 on
X . Define the absolute value form of (E , b,L ) as the L -valued (symmetric) bilinear space
|E , b,L | = (|E |, |b|,L ) of rank 1, where |E | = L ∨⊗m⊗ det E and |b| is given by composition
of the tensor product of the determinant form with 〈1〉L ∨⊗m ,

|b| : (L ∨⊗m ⊗ det E )⊗ (L ∨⊗m ⊗ det E ) id⊗det b−−−−−→ L ∨⊗2m ⊗L ⊗n ev−→ L ,

with the canonical evaluation pairing.

The absolute value form is functorial with respect to similarity transformations. Indeed, if
(ϕ, µϕ) : (E , b,L ) → (E ′, b′,L ′) is a similarity, then there’s an induced similarity (detϕ, µϕ) :
|E , b,L | → |E ′, b′,L ′|. The induced homomorphism of group schemes | · | : Sim(E , b,L ) →
Sim(|E , b,L |) defines the absolute value homomorphism for the similitude group

| · | : Sim(E , b,L ) → Gm

via the identification Sim(|E , b,L |) = Gm.

Proposition 1.17. Let (E , b,L ) be an L -valued bilinear space of odd rank n = 2m+ 1 on X .
Then the group scheme homomorphisms det and µ and | · | : Sim(E , b,L ) → Gm, are related
by

| · |2 = µ, and | · |n = det . (1.8)

Proof. See the statement and proof of Proposition 1.9.

The normalized form

Definition 1.18. Let (E , b,L ) be an L -valued bilinear space of odd rank n = 2m + 1 on
X . Define the normalized form of (E , b,L ) as the OX -valued bilinear space u(E , b,L ) =
(|E |∨ ⊗ E , u(b),OX) of rank 1 given by composition of the tensor product with the dual of the
absolute value,

u(b) : (|E |∨ ⊗ E )⊗ (|E |∨ ⊗ E )
|b|−1∨⊗b−−−−−→ L ∨ ⊗L

ev−→ OX ,

with the canonical evaluation pairing.

The normalized form has good functorial behavior with respect to similarity transformations.

Proposition 1.19. Let (ϕ, µϕ) : (E , b,L ) → (E ′, b′,L ′) be a similarity transformation of bi-
linear spaces of odd rank on X . Then there’s an induced isometry u(ϕ, µϕ) = detϕ−1∨ ⊗ ϕ :
u(E , b,L ) → n(E ′, b′,L ′) of normalized forms. In particular, the isometry class of the normal-
ized form solely depends on the similarity class of the form.

Proof. This is a straightforward modification of the proof of Proposition 1.8.

Lemma 1.20. Let (E , b,L ) be a bilinear space of odd rank n = 2m + 1 on X . Then the
discriminant disc(u(E , b,L )) of the normalized form is isometric to the trivial discriminant.

Proof. This is an easy exercise in unraveling the definitions.
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Structure of odd rank orthogonal similitude groups

We will now work exclusively with symmetric bilinear spaces of odd rank on X . As compared to
the case of even rank, we can only define the special orthogonal group by means of the determinant
homomorphism, compare with Remark 1.12.

Definition 1.21. Let (E , b,L ) be a symmetric bilinear space of odd rank on X . Define the
special orthogonal group scheme SO(E , b,L ) as the kernel of the determinant homomorphism
det : O(E , b,L ) → µ2 for the orthogonal group.

Lemma 1.22. The group scheme homomorphism induced from Proposition 1.19, called the nor-
malization homomorphism, has imagine in the special orthogonal group scheme

u : GO(E , b,L ) → SO(u(E , b,L )).

Proof. By Proposition 1.19, u has image in O(u(E , b,L )). To show that it has image in the
special orthogonal group scheme, we appeal to the right-hand part of formula (1.8).

The special orthogonal group in odd rank is also the kernel of the absolute value homomor-
phism for the similitude group.

Proposition 1.23. Let (E , b,L ) be an L -valued symmetric bilinear space of odd rank on X .

a) There’s an exact sequence,

1 → SO(E , b,L ) → O(E , b,L ) det−−→ µ2 → 1, (1.9)

of group schemes in the étale topology on X , called the determinant sequence for the or-
thogonal group.

b) There’s an exact sequence,

1 → SO(E , b,L ) → GO(E , b,L )
|·|−→ Gm → 1,

of group schemes in the étale topology on X . This sequence is split by sending a section of
Gm to the corresponding homothety. There’s a commutative diagram with exact rows and
columns,

1 1

SO
?

=== SO
?

1 - O
?

- GO
? µ

- Gm
- 1

1 - µ2

det
?

- Gm

| · |
? 2

- Gm

wwwww
- 1

1
?

1
?

of group schemes in the étale topology on X .
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c) There’s an exact sequence,

1 → Gm → GO(E , b,L ) u−→ SO(u(E , b,L )) → 1,

and a commutative diagram with exact rows and columns,

1 1

1 - µ2

?
- Gm

?
- Gm

- 1

1 - O
?

- GO
? µ

- Gm

wwwww
- 1

SO

u|O
?

=== SO

u
?

1
?

1
?

of group schemes in the étale topology on X .

d) There’s a canonical choice of group scheme isomorphism,

SO(E , b,L ) ∼−→ SO(u(E , b,L )),

with respect to which, the product homomorphism,

GO(E , b,L )
|·|×u−−−→ Gm × SO(u(E , b,L )),

is an inverse to the scalar multiplication homomorphism,

Gm × SO(E , q,L ) m−→ GO(E , q,L ).

In particular, these are isomorphisms.

Proof. For the sequence in b), | · | is an epimorphism since it has a section. By formulas (1.8),
the kernel of | · | is contained in the kernels of both µ and det, i.e. contained in SO(E , b,L ), and
conversely, if µ and det are both trivial, then a square and an odd power of | · | is trivial, i.e. | · | is
trivial.

The exactness of the sequence in c) is a consequence of the exactness of the sequence in b)
and the isomorphism in d). The commutativity of both diagrams follows from Proposition 1.17.

As for d), we refer to Proposition 1.25. Once the canonical isomorphism is established, the
rest follows.

20



1.3.2 Forms of rank one

An L -valued bilinear space (E , b,L ) of rank 1 is necessarily symmetric and defines a choice
of square root b : E ⊗ E ∼−→ L of the line bundle L . When L = OX , such spaces are called
square classes in Knebusch [30] and discriminant modules in Knus [34]. By Milne [36, III §4],
the set of isometry classes of discriminant modules overX is in bijection withH1

ét(X,µ2), which
also follows from Theorem 1.4 in light of the comparison between étale cohomology and Čech
cohomology, see Appendix A.

General L -valued spaces of rank 1 are called twisted discriminant bundles in Balaji [2]. We
will call them L -valued lines or simply L -lines. For a fixed L , the set of isometry classes of
L -valued lines is an H1

ét(X,µ2)-principal homogeneous space. Note that the similarity class of
an L -valued line (E , b,L ) is uniquely determined by the isomorphism class of the line bundle
E .

The special orthogonal group SO(E , q,L ) of an L -valued line (E , b,L ) is trivial and under
the identifications O(E , q,L ) = µ2 and GO(E , q,L ) = Gm, the multiplier sequence (1.5)
coincides with the Kummer sequence,

1 → µ2 → Gm
2−→ Gm → 1.

Dual line

For an L -valued line (N , l,L ) define the dual line (N , l,L )∨ = (N ∨, l∨,L ∨) by the com-
position (and abuse of notation),

l∨ : N ∨ ⊗N ∨ can−−→ (N ⊗N )∨ l−1∨
−−−→ L ∨,

using the canonical isomorphism given by

can : N ∨ ⊗N ∨ → (N ⊗N )∨

f ⊗ g 7→ n⊗m 7→ f(n) g(m)

on section over U → X , multiplying sections via the standard OX -line OX ⊗ OX → OX .

Scaling

Definition 1.24. Let (E , b,L ) be an L -valued bilinear form and (N , l,L ) an L -line. Then
the form (E , b,L ) scaled by (N , l,L ), or (E , b,L )/(N , l,L ) is by definition the OX -valued
bilinear form (N ∨ ⊗ E , b/l,OX) given by

b/l : (N ∨ ⊗ E )⊗ (N ∨ ⊗ E ) l−1∨⊗b−−−−→ L ∨ ⊗L
can−−→ OX .

Note that we’ve already utilized the scaling construction to define the discriminant and nor-
malized forms. If a bilinear space (E , b,L ) can be scaled by an L -line, then necessarily the line
bundle L is a square in the Picard group of X . The similarity classes of possible scalings of
(E , b,L ) are in bijection with the isomorphism classes of line bundles of order ≤ 2. For bilinear
forms of odd rank, the associated normalized form (see §1.3.1) is a canonical choice of scaling.
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Isometry groups of scaled forms

The following is in analogy with well-known facts about general linear groups of vector bundles,
see Remark 1.3.

Proposition 1.25. Let (E , b,L ) be a symmetric bilinear space of rank n on X .

a) The group schemes O(E , b,L ) and O(E ′, b′,L ′) and the group schemes GO(E , b,L )
and GO(E ′, b′,L ′) are isomorphic if and only if there exists a line bundle N such that
E ′ ∼= N ⊗ E and L ′ ∼= N ⊗2 ⊗L .

b) In particular, if L is a square in Pic(X), then the choice of L -valued line (N , l,L )
yields an induced group scheme isomorphism O(E , b,L ) ∼−→ O((E , b,L )/(N , l,L )).

c) The class of O(E , b,L ) in Ȟ1
ét(X,Aut(On)) arises from the image of the inner automor-

phism map On → Aut(On) if and only if L is a square in Pic(X).

Proof. We will prove b), and then a) is similar. For b), choosing an isomorphism ϕ : N ⊗N ∼−→
L ∨ of line bundles, define the following natural vector bundle isomorphism

ϕ∗ : N ⊗Hom(E ,L ) ∼−→ (N ⊗ E )∨

n⊗ g 7→ n′ ⊗ w 7→ ϕ(n⊗ n′)(g(w)).

Now we’ll show that we have the equality

ψϕ⊗b = ϕ∗ ◦ idN ⊗ ψb : N ⊗ E ∼−→ Hom(N ⊗ E ,OX).

Indeed, we compute

ψϕ⊗b : N ⊗ E ∼−→ (N ⊗ E )∨

n⊗ v 7→ n′ ⊗ w 7→ (ϕ⊗ b)(n⊗ v, n′ ⊗ w) = ϕ(n⊗ n′)(b(v, w)),

and

ϕ∗ ◦ idN ⊗ ψb : N ⊗ E ∼−→ N ⊗Hom(E ,L ) ∼−→ (N ⊗ E )∨

n⊗ v 7→ w 7→ n⊗ b(v, w) 7→ n′ ⊗ w 7→ ϕ(n⊗ n′)(b(v, w)).

Now define a morphism of sheaves Φ : O(E , b,L ) ∼−→ O(N ⊗ E , ϕ⊗ b,OX) by

Φ(U) : O(E , b,L )(U) → O(N ⊗ E , ϕ⊗ b,OX)(U)
f : E |U → E |U 7→ idN |U ⊗ f : (N ⊗ E )|U → (N ⊗ E )|U .

To see that Φ is well defined, we need to check that

(idN |U ⊗ f)∨ ◦ ψϕ⊗b|U ◦ (idN |U ⊗ f) = ψϕ⊗b|U ,

and to this end we compute, for n⊗ v ∈ (N ⊗ E )(U),

(idN |UU ⊗ f)∨ ◦ ψϕ⊗b|U ◦ (idN |U ⊗ f)(n⊗ v)
= (idN |U ⊗ f)∨(n⊗ w 7→ ϕ(n⊗ n′)⊗ b|U (f(v), w))
= n′ ⊗ w 7→ ϕ(n⊗ n′)⊗ b|U (f(v), f(w))
= n′ ⊗ w 7→ ϕ(n⊗ n′)⊗ b|U (v, w)
= ψϕ⊗b|U (n, v),
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using the fact that f ∈ O(E , b,L )(U). Thus Φ is in fact a morphism of sheaves, and is clearly a
bijective homomorphism on sections, thus Φ is an isomorphism of sheaves of groups. Now c) is
a consequence of b) and results from Appendix A.

1.4 Metabolic forms

The notion of a metabolic form – the correct generalization to schemes of the notion of hyperbolic
form – is necessary to the construction of the Grothendieck-Witt and Witt groups of schemes.
The formalism of OX -valued metabolic forms over arbitrary schemes was first introduced by
Knebusch [30, I §3] and then extended to the context of exact categories with duality by Balmer
[3], [4], and [5]. We assume that X is a scheme with 1

2 ∈ OX .

1.4.1 Orthogonal complements

We will summarize the formalism of metabolic forms in the context of L -valued forms, i.e.
the exact category of vector bundles on a scheme with duality given by the functor (−)

∨L
=

Hom(−,L ).

Definition 1.26. Let (E , b,L ) be a bilinear form on X and V ⊂ E be a vector subbundle, i.e.
suppose there’s an exact sequence,

0 → V
j−→ E

p−→ E /V → 0,

of vector bundles on X . Then define the (L -valued) orthogonal complement V ⊥ ⊂ E as the
kernel of the composition,

E
ψb−→ Hom(E ,L )

j∨L

−−→ Hom(V ,L ) → 0.

i.e. via the exact sequence,

0 → V ⊥ j⊥−→ E
j∨L ◦ψb−−−−−→ Hom(V ,L ) → 0,

of vector bundles on X .

By definition, there’s a canonical isomorphism,

V ⊥ ψb|V⊥−−−−→ Hom(E /V ,L ),

fitting into the following commutative diagram with exact rows,

0 - V ⊥ j⊥
- E

j∨L ◦ ψb- Hom(V ,L ) - 0

0 - Hom(E /V ,L )

ψb|V ⊥
? p∨L

- Hom(E ,L )

ψb
? j∨L

- Hom(V ,L )

wwwww
- 0.
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Furthermore, there’s a canonical commutative square,

V ⊥⊥ =========================== V

Hom(E /V ⊥,L )

ψb|V ⊥⊥
? (j∨L ◦ ψb)∨L- Hom(Hom(V ,L ),L )

canL

?

and the following commutative diagrams,

0 - V ⊥ j⊥
- E

0 - Hom(E /V ,L )

ψb|V ⊥
? p∨L

- Hom(E ,L )

ψb
?

E - E /V ⊥ - 0

Hom(E ,L )

ψb
? j∨L

- Hom(V ,L )

j∨L ◦ ψb
?

- 0

of vector bundles on X .

1.4.2 Metabolic forms

Definition 1.27. Let (E , b,L ) be a bilinear form on X and V ⊂ E a vector subbundle. Then V
is called isotropic or an (L -valued) sublagrangian if V ⊂ V ⊥ and an (L -valued) lagrangian if
V = V ⊥, i.e. if there’s an isomorphism of short exact sequences,

0 - V
j = j⊥

- E
j∨L ◦ ψb- Hom(V ,L ) - 0

0 - Hom(Hom(V ,L ),L )

canL

? (j∨L ◦ ψb)∨L- Hom(E ,L )

ψb

? j∨L
- Hom(V ,L )

wwwwwwww
- 0

of vector bundles onX . A bilinear form onX is called metabolic if it has a lagrangian. A bilinear
form on X containing no sublagrangians is called anisotropic.

1.4.3 Split metabolic forms

A matrix of OX -module morphisms,(
a b
c d

)
a : V → Hom(V ,L ) b : V ′ → Hom(V ,L )
c : V → Hom(V ′,L ) d : V ′ → Hom(V ′,L )

defines a bilinear form on V ⊕ V ′ in the usual way.
A metabolic bilinear form (E , b,L ) is called a split metabolic form if the exact sequence

defining a lagrangian,
0 → V → E → Hom(V ,L ) → 0,

is a split exact sequence of vector bundles. In this case, (E , b,L ) is isometric to

M(V , ψ,L ) = (V ⊕Hom(V ,L ),
(

ψ id
canL 0

)
,L ),
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for some OX -module morphism ψ : V → Hom(V ,L ). Then M(V , ψ,L ) is always non-
singular and is symmetric if and only if ψ = ψt is symmetric (see formula 1.3). The split
metabolic form with ψ = 0 is called a hyperbolic form,

HL (V ) = (V ⊕Hom(V ,L ),
(

0 id
canL 0

)
,L ).

If M(V , ψ,L ) is a symmetric split metabolic form then the map(
id 0
−1

2ψ id

)
: HL (V ) →M(V , a,L )

is an isometry to a hyperbolic form, under our assumption that 1
2 ∈ OX . Over an affine scheme,

every metabolic form is split metabolic, which follows by adapting Knebusch [30, I §3, Corollary
1].

1.4.4 Basic properties of metabolic forms

Metabolic forms have good properties with respect to tensor products. These properties can be
adapted from Knebusch [30, I §3].

Proposition 1.28. Let (E , b,L ) and (E ′, b′,L ′) be bilinear spaces on X .

a) If V ⊂ E be a (sub)lagrangian, then V ⊗E ′ ⊂ E ⊗E ′ is a (sub)lagrangian of (E , b,L )⊗
(E ′, b′,L ′).

b) In particular, we have isometries

M(V , ψ,L )⊗ (E ′, b′,L ′) ∼= M(V ⊗ E ′, ψ ⊗ ψb′ ,L ⊗L ′)

HL (V )⊗ (E ′, b′,L ′) ∼= HL⊗L ′(V ⊗ E ′).

c) We have an isometry (E , b,L )⊥(E ,−b,L ) ∼= M(E , ψb)

1.4.5 Splitting principle for metabolic forms

In analogy with the classical splitting principle for vector bundles, there’s a splitting principle
for metabolic bundles, see Fulton [19, §2] for a treatment using isotropic flag bundles, or Es-
nault/Kahn/Viehweg [17, §5] using projective bundles.

Theorem 1.29. Let (E , b,L ) be a metabolic form on X with lagrangian V . Let H(X) mean
either coherent, `-adic, étale, or Chow cohomology.

a) There exists a morphism f : Y → X such that f∗ : H(X) → H(X) an isomorphism and
so that f∗(E , b,L ) is a split metabolic form with lagrangian f∗V .

b) There exists a morphism f : Y → X such that f∗ : H(X) → H(Y ) injective and so that
f∗(E , b,L ) is isometric to an orthogonal sum of hyperbolic planes

Hf∗L (V1)⊥ · · ·⊥Hf∗L (Vm),

for line bundles V1, . . . ,Vm on Y .
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Proof. As for a), this is a classical construction. Following Fulton [19, §2], let V
j−→ E be

a lagrangian and let P ⊂ Hom(E ,V ) be the subbundle whose sections over U → X are OU -
module morphisms ϕ : E |U → V |U such that j|U ◦ϕ = idU . Let Y = V(P ) be the corresponding
affine bundle, and f : Y → X be the natural projection. Then f∗E has a tautological projection
to f∗V , hence f∗(E , b,L ) is a split metabolic space with lagrangian f∗V . The fact that f∗ is an
isomorphism on cohomology for an affine bundle is standard.

As for b), see Fulton [19, §2] for a construction of the isotropic flag bundle of a metabolic
bundle. Pulling back to this flag variety yields the required splitting.

Witt cancellation

The analogue of Witt cancellation on schemes only holds only “up to metabolic forms,” see Kneb-
usch [30, I §4, Theorem 3].

Proposition 1.30. Let (E , b,L ) be a symmetric bilinear space and V ⊂ E a sublagrangian.
Then the subbundle V ⊥, via the diagonal inclusion,

V ⊥ → E ⊕ V ⊥/V ,

is a lagrangian for the symmetric bilinear space (E , b,L )⊥(V ⊥/V ,−b,L ).

The Witt group is then constructed as the quotient of the free abelian group (under orthogonal
sum) of symmetric bilinear forms by the subgroup of metabolic spaces, not just split metabolic
spaces (as in the affine case). Thus according to Proposition 1.30, every symmetric bilinear form
is equivalent in the Witt group to an anisotropic form.

1.5 The Clifford algebra

The Clifford algebra of an OX -valued symmetric bilinear form over a scheme X with 1
2 ∈ OX is

a locally free sheaf of OX -algebras, which is gotten by sheafifying the construction for forms over
rings. All the standard properties of the Clifford algebra can then be generalized to OX -valued
forms over schemes. For symmetric bilinear forms with valued in a non-trivial line bundle L
(especially if L is not a square in the Picard group), another construction is required. We follow
the construction (over affine schemes) of Bichsel/Knus [7] and Caenepeel/Van Oysaeyen [8]. The
generalized Clifford algebra of an L -valued symmetric bilinear form is defined by base change
to the punctured total space V•(L ) of the the line bundle L , and then applying the standard
Clifford algebra functor to the resulting (OV•(L )-valued) form. We also utilize the construction
of an even Clifford group of an L -valued symmetric bilinear space.

1.5.1 The classical Clifford algebra

For the moment let X be any scheme (even with 2 not invertible). Let (E , q,OX) be a fixed OX -
valued quadratic form over X . The Clifford algebra C (E , q,OX) is the sheaf of OX -algebras
associated to the presheaf,

U 7→ TE (U)/〈v ⊗ v − q(v) : v ∈ E (U)〉
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of the tensor algebra modulo the two-sided ideal generated by v⊗v−q(v) for v ∈ E (U). There’s
a canonical OX -module morphism i : E → C (E , q,OX). The Clifford algebra is functorial
for pull backs and satisfies the following universal property. For any sheaf of OX -algebras C ′

and OX -module morphism f : E → C ′ such that the following diagram of maps of sheaves
commutes,

E
f

- C ′

OX

q
? 1C ′- C ′

(−)2
?

there exists a unique OX -algebra homomorphism c : C (E , q,OX) → C ′ such that c ◦ i = f .

Lemma 1.31. Let (E , q,OX) be a quadratic form of rank n over X . Then its Clifford algebra
is a locally free OX -algebra of rank 2n and the canonical map i : E → C (E , q,OX) is a
monomorphism.

Proof. Localizing we may assume X is the spectrum of a local ring and E is free, then we apply
the classical Poincaré-Birkhoff-Witt theorem.

The Clifford algebra of an OX -valued symmetric bilinear form (E , b,OX) is defined to be
the Clifford algebra of it’s associated quadratic form, see §1.1.1 formula (1.2). Then we have the
classical relations in the Clifford algebra

v · v = b(v, v), v · w + w · v = 2b(v, w), for v, w ∈ E (U)

on sections over U → X , where the first formula is the defining relation of the Clifford algebra
and the second is implied from it (and equivalent if 1

2 ∈ OX ).

Even Clifford algebra and center

We now assume that 1
2 ∈ OX and that (E , b,OX) is an OX -valued bilinear space. The Clifford

algebra C = C (E , b,OX) has a Z/2Z-grading C = C0 ⊕ C1 into even and odd parts, inherited
from the even and odd parts of the tensor algebra. The following properties are straightforward
generalizations from the case of affine schemes, see Knus [34, IV §2-3].

Proposition 1.32. Let C be the Clifford algebra of a quadratic space of rank n on X .

a) If n is even, then C is an Azumaya algebra over X . If Z is the center of the even Clifford
algebra C0, then Z is a rank 2 étale OX -algebra and C0 has the structure of an Azumaya
algebra over SpecZ .

b) If n is odd, then C0 is an Azumaya algebra overX . If Z is the center of the Clifford algebra
C , then Z is a rank 2 étale OX -algebra and C has the structure of an Azumaya algebra
over SpecZ . Finally, Z = Z0 ⊕Z1 inherits a Z/2Z-grading, with Z = OX · 1C and
the multiplication in the Clifford algebra induces an OX -valued line Z1 ⊗Z1 ∼−→ OX on
the line bundle Z1 over X .
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Definition 1.33. Let (E , b,OX) be an OX -valued symmetric bilinear space of rank n on X .
Define the Arf invariant Arf(E , b,OX) to be the isomorphism class of the rank 2 étale OX -algebra

Z = Z (E , b,OX) =

{
center of C0(E , b,OX) if n is even
center of C (E , b,OX) if n is odd

Define the Clifford invariant c(E , b,OX) the be the isomorphism class of the Azumaya algebra{
C (E , b,OX) if n is even
C0(E , b,OX) if n is odd

in the Brauer group of X .

Lemma 1.34. Let (E , b,L ) be a symmetric bilinear form of rank n over X . Then we have the
equation,

Arf(E , b,OX) = (−1)
n(n−1)

2 + det(E , b,OX),

interpreted as classes in H1
ét(X,µ2).

Functoriality of the Clifford algebra

By the universal property, the Clifford algebra is functorial with respect to isometries. If ϕ :
(E , b,OX) → (E ′, b′,OX) is an isometry, then there’s an induced (Z/2Z-)graded OX -algebra
isomorphism C (ϕ) : C (E , b,OX) → C (E ′, b′,OX) making the following diagram

E
ϕ

- E ′

C (E , b,OX)

i
? C (ϕ)

- C (E ′, b′,OX)

i′
?

commutative. The Clifford algebra isomorphism C (ϕ) restricts to an OX -algebra isomorphism
C (ϕ)|Z : Z (E , b,OX) → Z (E ′, b′,OX) of the corresponding centers. Functoriality with re-
spect to similarity transformations is more subtle, see Knus [34, IV §7].

Proposition 1.35. Let (ϕ, µϕ) : (E , b,OX) → (E ′, b′,OX) be a similarity transformation of
quadratic spaces on X . Then there’s a unique OX -algebra isomorphism

C0(ϕ, µϕ) : C0(E , b,OX) → C0(E ′, b′,OX)

making the following diagram

E ⊗ E
ϕ⊗ ϕ

- E ′ ⊗ E ′

C0(E , b,OX)

i⊗ i
? µϕ · C0(ϕ, µϕ)

- C0(E ′, b′,OX)

i′ ⊗ i′
?

commutative, where µϕ : OX → OX induces a unique OX -algebra isomorphism in the usual
way. There’s also a unique OX -module isomorphism

C1(ϕ, µϕ) : C1(E , b,OX) → C1(E ′, b′,OX),

which is C0(ϕ, µϕ)-semilinear.
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Clifford group

The isometry −id on any quadratic space (E , b,OX) induces the standard automorphism I =
C (−id) on the Clifford algebra, which acts as (−1)εid on Cε, for ε ∈ {0, 1}. There is also a
canonical involution σ on the Clifford algebra induced from the canonical antiautomorphism on
the tensor algebra v1 ⊗ · · · ⊗ vn 7→ vn ⊗ · · · ⊗ v1.

For any (Z/2Z-)graded sheaf of OX -algebras A , denote by Alh the presheaf of sets of locally
homogeneous elements of A , i.e. elements that are homogeneous when restricted to the local ring
of any point.

The Clifford group Γ(E , b,OX) is the sheaf of groups associated to the presheaf

U 7→ {x ∈ C (E , b,OX)lh(U)× : xE (U)I(x)−1 ⊂ E (U)},

and is represented as a group scheme in the étale topology on X . The Clifford group Γ =
Γ(E , b,OX) inherits a disjoint union decomposition Γ = Γ0∪Γ1 from the grading on the Clifford
algebra (and the local homogeneity), and we call Γ0 = SΓ(E , b,OX) the even Clifford group.

On sections over U → X , the map defined by N(x) = xσ(x) for x ∈ Γ(U), induces a
homomorphism of group schemes

N : Γ(E , b,OX) → Gm

called the Clifford norm and we define the pin group Pin(E , b,OX) as its kernel, see Knus [34, IV
§6]. The pin group is a smooth affine algebraic group scheme over X . There’s an exact sequence
of group schemes,

1 → Pin(E , b,OX) → Γ(E , b,OX) N−→ Gm → 1, (1.10)

in the étale topology on X .
On sections over U → X , the map defined by r(x) = v 7→ xvI(x)−1 for x ∈ Γ(U) and

v ∈ E (U) ↪→ C (U) induces a homomorphism of group schemes

r : Γ(E , b,OX) → O(E , b,OX),

called the vector representation of the Clifford group. There’s an exact sequence of group schemes,

1 → Gm → Γ(E , b,OX) → O(E , b,OX) → 1, (1.11)

in the étale topology on X . This may be checked for strictly henselian local rings, where O is
then generated by hyperplane reflections (with the single exception of the hyperbolic plane of
rank 4 in characteristic 2, which can be handled separately).

Restricting the vector representation to the pin group yields the pinor sequence,

1 → µ2 → Pin(E , b,OX) → O(E , b,OX) → 1, (1.12)

which is an exact sequence of smooth group schemes in the étale topology on X .
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1.5.2 The generalized Clifford algebra

Now let (E , b,L ) be an L -valued quadratic form over X . Let L(L ) = ⊕n∈ZL ⊗n be the
OX -sheaf of Laurent algebras or Rees algebras and define V•(L ) = Spec L(L ). Then p :
V•(L ) → X is identified with the total space of the line bundle L on X with the zero section
removed, and satisfies the following universal property. Now, given a morphism of schemes
p′ : X ′ → X such that p′∗L ∼= OX′ , there exists a morphism of schemes t : X ′ → V•(L )
so that p′ = p ◦ t. In fact, there is a canonical identification p∗L = OV•(L ) defined using the
multiplication in the Laurent algebra L(L ).

Definition 1.36. Let (E , b,L ) be an L -valued symmetric bilinear form over a scheme X and
p : V•(L ) → X the punctured total space of the line bundle L over X . Then p∗(E , b,L )
has a natural structure of (OV•(L )-valued) symmetric bilinear form on V•(L ) and define the
generalized Clifford algebra of (E , b,L ) as the quasi-coherent sheaf of OX -algebras,

C̃ (E , b,L ) = p∗C (p∗(E , b,L )),

where C is the classical Clifford algebra construction. Then C̃ (E , b,L ) is a Z/2Z-gradedL(L )-
algebra, and via the Z-grading of L(L ) as an OX -algebra, C̃ (E , b,L ) is naturally a Z-graded
OX -algebra. We call the 0th graded piece the even Clifford algebra C0(E , b,L ) and the 1st
graded piece the Clifford module C1(E , b,L ). We often simply write C̃ , C0, and C1 for these
OX -algebras.

The generalized Clifford algebra is functorial for pull backs, has a direct construction as a
quotient of the tensor algebra, and satisfies a graded universal property, analogous to the classical
Clifford algebra, see Bichsel/Knus [7, §3].

Locally, the even Clifford algebra and Clifford module have descriptions reminiscent of the
Poincaré-Birkhoff-Witt theorem, see Bichsel/Knus [7, Proposition 3.5].

Proposition 1.37. Let (E , b,L ) be an L -valued symmetric bilinear form of rank n = 2m or
n = 2m + 1. If E is free with basis {e1, . . . , en} and L free with basis l, then C0 is a free
OX -algebra with basis,

{1, ei1 · · · ei2k
⊗ l−k : 1 ≤ k ≤ m, 1 ≤ i1 < · · · < i2k ≤ n},

and C1 is a free OX -module with basis,

{ei1 · · · ei2k+1
⊗ l−k : 1 ≤ k ≤ m, 1 ≤ i1 < · · · < i2k+1 ≤ n}.

As a corollary, we see that if (E , b,L ) is a bilinear space of rank n then C0(E , b,L ) is a
locally free OX -algebra of rank 2n−1, C1(E , b,L ) is a locally free OX -module of rank 2n−1, and
there’s a canonical monomorphism i : E → C1(E , b,L ).

Patching classical even Clifford algebras

Following Parimala and Sridharan [40, §4], we may also construct C0(E , b,L ) by patching to-
gether classical even Clifford algebras on an open cover ofX . Choose a Zariski affine open cover,
U = {Ui}i∈I , of X trivializing L by ϕi : OUi

∼−→ L |Ui , and let aij = ϕij
−1 ϕij ∈ Gm(Uij),
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for (i, j) ∈ I2, be the corresponding Čech 1-cocycle representing L . Now, for each i ∈ I , the
composition,

ϕ−1
i ◦ b|Ui : E ⊗ E |Ui → L |Ui → OUi ,

defines an OUi-valued quadratic space on Ui, and that for each (i, j) ∈ I2, one checks that the
identity map on E |Uij defines a similarity transformation,

(id|Uij , aij) : (E |Uij , ϕ
−1
j ◦ b|Uij ,OUij ) → (E |Uij , ϕ

−1
i ◦ b|Uij ,OUij ).

Then by Proposition 1.35, the similarities lift to algebra isomorphisms of the (classical) even
Clifford algebras,

C0(id|Uij , aij) : C0(E |Uij , ϕ
−1
j ◦ b|Uij ,OUij ) → C0(E |Uij , ϕ

−1
i ◦ b|Uij ,OUij ),

and form a Čech 1-cocycle by the diagram in Proposition 1.35 (since the multiplier coefficients
form a Čech 1-cocycle). Thus by descent, these Clifford algebras patch to yield the OX -algebra
C0(E , b,L ) on X .

A similar patching construction can be given for C1(E , b,L ) again using Proposition 1.35 to
patch the local C0-bimodule structure (which is well-behaved with respect to similitudes) on C1,
to yield the global C0(E , b,L )-bimodule structure on C1(E , b,L ).

In particular, if L is the trivial line bundle and we choose a trivialization ϕ : OX ∼−→ L , then
the similarity transformation (id, ϕ) : (E , ϕ−1 ◦ b,OX) → (E , b,L ), induces an OX -algebra
isomorphism of the classical and generalized even Clifford algebras C0(E , ϕ−1 ◦ b,OX) ∼−→
C0(E , b,L ) and the Clifford bimodules. More generally, the generalized even Clifford algebra
of (E , b,L ) is isomorphic to a classical even Clifford if L is a square in the Picard group, and
then any choice of scaling of (E , b,L ) yields such an isomorphism, see Knus [34, IV §7.1.2].

Structure of the center

The center Z̃ of the generalized Clifford algebra C̃ (E, b,L ) is a Z-graded OX -algebra, with
degree 0 and 1 parts denoted by Z0 and Z1, respectively. In analogy with Proposition 1.32, we
have the following, see Bichsel/Knus [7, Theorem 3.7].

Proposition 1.38. Let (E , b,L ) be an L -valued bilinear space of rank n on X .

a) If n is even, then Z0 = OX ·1C0 and Z1 = 0. If Z is the center of the even Clifford algebra
C0, then Z is a rank 2 étale OX -algebra and C0 is an Azumaya algebra over SpecZ .

b) If n is odd, then C0 is an Azumaya algebra over X . Finally, Z0 = OX · 1C and the
multiplication in the generalized Clifford algebra induces an L -valued line Z1⊗Z1 ∼−→ L
on the line bundle Z1.

If L is a square, then the classical and generalized notions of even Clifford algebra coincide.

The even Clifford group

All algebra automorphisms and antiautomorphisms of the classical Clifford algebra descend to the
generalized Clifford algebra and its degree 0 part. The canonical antiautomorphism on the tensor
algebra of E induces an L(L )-algebra antiautomorphism on the generalized Clifford algebra and
thus an OX -algebra antiautomorphism on its degree 0 part, denoted by σ and called the canonical
involution.
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Definition 1.39. We define the even Clifford group SΓ(E , b,L ) as the sheaf of groups associated
to the presheaf

U → {x ∈ C0(E , b,L )(U)× : xE (U)x−1 ⊂ E (U)}
where E ↪→ C1(E , b,L ) is the canonical inclusion.

Proposition 1.40. Let (E , b,L ) be a symmetric bilinear space on X .

a) The even Clifford group is represented by a smooth affine algebraic group scheme in the
étale topology on X .

b) The vector representation induces an exact sequence,

1 → Gm → SΓ(E , b,L ) r−→ SO(E , b,L ) → 1,

in the étale topology on X .

c) The restriction of the Clifford norm to the even Clifford group defines the spin group via the
exact sequence,

1 → Spin(E , b,L ) → SΓ(E , b,L ) N−→ Gm → 1,

in the étale topology on X . The spin group is a smooth affine algebraic group scheme over
X .

Proof. As for a), the smoothness and representability will follow from b), which is reduced, in
view of §1.5.2 (since the exactness is a local question), to the exactness of the corresponding
classical vector representation §1.5.1. Similarly for c), with the smoothness and representability
being a consequence of the exactness of the sequence, which is reduced to the classical case.

As in the classical OX -valued case, restricting the vector representation of the Clifford group
to the spin group yields a double cover of the special orthogonal group. The proof proceeds
exactly as in the classical case, that is, by proving the surjectivity of the spin cover locally in
the étale topology at geometric points using the standard generation of the orthogonal group by
hyperplane reflections.

Proposition 1.41. Let (E , b,L ) be an L -valued quadratic space, then there’s a commutative
diagram,

1 1

1 - µ2

?
- Spin(E , b,L )

? r
- SO(E , b,L ) - 1

1 - Gm

?
- SΓ(E , b,L )

? r
- SO(E , b,L )

wwwww
- 1

Gm

2
?

======== Gm

N
?

1
?

1
?
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of group schemes in the étale topology on X with exact rows and columns.
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Chapter 2

Cohomological invariants of line
bundle-valued forms

In attempting to construct a cohomological invariant for L -valued symmetric bilinear forms that
generalizes the 2nd Hasse-Witt invariant, a natural approach is to construct a pinor sequence
for the orthogonal group of an L -valued form, and then interpret the second coboundary map
in nonabelian étale Čech cohomology as a map from isometry classes of L -valued symmetric
bilinear forms to H2

ét(X,µ2). Two complications arise for this approach.
First, already in our study of the spinor sequence for L -valued forms in §1.5.2, we encoun-

tered the fact that in general there’s only a canonically defined even Clifford group (not a full
Clifford group); thus there exists only a spinor sequence and not a general pinor sequence. In par-
ticular, one cannot hope to define a Hasse-Witt invariant for all L -valued forms simultaneously,
but only for those of a given fixed discriminant. This is a new feature of the theory of L -valued
symmetric bilinear forms (especially when L is not a square in the Picard group).

The second complication is perhaps a matter of taste. Taking the second coboundary map of
the spinor sequence for the special orthogonal group of an L -valued form as the definition of a
cohomological invariant is one thing, computing it is quite another. The issue at stake is that the
special orthogonal group scheme of an L -valued form (when L is not a square in the Picard
group) does not come from base change of any group scheme over Spec Z[12 ]. It lives properly
on X . The corresponding spinor sequence arises as a twist of the classical spinor sequence by a
cocycle in PO that cannot be lifted to a cocycle in O, i.e. a so-called outer twist or outer form.
Serre warns [47, I, §5.5, Remarque] that the category of torsors for a group has in general no
relation to the category of torsors of an outer form of the group. Already, we see quite plainly that
the categories of bilinear forms of odd rank with values in OX and with values in a non-square
line bundle L couldn’t be more disparate: one is quite rich while the other is empty. This is the
obstruction that we overcome below.

Considering torsors for an outer twisted orthogonal group is equivalent to considering “twisted
torsors” for a standard (untwisted) orthogonal group. The nice feature is that our twisted torsors
are twisted by a cocycle with values in a standard (untwisted) orthogonal similitude group. We
then realize that the coboundary map of the twisted spinor sequence is strongly related to the
coboundary maps for a new Clifford sequence involving a four-fold covering of the orthogonal
similitude groups. In general, this new coboundary map has independent interest as a similarity
class cohomological invariant for L -valued symmetric bilinear forms with fixed discriminant,
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and lives in an étale cohomology group with coefficients “modulo 4.” In turn, this coboundary
map for the orthogonal similitude group can be computed explicitly for many general families of
L -valued forms. It is perhaps a round-about path to the construction of cohomological invari-
ants for L -valued symmetric bilinear forms, but the only feasible way in light of the important
difficulties presented by the L -valued case.

2.1 A similarity class cohomological invariant

We begin by developing the necessary tools to construct the cohomological coboundary map
of a new Clifford sequence involving the orthogonal similitude group. As always, let X be a
noetherian separated scheme with 1

2 ∈ OX and considered always in the étale topology. In
the interest of simplifying the exposition, we will assume that X is connected. Throughout,
we will fix an OX -valued symmetric bilinear space H = (H , h,OX) of rank n on X , and
unless explicitly stated otherwise, we will omit the dependence on this space in the notation for
the classical (special) orthogonal, (s)pin, (proper) similitude, and (even) Clifford group schemes.
When denoting the isometry class of an OX -valued symmetric bilinear space, often we will write
(H , h) instead of (H , h,OX).

2.1.1 Classical cohomological invariants

Chern classes

Recall Grothendieck’s construction[24] of Chern classes modulo l in étale cohomology, for l ≥ 2
such that 1

l ∈ OX ,
ci(E ,µl) ∈ H2i

ét (X,µ
⊗i
l ),

of a vector bundle E on X: if E a line bundle, define c1(E ,µl) ∈ H2
ét(X,µl) as the image,

H1
ét(X,Gm) → H2

ét(X,µl)
[E ] 7→ c1(E ,µl)

of the isomorphism class, [E] ∈ Pic(X) ∼−→ H1
ét(X,Gm), under the first coboundary map arising

from the Kummer sequence,
1 → µl → Gm

l−→ Gm → 1,

which is exact in the étale topology on X . For a vector bundle of general rank, use the splitting
principle for Chern classes. In particular, for any vector bundle E ,

c1(E ,µl) = c1(detE ,µl) ∈ H2
ét(X,µl).

Classical 1st Hasse-Witt invariant

Recall the classical torsor-theoretic construction of the (H , h)-base pointed 1st Hasse-Witt in-
variant,

wH
1 (E , b) ∈ H1

ét(X,µ2),
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of an OX -valued symmetric bilinear space (E , b) on X: it’s the image,

H1
ét(X,O) → H1

ét(X,µ2)
[E , b] 7→ wH

1 (E , b)

of the isometry class [E , b] ∈ H1
ét(X,O), under the map on cohomology induced by the determi-

nant sequence,
1 → SO → O det−−→ µ2 → 1,

for the orthogonal group scheme, see Remark 1.12. For example, if (H , h) is the standard sum-
of-squares form of rank n, then we write On = O(H , h) and w1(E , b) = wH

1 (E , b). By §1.2.1,
w1(E , b) ∈ H1

ét(X,µ2) coincides the isometry class of the determinant form. If (H , h) is the
hyperbolic form of rank n = 2m with trivial lagrangian, then we write Om,m = O(H , h). In
this case, wH

1 (E , b) ∈ H1
ét(X,µ2) coincides with the classical signed discriminant.

Classical 2nd Hasse-Witt invariant

Recall the classical vector representation of the Clifford group scheme,

1 → Gm → Γ r−→ O → 1
x 7→ v 7→ x v I(x)−1 (2.1)

where I is the standard automorphism of the Clifford algebra (i.e. the OX -algebra automorphism
induced by negation on H ), see §1.5.1. Also recall the Clifford norm sequence defining the pin
group,

1 → Pin → Γ N−→ Gm → 1
x 7→ xσ(x)

(2.2)

where σ is the canonical involution of the Clifford algebra (i.e. the OX -algebra antiautomorphism
induced by the identity on H).

Finally, recall the classical torsor theoretic construction of the (H , h,OX)-base pointed 2nd
Hasse-Witt invariant,

wH
2 (E , b) ∈ H2

ét(X,µ2),

of an OX -valued symmetric bilinear space (E , b) on X: it’s the image,

H1
ét(X,O) → H2

ét(X,µ2)
[E , b] 7→ wH

2 (E , b)

of the isometry class [E , b] ∈ H1
ét(X,O), under the first coboundary map arising from the pinor

sequence,
1 → µ2 → Pin → O → 1, (2.3)

for the orthogonal group scheme, see §1.5.1. For example, if (H , h) is the standard sum-of-
squares form, then w2(E , b) = wH

2 (E , b) is the classical Hasse-Witt invariant. If (H , h) is the
hyperbolic form with trivial lagrangian, then e2(E , b) = wH

2 (E , b) ∈ H2
ét(X,µ2) coincides with

the Clifford invariant.
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Comparing base forms

Let a = (aij) be an étale Čech 1-cocycle (for some cover U of X) representing the class of
(E , b) in H1

ét(X,O). In the literature wH
i (E , b) is often thought of as the standard sum-of-

squares base pointed ith Hasse-Witt invariant wi(Ha), of the form H = (H , b) twisted by the
cocycle a. Serre [47, Annexe §2.2] and Cassou-Noguès/Erez/Taylor [12] denotewH

i by δi = δiH .
We prefer to guard, in the notation, the reliance on the base form when discussing Hasse-Witt
invariants. Indeed, for L -valued forms there is no standard choice of base form possible. That
being said, comparison of Hasse-Witt invariants for different base points is possible, see Cassou-
Noguès/Erez/Taylor [12, Theorem 0.2].

Proposition 2.1. Let (H , h), (H ′, h′), and (E , b) be OX -valued symmetric bilinear spaces of
rank n on X . Then

a) wH ′
1 (E , b) = wH ′

1 (H , h) + wH
1 (E , b)

b) wH ′
2 (E , b) = wH ′

2 (H , h) + wH ′
1 (H , h) · wH

1 (E , b) + wH
2 (E , b)

in the étale cohomology groups H1
ét(X,µ2) and H2

ét(X,µ2), respectively.

Orthogonal splitting principle for Hasse-Witt invariants

Analogous to the well-known splitting principle for Chern classes of vector bundles, there is an
orthogonal splitting principle for Hasse-Witt invariants, hinted at by Grothendieck [24] and also
implicit (in a weak version) in Fulton [19, §2] and Edidin/Graham [16, §7].

We say that a scheme X has the Krull-Schmidt property if its exact category of vector bundles
has the Krull-Schmidt property, i.e. every object is uniquely (up to reordering) a sum of indecom-
posable objects. For example, if X is a proper variety over a field, then X has the Krull-Schmidt
property.

Theorem 2.2 (Orthogonal splitting principle for Hasse-Witt invariants). Let X be a scheme with
the Krull-Schmidt property and with 1

2 ∈ OX . Let (H , h) and OX -valued symmetric bilinear
space on X . Then there’s a morphism of schemes f : Y → X satisfying

• f∗ : H i
ét(X,µ2) → H i

ét(Y,µ2) is injective on étale cohomology modulo 2, and

• f∗(H , h) is isometric to an orthogonal sum of hyperbolic planesHOX
(Vi) for line bundles

Vi and of OX -valued lines (Nj , nj) for self-dual line bundles Nj on Y .

Proof. By the splitting principle for exact sequences of vector bundles (see Theorem 1.29 and
Fulton [19, §2]) and by the classical Witt cancellation principle in the affine case (see Knebusch
[30, I §2-3]), the proof of which only depends on the orthogonal complements being direct sum-
mands, we can find a morphism f : Y → X which is an isomorphism on cohomology and
such that f∗(H , h) is an orthogonal sum of a split metabolic space and an anisotropic space
M ⊥(H0, h0) on Y . This is also possible by pulling back to an adapted “maximal isotropic flag
variety”, and generalizing results of in Fulton [19, §2]. We can use the splitting principle for
metabolic spaces (see Theorem 1.29) to split M into an orthogonal sum of hyperbolic planes.
We are left with anisotropic forms. By using the splitting principle for vector bundles, we can
pull back further to split these into direct sums of line bundles, and then by Knus [34, II §6.3.1]
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(this is where we need the Krull-Schmidt property) these will decompose into orthogonal sums of
self-dual line bundles and (possibly more) hyperbolic spaces.

As in the case of Chern classes, to verify a statement about Hasse-Witt invariants of symmetric
bilinear spaces, it’s sufficient to consider only spaces that are sums of hyperbolic planes and lines.
The 1st Hasse-Witt invariant of an OX -valued line w1(N , n) is the isomorphism class of (N , n)
in H1

ét(X,µ2). We also have a formula due to Esnault/Kahn/Viehweg [17, Proposition 5.5], for
the Hasse-Witt invariants of metabolic spaces.

Theorem 2.3. Let (H , h) be a metabolic plane with lagrangian V . Then

w(H , h) = 1 + w1(H , h) + w2(H , h) = 1 + (−1) + c1(V ,µ2)

in H0
ét(X,µ2)⊕H1

ét(X,µ2)⊕H2
ét(X,µ2).

Together with all this, the Whitney sum formula

w2((H , h)⊥(H ′, h′)) = w2(H , h) + w1(H , h) · w1(H ′, h′) + w2(H ′, h′)

allows us to compute the 2nd Hasse-Witt invariants (the higher ones as well) of any symmetric
bilinear space once we know a splitting.

2.1.2 The similarity 1st Hasse-Witt invariant

For even rank forms, the classical (unsigned) discriminant form generalizes to bilinear forms with
values in line bundles, see §1.2.1 or Parimala/Sridharan [40, §4] for the analogue of the signed
discriminant.

Definition 2.4. Let (H , h) be an OX -valued symmetric bilinear space of even rank n on X . We
define the (H , h)-base pointed similarity 1st Hasse-Witt invariant,

gwH
1 (E , b,L ) ∈ H1

ét(X,µ2),

of an L -valued symmetric bilinear space (E , b,L ) of rank n on X: it’s the image,

H1
ét(X,GO) → H1

ét(X,µ2)
[E , b,L ] 7→ gwH

1 (E , b,L )

of the similarity class [E , b,L ] ∈ H1
ét(X,GO), under the map on cohomology induced by the

discriminant sequence
1 → GSO → GO disc−−→ µ2 → 1,

for the orthogonal similitude group §1.2.2.

By Remark 1.12, the discriminant sequence for the orthogonal similitude group restricts to
the determinant sequence for the orthogonal group, and so the similarity 1st Hasse-Witt invariant
generalizes the classical 1st Hasse-Witt invariant. Due to our identification O(disc(H , h)) ∼−→
µ2, we have the following equation

gwH
1 (E , b,L ) = disc(E , b,L )− disc(H , h,OX)

interpreting isometry classes of OX -lines as elements of H1
ét(X,µ2), see §1.2.2. In particular,

gwH
1 (E , b,L ) vanishes if and only if there’s an isometry disc(H , h,OX) ∼= disc(E , b,L ) of

discriminant forms.
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2.1.3 A Clifford sequence for the orthogonal similitude group

To construct the required four-fold cover of the orthogonal similitude group by the Clifford group,
we first pass through some intermediary exact sequences of group schemes and their implications
on categories of torsors.

First intermediary exact sequence

Taking the cartesian product of the Clifford group homomorphisms (2.1) and (2.2) yields an exact
sequence,

1 → µ2 → Γ N×r−−−→ Gm ×O → 1, (2.4)

in the étale topology on X , where µ2 → Gm → Γ denotes the canonical inclusion of constants.

Proposition 2.5. Exact sequence (2.4) gives rise to the coboundary map,

H1
ét(X,Gm ×O) ∼= H1

ét(X,Gm)×H1
ét(X,O) → H2

ét(X,µ2)
[L , (E , b)] 7→ c1(L ,µ2) + wH

2 (E , b).

Proof. One needs only to consider the following commutative diagrams of group schemes in the
étale topology on X ,

1 1

1 - µ2
- Gm

? 2
- Gm

?
- 1

1 - µ2

wwwwww
- Γ

? N × r
- Gm ×O

?
- 1

O

r
?
========= O

?

1
?

1
?

(2.5)
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1 1

1 - µ2
- Pin

? r
- O

?
- 1

1 - µ2

wwwwww
- Γ

? N × r
- Gm ×O

?
- 1

Gm

N
?

======== Gm

?

1
?

1
?

(2.6)

and their implications on étale cohomology groups. Indeed, from the commutativity of the first
diagram, [L , (H , h)] 7→ c1(L ,µ2) under the coboundary map, and from he second diagram,
[OX , (E , b)] 7→ wH

2 (E , b). Finally, the action of H1
ét(X,Gm) on H1

ét(X,Gm × O) in the first
diagram is given by

[L1] [L2, (E , b, )] = [L1 ⊗L2, (E , b)],

so that

[L , (E , b)] = [L ] [OX , (E , b)] = [L , (H , h)] [OX , (E , b)] 7→ c1(L ,µ2) + wH
2 (E , b)

gives the formula.

Second intermediary exact sequence

There’s a canonical scalar multiplication homomorphism

Gm ×O m−→ GO

(l, ϕ) 7−→ (lϕ, l2)

which is an epimorphism in the étale topology on X . Indeed, for each section (ψ, µψ) of GO
over U → X , we can find an étale cover of U where the multiplying coefficient µψ has a square
root µ̃ψ. Then (µ̃ψ, µ̃−1

ψ ϕ) 7→ (ψ, µψ) under the scalar multiplication homomorphism so that
m is locally (hence globally) an epimorphism in the étale topology on X . Thus there’s an exact
sequence,

1 → µ2 → Gm ×O → GO → 1, (2.7)

in the étale topology on X , where µ2 → Gm ×O is the diagonal inclusion.

Proposition 2.6. Exact sequence (2.7) gives rise to the coboundary map,

H1
ét(X,GO) → H2

ét(X,µ2)
[E , b,L ] → c1(L ,µ2).
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Proof. One needs only to consider the implications on étale cohomology of the following com-
mutative diagram of groups schemes,

1 1

O
?

====== O
?

1 - µ2
- Gm ×O

? m
- GO

?
- 1

1 - µ2

wwwwww
- Gm

? 2
- Gm

µ
?

- 1

1
?

1
?

(2.8)

in the étale topology on X . Indeed, since (H , h) is an OX -valued space, there’s a canonical
identification Gm = GL(OX) (compare with Remark 1.6). The composition of maps on étale
cohomology

H1
ét(X,GO) → H1

ét(X,Gm) → H2
ét(X,µ2)

[E , b,L ] 7→ L 7→ c1(L ,µ2).

yields the stated formula.

The kernel of the four-fold cover

The composite homomorphism

s = m ◦ (N × r) : Γ → Gm ×O → GO, (2.9)

is an epimorphism in the étale topology on X .

Definition 2.7. Let (H , h) be an OX -valued symmetric bilinear space on X . Define κ =
κ(H , h) to be the sheaf kernel of the homomorphism s : Γ → GO.

By construction, κ is an order 4 subgroup scheme of the Clifford group and fits into a funda-
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mental diagram
1 1 1

1 - µ2

?
- Pin

? r
- O

?
- 1

1 - κ

ι
?

- Γ
? s

- GO
?

- 1

1 - µ2

?
- Gm

N
? 2

- Gm

µ
?

- 1

1
?

1
?

1
?

(2.10)

of group schemes with exact rows and columns in the étale topology on X . Indeed, by the exact-
ness of the pinor sequence (2.3), the intersection of the kernels of N and r is just the group {±1}.
The commutativity is a simple verification. The diagram shows that the middle row sequence
defining κ is an “extension” of the Kummer sequence (the bottom row) by the pinor sequence
(the top row).

We’ll now calculate the local structure of the étale group scheme κ, i.e. the isomorphism class
of κ at any geometric point.

Proposition 2.8. Let (H , h) be an OX -valued symmetric bilinear space of rank n on X and
κ = κ(H , h) as defined above. Then in the étale topology on X , κ is locally isomorphic to

Z/4Z if n ≡ 0, 1 mod 4
Z/2Z× Z/2Z if n ≡ 2, 3 mod 4.

Proof. The proof proceeds by a local Clifford group calculation. Locally in the étale topology,
(H , h) is isometric to the standard sum-of-squares form, see Knus [34, IV §2.2.1, 3.2.1], with or-
thonormal basis e1, . . . , en. Locally, we can also choose a square root of −1. By the fundamental
diagram (2.10), κ is locally the group {±1,±ε} for some local section ε of the Clifford algebra
that satisfies N(ε) = −1 and r(ε) = −id.

Consider the element ε =
√
−1 e1 · · · en of the Clifford algebra. Recalling that

ei ej =
{

1 if i = j
−ej ei if i 6= j

,

we compute
N(ε) = ε σ(ε) =

√
−1 e1 · · · en

√
−1 en · · · e1 = −1.

In particular ε−1 = −σ(ε) = −(−1)n(n−1)/2 ε. Also note that

r(ε)(ei) = ε ei I(ε)−1 = (−1)n−1(−1)n ei · ε · ε−1 = −ei,

hence r(ε) = −id. Thus −1 and ε locally generate κ and we only need to calculate ε2 to know
the group structure. We find that

ε2 = −(−1)n(n−1)/2,

so that locally, κ is as claimed.
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Remark 2.9. Proposition 2.8 depends on our convention for the Clifford norm N . We take the
convention set forth in Fröhlich [18, Appendix I]. The other convention, taken by Knus [34, IV
§6.1] for instance, defines N via the standard involution τ (i.e. the Clifford algebra antiautomor-
phism induced by negation on H ) and yields a different pin group (but the same spin group) and
a different structure for κ in odd ranks.

By the fundamental diagram (2.10), the group scheme κ is an extension of µ2 by µ2,

1 → µ2
ι−→ κ → µ2 → 1. (2.11)

We now give a precise formula for the isomorphism class of the étale group scheme κ. To this
end, we use Proposition 2.8 to introduce a cohomology class that classifies κ.

• For n ≡ 2, 3 mod 4, κ is a form of Z/4Z and hence is classified by an element of
H1

ét(X,Aut(Z/4Z)) ∼= H1
ét(X,µ2).

• For n ≡ 0, 1 mod 4, κ is a form of Z/2Z× Z/2Z and hence is classified by an element of
H1

ét(X,Aut(Z/2Z× Z/2Z)). While Aut(Z/2Z× Z/2Z)) is isomorphic to the constant
symmetric group S3, acting on Z/2Z × Z/2Z by permuting the three subgroups of order
2, we claim that the image of ι is fixed by any cocycle representing κ. Indeed, by the
commutativity of the fundamental diagram (2.10), any cocycle representing the class of κ
is given by conjugation by an element of the Clifford group of norm −1, which fixes the
central subgroup scheme µ2 → κ → Γ. Thus κ admits a “reduction of structure group”
from S3 to S2

∼= Z/2Z ∼= µ2.

Thus in all cases, κ = κ(H , h) is classified up to isomorphism by an element

[κ] ∈ H1
ét(X,µ2), (2.12)

which we determine presently in terms of the 1st Hasse-Witt invariant of (H , h). First, we’ll
explicitly see what happens in the hyperbolic case.

Example 2.10. Let (H , h) = HOX
(Om

X ) be a hyperbolic space on X with trivial lagrangian, see
§1.4.3, and e1, . . . , em, f1, . . . , fm be a choice of global sections forming a hyperbolic basis, i.e.
h(fl, ek) = δlk.

For m odd, define a global section

ε =
m∏
l=1

(1− elfl) ∈ Γ(X),

of the Clifford group. Note that

(1− elfl)ek = ek − el(2h(fl, ek)− ekfl) =
{

ek(1− elfl) if k 6= l
−ek(1− elfl) if k = l

so that r(ε) = −id ∈ O(X). Also note that

N(1− elfl) = (1− elfl)(1− flel) = 1− (elfl + flel) = −1,
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so that N(ε) = (−1)m = −1 ∈ Gm(X). Thus ε ∈ κ(X) is a global section generating κ
together with −1. Finally, since σ(1− elfl) = −(1− elfl), we see that

ε2 = (−1)mN(ε) = −(−1)m = 1,

so there’s an induced isomorphism

µ2 × µ2 ∼−→ κ

±(1, 1) 7→ ±1
±(−1, 1) 7→ ±ε

of group schemes in the étale topology onX . This isomorphism clearly depends on our particular
choice of ε.

For m even, consider the section

ε =
m∏
l=1

(1− elfl)⊗
√
−1 ∈ Γ(X̃),

of the Clifford group over the étale double cover X̃ = X ×Spec Z[ 1
2
] Spec Z[12 ,

√
−1] → X . Then

as above, r(ε) = −id ∈ O(X̃). However, now N(ε) = −(−1)m = −1 ∈ Gm(X̃) and ε2 = −1.
Thus ε ∈ κ(X̃) is a section over X̃ , and there’s an isomorphism

Z/4Z ∼= µ4| eX ∼−→ κ| eX
±1 7→ ±1

±
√
−1 7→ ±ε

of group schemes in the étale topology on X̃ , descending to an isomorphism µ4 ∼−→ κ over X .
As before, this isomorphism depends on our particular choice of ε.

Theorem 2.11. LetX be a noetherian scheme with the Krull-Schmidt property and with 1
2 ∈ OX .

Let (H , h) be an OX -valued symmetric bilinear form on X and κ = κ(H , h) is the kernel of
the group scheme homomorphism s : Γ(H , h) → GO(H , h). Then the class of κ as defined in
(2.12), is given by

[κ] = w1(H , h) + (−1) = w1(detH ,−deth)

in H1
ét(X,µ2).

As an example, the calculation in Example 2.10 reaffirms Proposition 2.11 for hyperbolic
spaces with trivial lagrangians. Indeed, for any m note that

[κ] =
{

[µ2 × µ2] = 1 if m odd
[µ4] = (−1) if m even

}
= (−(−1)m) = w1(H , h) + (−1)

in H1
ét(X,µ2).

Proof. Since all terms in the formula are invariant under base change, we can use the orthogonal
splitting principle, see §2.1.1, in particular we must assume X has the Krull-Schmidt property.
First, we will handle the case where (H , h) is isometric to a diagonal form⊥n

k=1(Lk, lk), with
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lk : L ⊗2
k

∼−→ OX . The general case is a mixture of the calculation below that that performed in
Example 2.10. Let (L , l) = ⊗nk=1(Lk, lk) = det(H , h) and define p : X̃ → X to be the étale
double cover defined by (L ,−l). We’ll prove that κ trivializes over X̃ by finding a section (over
X̃) of the exact sequence (2.11).

Let U = {Ui → X}i∈I be a Zariski open cover of X , temporarily denoting the indexing
of the opens in superscripts, that trivializes the line bundles Lk via ϕki : OUi

∼−→ Lk|Ui . Let
Φi : On

Ui
∼−→ H |Ui be the induced trivialization of H . Then the induced forms, (OUi , lk|Ui ◦

ϕki ⊗ ϕki ), of rank 1, correspond to sections ϕki
∨ ψlk|Ui

ϕki = bki ∈ Gm(Ui), and the induced
form (On

Ui
, h|Ui ◦ Φi ⊗ Φi) is isometric to the diagonal form 〈b1i , . . . , bni 〉 with orthogonal basis

e1i , . . . , e
n
i .

Define di = b1i · · · bni ∈ Gm(Ui), define a new (Zariski) cover Ũ where Ũi = Ui ×Spec Z[ 1
2
]

Spec Z[12 ,
√
−di], and finally let

εi =
1
di
e1i · · · eni ⊗

√
−di ∈ Γ(Ũi).

Notice that (as in the proof of Proposition 2.8),

N(εi) = −1 ∈ Gm(Ũi), r(εi) = −id ∈ O(Ũi),

so that εi ∈ κ(U ′
i) defines a section of the exact sequence (2.11), for each i ∈ I . Noting that

p−1Ui ∼= Ũi forms a (Zariski) open cover of X̃ , we’ll show that the sections εi glue to a section
ε ∈ κ(X̃).

For each i, j ∈ I , define akij = ϕkij
−1
ϕkij ∈ Gm(Uij), i.e. the Čech 1-cocycle representing

Lk. Then simple calculations show that

(akij)
2 = bkij

−1
bkij , ekij = akij e

k
ij , dij = (aij)2 dij ,

where we set aij = a1
ij · · · anij ∈ Gm(Uij). Thus we have the equality

εij =
1
dij
e1ij · · · enij ⊗

√
−dij

=
1

(aij)2 dij
a1
ij e

1
ij · · · anij enij ⊗

√
(aij)2 dij

=
1
dij
e1ij · · · enij ⊗

√
−dij = εij

of section in Γ(Ũij). Thus the sections εi ∈ Γ(Ũi) glue to a section ε ∈ Γ(X̃), which defines
trivialization of exact sequence (2.11) over X̃ , i.e. κ(X̃) is isomorphic to Z/4Z or Z/2Z×Z/2Z,
depending on n modulo 4.

So far, we have only proved that the class of κ is in the subgroup (of order 2) generated by
w1(detH ,−deth). We’ll now prove that, at least over a cover of X containing a square root
of −1, κ does not trivialize if and only if w1(detH ,deth) is nontrivial. Let X ′ → X be the
(possibly trivial) cover of X taking a square root of −1. Then applying cohomology to diagram
(2.10), a simple diagram chase shows that the image of −1 ∈ µ2(X ′) in H1

ét(X
′,µ2) via the first
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coboundary map of the first column is equal to the image of −id ∈ O(X ′) in H1
ét(X

′,µ2) via the
first coboundary map (the “spinor norm” sp) of the first row. Then sp(−id) is nontrivial if and
only if the first coboundary of the first column of (2.10) is nontrivial, which is equivalent to the
nontriviality of κ over X ′. Thus we are interesting in computing sp(−id).

An easy generalization of Fröhlich [18, (I.4)] or Kahn [28, Lemma 2.1] is that for anyU → X ,
sp(−id) = w1(Li|U , li|U ) for the spinor norm sp : O(Li, li)(U) → H1

ét(U,µ2) of a form
(Li, li) of rank 1. Combining this with a multiplicativity formula for the spinor norm of an
orthogonal sum, see Fröhlich [18, (1.5)], if (H , h) is isometric to ⊥ni=1(Li, li), then sp(−id) =∑n

i=1w1(Li|X′ , li|X′) = w1(H |X′ , h|X′). Thus over X ′ (i.e. if there’s a square root of −1) the
nontriviality of κ is equivalent to the triviality of w1(H , h). The fact that we had to work over
X ′ leaves only the cases when either w1(detH ,deth) is (−1) or trivial, which can be done by
hand. We wonder, however, if the restriction to X ′ was necessary in the first place.

We ask if the formula in Theorem 2.11 is true without the assumption that X satisfies the
Krull-Schmidt property?

Remark 2.12. Using the other convention for the Clifford norm mentioned in Remark 2.9, the
class of κ(H , h) is then w1(detH , (−1)n+1 deth) ∈ H1

ét(X,µ2).

The four-fold cover

By the calculations in the proof of Theorem 2.11, if (H , h) has rank n then via κ ↪→ Γ, any
section of κ not in the canonical subgroup µ2 ↪→ κ has degree the parity of n. Hence by the
structure theory of the center of the Clifford algebra, see §1.32, the exact sequence of group
schemes

1 → κ → Γ → GO → 1, (2.13)

is central only for n odd. For n even, its restricting to the even Clifford group,

1 → κ → SΓ → GSO → 1, (2.14)

is central. Depending on the parity of the rank, we will call the respective central sequence above
the Clifford sequence for the orthogonal similitude group. For the case of even rank, we’ll need
to consider the restriction of the fundamental sequence to the even Clifford group,

1 1 1

1 - µ2

?
- Spin

? r
- SO

?
- 1

1 - κ

ι
?

- SΓ
? s

- GSO
?

- 1

1 - µ2

?
- Gm

N
? 2

- Gm

µ
?

- 1

1
?

1
?

1
?

(2.15)
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Now, we are ready to define the cohomological invariants we’ll be primarily concerned with.

2.1.4 The similarity 2nd Hasse-Witt invariant

Recall, from Theorems 1.4 and 1.14, the description of the categories of GO-torsors and GSO-
torsors over X .

Theorem 2.13. Let X be a scheme with 1
2 ∈ OX and endowed with the étale topology. We fix an

OX -valued symmetric bilinear space (H , h) of rank n over X .

a) The category of GO-torsors is equivalent to the category whose objects are all symmetric
bilinear spaces of rank n with values in a line bundle and whose morphisms are similarity
transformations. In particular, H1

ét(X,GO) is in bijection with the set of similarity classes
of line bundle-valued symmetric bilinear spaces of rank n with distinguished point the
similarity class of (H , h,OX).

b) Let n be even. The category of GSO-torsors is equivalent to the category whose objects
are pairs ((E , b,L ), ζ), consisting of an L -valued symmetric bilinear space of rank n (for
some line bundle L on X) together with an orientation isometry ζ : disc(H , b,OX) →
disc(E , b,L ) of discriminant forms, and where morphisms between objects ((E , b,L ), ζ)
and ((E ′, b′,L ′), ζ ′) are similarity transformations ϕ : (E , b,L ) → (E ′, b′,L ′) such that
ζ ′ = disc(ϕ)◦ζ. In particularH1

ét(X,GSO) is in bijection with the set of similarity classes
of oriented line bundle-valued symmetric bilinear spaces of rank n with distinguished point
the similarity class of (H , h,OX) oriented by the identity map.

Definition 2.14. Let (H , h) be an OX -valued symmetric bilinear space and (E , b,L ) be an L -
valued symmetric bilinear space, both of rank n on X . There is an important dichotomy in the
definition of the (H , h)-base pointed similarity 2nd Hasse-Witt invariant:

a) for n odd, it’s the coboundary map arising from the Clifford sequence for the orthogonal
similitude group (2.13)

H1
ét(X,GO) → H2

ét(X,κ)
[E , b,L ] 7→ gwH

2 (E , b,L ),

b) for n even, it’s the coboundary map arising from the (even) Clifford sequence for the or-
thogonal similitude group (2.14)

H1
ét(X,GSO) → H2

ét(X,κ)
[E , b,L , ζ] 7→ gwH

2 (E , b,L , ζ),

where ζ : disc(H , h,OX) ∼−→ disc(E , b,L ) is an orientation.

Note that for n even, gwH
2 (E , b,L , ζ) is a secondary characteristic class, since it’s only defined

when gwH
1 (E , b,L ) vanishes. Equivalently, it’s only defined on the second level of the “funda-

mental filtration” of the Grothendieck-Witt group of line-bundle valued forms.
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Remark 2.15. One should really be able to understand the similarity 2nd Hasse-Witt invariant,
in the spirit of Jardine [27], as a universal characteristic class in the étale cohomology group
H2

ét(BGSO,κ) of the simplicial classifying scheme or classifying topos for the proper orthogo-
nal similitude (in the even rank case) group scheme. There is thus the possibility of even higher
similarity Hasse-Witt invariants. In the even rank case, the complexity of the structure of this
cohomology is hinted at by the calculations (with X = Spec C) of Holla/Nitsure [25] and [26].

Functoriality

Let f : Y → X be a morphism of schemes in which 2 is invertible. Let (E , b,L ) be an L -
valued symmetric bilinear space of rank n on X , then f∗(E , b,L ) is a canonical f∗L -valued
symmetric bilinear space of rank n on Y . There’s now a canonical isomorphism of group schemes
κ(f∗(H , h)) ∼−→ fpκ(H , h) (where fp is the pullback in the category of étale sheaves, see
Milne [36, II §2]). If n is even and ζ : disc(H , h,OX) ∼−→ disc(E , b,L ) is an orientation, then
there’s a canonical isomorphism of discriminant forms f∗ disc(E , b,L ) ∼−→ disc(f∗(E , b,L )),
making f∗ζ : f∗ disc(H , h,OX) ∼−→ f∗ disc(E , b,L ) into an orientation on f∗(E , b,L ).

Finally, if n is odd, then

gwf
∗H

2 (f∗(E , b,L )) = f∗gwH
2 (E , b,L )

while if n is even then

gwf
∗H

2 (f∗(E , b,L ), f∗ζ) = f∗gwH
2 (E , b,L , ζ)

in H2
ét(Y,κ(f∗(H , h))) ∼−→ H2

ét(Y, f
pκ(H , h)).

Interpolation property

The similarity 2nd Hasse-Witt invariant “interpolates” between the classical 2nd Hasse-Witt in-
variant and the 1st Chern class modulo 2.

Proposition 2.16. Let (H , h) be an OX -valued symmetric bilinear space and (E , b,L ) be an
L -valued symmetric bilinear space, both of rank n on X .

a) If L = OX is trivial then the similarity 2nd Hasse-Witt invariant gwH
2 (E , b,OX) (resp.

gwH
2 (E , b,OX , ζ) for any orientation ζ, in the case of even rank), coincides with the image

of the 2nd Hasse-Witt invariant wH
2 (E , b) (with no dependence on the orientation), under

the canonical map ι∗ : H1
ét(X,µ2) → H1

ét(X,κ).

b) Under the induced map H1
ét(X,κ) → H1

ét(X,µ2), the similarity 2nd Hasse-Witt invariant
gwH

2 (E , b,L ) (resp. gwH
2 (E , b,OX , ζ) for any orientation ζ, in the case of even rank),

maps to the first Chern class c1(L ,µ2) modulo 2.

Proof. One needs only to consider the implications on étale cohomology of the fundamental
diagrams (2.10) and (2.15).
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Comparing base forms

In analogy with Proposition 2.1, we compare similarity 2nd Hasse-Witt invariants with different
base forms. This is more subtle than in the classical case due to the dependence of κ on the
base form. Because of our method of proof (we use the orthogonal splitting principle), we must
restrict to the case of schemes X that satisfy the Krull-Schmidt property. We do not believe this
restriction to be necessary. We’ll first need an additional construction.

Lemma 2.17. Let X be a scheme with the Krull-Schmidt property and with 1
2 ∈ OX . Let

ψ : disc(H , h,OX) ∼−→ disc(H ′, h′,OX) be an isometry of discriminant forms of OX -valued
symmetric bilinear spaces of rank n on X . Letting κ = κ(H , h) and κ′ = κ(H ′, h′), then for
all i ≥ 0 there’s an induced isomorphism of étale cohomology groups

ψ∗ : H i
ét(X,κ) → H i

ét(X,κ
′).

Proof. First, we will handle the case where we can find a splitting morphism f : Y → X
such that f∗(H , h) and f∗(H ′, h′) are both isometric to a diagonal forms ⊥nk=1(Lk, lk) and
⊥nk=1(L

′
k, l

′
k), respectively. The case where the forms contain hyperbolic orthogonal summands

in their splittings is similar. As in the proof of Theorem 2.11, let U = {Ui → Y }i∈I be a Zariski
cover of Y trivializing f∗H and f∗H ′ via Φi : On

Ui
∼−→ f∗H |Ui and Φ′

i : On
Ui

∼−→ f∗H ′|Ui , so
that the induced forms (On

Ui
, h|Ui ◦Φi⊗Φi) and (On

Ui
, h′|Ui ◦Φ′

i⊗Φ′
i) are isometric to diagonal

forms 〈b1i , . . . , bni 〉 and 〈b′i1, . . . , b′in〉, respectively, with global orthogonal bases e1i , . . . , e
n
i and

e′i
1, . . . , e′i

n. Also let ψi = detΦ′
i
−1◦ψ|Ui ◦det Φi be the isometry of discriminant forms induced

from ψ and define ui ∈ Gm(Ui) by the equation

ψi(e1i ∧ · · · ∧ eni ) = ui e
′
i
1 ∧ · · · ∧ e′in.

Then by a calculation, we have di = u2
i d

′
i where di = b1i · · · bni and d′i = b′i

1 · · · b′in. Let εi ∈
fpκ(Ũi) and ε′i ∈ fpκ′(Ũ ′

i) be the sections over Ũi = Ui ×Spec Z[ 1
2
] Spec Z[12 ,

√
−di] and Ũ ′

i =

Ui ×Spec Z[ 1
2
] Spec Z[12 ,

√
−d′i], defined by

εi =
1
di
e1i · · · eni ⊗

√
−di ∈ fpκ(Ũi), ε′i =

1
d′i
e′i

1 · · · e′in ⊗
√
−d′i ∈ f

pκ′(Ũ ′
i).

Finally note that we have the equality ui Ψi (εi) = ε′i of sections in fpκ′(Ũi ×Ui Ũ
′
i), where Ψi

is the Clifford algebra homomorphism induced from eki 7→ e′i
k. The family of maps (ui Ψi :

fpκ|Ui → fpκ′|Ui)i∈I are then seen to glue to a group scheme isomorphism Ψ : fpκ → fpκ′

over Y .
Now given α ∈ H i

ét(X,κ), the element H i
ét(Ψ)(f∗α) ∈ H i

ét(Y, f
pκ′) is then seen to be

in the image of f∗ : H i
ét(X,κ

′) → H i
ét(Y,κ

′), hence (by the injectivity of f∗) defines an ele-
ment ψ∗α ∈ H i

ét(X,κ
′). This defines a homomorphism of abelian groups ψ∗ : H i

ét(X,κ) →
H i

ét(X,κ
′). By construction, (ψ−1)∗ = (ψ∗)−1 so the map is also an isomorphism.

Theorem 2.18. Let X be a scheme with the Krull-Schmidt property and with 1
2 ∈ OX . Let

(H , h), (H ′, h′) be OX -valued symmetric bilinear spaces and (E , b,L ) be an L -valued sym-
metric bilinear space, all of rank n on X . Then

gwH ′
1 (E , b,L ) = wH ′

1 (H , h) + gwH
1 (E , b,L )
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in H1
ét(X,µ2). Furthermore, if gwH ′

1 (E , b,L ) and gwH
1 (E , b,L ) are trivial, and we choose

orientations ζ : disc(H , h,OX) ∼−→ disc(E , b,L ) and ζ ′ : disc(H ′, h′,OX) ∼−→ disc(E , b,L ),
then

gwH ′
2 (E , b,L , ζ ′) = ι∗w

H ′
2 (H , h) + (ζ ′−1 ◦ ζ)∗gwH

2 (E , b,L , ζ)

in H2
ét(X,κ

′), where (ζ ′−1 ◦ ζ)∗ is the homomorphism on cohomology defined above.

Proof. The argument is by explicit cocycle calculation, using a variant of Cassou-Noguès/Erez/
Taylor [12, Theorem 0.2].

Though there is no direct comparison theorem for invariants of forms of odd rank, there is
really no need for one, as we have an exact formula for the invariants in this case, see Theorem
2.19.

2.2 Explicit calculations

First, we will dispense with the case of L -valued symmetric bilinear spaces of odd rank, for
which is the similarity 2nd Hasse-Witt invariant is expressed in terms of classical invariants. It’s
no surprise that this case is easy to deal with, considering the simple structure of the group scheme
of odd rank orthogonal similitudes, see 1 §1.3.1. Next, we will treat the case of metabolic forms,
whose similarity 2nd Hasse-Witt invariants are calculated using an explicit cocycle calculation in
the Clifford group.

2.2.1 The odd rank case

The calculation of the similarity 2nd Hasse-Witt invariant gwH
2 for odd rank forms reduces to the

calculation of Chern classes modulo 2, the discriminant of the base form, and the classical 2nd
Hasse-Witt invariants wH

2 of normalized forms.
Let (H , h) be an OX -valued symmetric bilinear form of odd rank n = 2m+ 1 on X . We’ll

briefly recall the results from §1.3.1 on the structure of the odd rank orthogonal similitude group.
For every L -valued symmetric bilinear form (E , b,L ) of odd rank n on X , we know that

L is a square in the Picard group (see Theorem 1.15). Moreover, there’s a canonical choice of
L -valued line called the absolute value form |E , b,L |. The normalized form u(E , b,L ) is an
OX -valued space of rank n with trivial discriminant form (see Lemma 1.20), and such that there’s
a canonical isometry of L -valued forms |E , b,L | ⊗ u(E , b,L ) ∼−→ (E , b,L ). We recall that
the associated group scheme homomorphisms,

GO(H , h)
|·|−→ GL(|H , h,OX |) = Gm, GO(H , h) u−→ SO(u(H , h,OX)),

induce the maps [E , b,L ] 7→ |E , b,L |⊗|H , h,OX |∨ and [E , b,L ] 7→ u(E , b,L ), respectively,
on isomorphism classes of torsors. We can now state the main result on odd rank forms.

Theorem 2.19. Let (E , b,L ) be a symmetric bilinear space of odd rank n = 2m+1 onX . Then

gwH
2 (E , b,L ) = ι∗

(
c1(E ,µ2) + (m+ 1) (−1,−1) + wH

2 (u(E , b,L ))
)

in H2
ét(X,κ) where (−1,−1) = (−1) · (−1) is the standard cup product symbol.
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In the proof, we will need the following lemmas about the classical Hasse-Witt invariants.
The first concerns the Hasse-Witt invariants of a form tensor a line.

Lemma 2.20. Let (H , h) be an OX -valued symmetric bilinear form of rank n on X and (L , l)
an OX -valued line. Then we have

w2(L ⊗H , l⊗h) =
n(n− 1)

2
w1(L , l) ·w1(L , l)+(n−1)w1(L , l) ·w1(H , h)+w2(H , h)

in H2
ét(X,µ2).

Remark 2.21. In general, in terms of the formal Hasse-Witt polynomial

wt(H , h) =
n∑
i=0

wi(H , h) tn−i

we have that in terms of the total Hasse-Witt invariant,

w(L ⊗H , l ⊗ h) = w1+w1(L ,l)(H , h),

in H∗(X,µ2), of which the above formula is just the degree two part.

The second compares the 1st Hasse-Witt invariant and 1st Chern class modulo 2, see Es-
nault/Kahn/Viehweg [17, Lemma 5.3] for a proof.

Lemma 2.22. Let (L , l) be an OX -valued line. Then

c1(L ,µ2) = w1(L , l) · w1(L , l) + (−1) · w1(L , l)

in H2
ét(X,µ2).

Proof of Theorem 2.19. Consider the implications on étale cohomology of the following commu-
tative diagram of group schemes with exact rows and columns,

1 1

1 - µ2

?
- SΓ

?N × r
- Gm × SO - 1

1 - κ
?

- Γ
? s

- GO

m
?
| · | × u

6

- 1

µ2

?
==== µ2

?

1
?

1
?

in the étale topology on X . By a “special” version (i.e. restricting to special and even subgroups)
of Proposition 2.5 and the above diagram, we have

gwH
2 (E , b,L ) = ι∗

(
c1(|E , b,L | ⊗ |H , h,OX |∨,µ2) + w

u(H )
2 (u(E , b,L ))

)
,

51



and the rest of the argument is unwinding this. First, note that using §1.3.1, we have

c1(|E | ⊗ |H |∨,µ2) = c1(L ∨⊗m ⊗ det E ⊗ det H ∨,µ2)
= mc1(L ,µ2) + c1(E ,µ2) + c1(H ,µ2)
= c1(E ,µ2) + c1(H ,µ2),

since L is a square in the Picard group, see Theorem 1.15. Now we deal the Hasse-Witt invariant
term.

Let (T , t) be the standard sum-of-squares form of rank n and recall that we’ve defined wi =
wT
i . For any OX -valued symmetric bilinear forms (B, b) and (B′, b′) of rank n, repeated use of

the base form comparison formulas of Proposition 2.1 yields the general formulas

wB′
1 (B) = w1(B′) + w1(B)

and

wB′
2 (B) = wB′

2 (T ) + wB′
1 (T ) · w1(B) + w2(B)

= w2(B′) + w1(B′) · w1(B′) + w1(B′) · w1(B) + w2(B),

temporarily condensing our notation.
Now, using the base form comparison formula once, we have

w
u(H )
2 (u(E , b,L )) = w

u(H )
2 (H , h) + w

u(H )
1 (H , h) · wH

1 (u(E , b,L )) + wH
2 (u(E , b,L )).

Applying the above formulas to the first two terms of the right-hand-side, noting thatw1(u(H , h))
is trivial, yields

w
u(H )
2 (H , h) = w2(u(H , h)) + w2(H , h)

and
w
u(H )
1 (H , h) · wH

1 (u(E , b,L )) = w1(H , h) · w1(H , h).

By Lemma 2.20 and the fact that n is odd, we have

w2(u(H , h)) = w2(detH ∨ ⊗H ,deth∨ ⊗ h) = mw1(H , h) · w1(H , h) + w2(H , h),

and thus finally,

w
u(H )
2 (u(E , b,L )) = (m+ 1)w1(H , h) · w1(H , h) + wH

2 (u(E , b,L )).

Putting everything together yields

gwH
2 (E , b,L ) = ι∗

(
c1(E ,µ2)+c1(H ,µ2)+(m+1)w1(H , h)·w1(H , h)+wH

2 (u(E , b,L ))
)
.

Using Lemma 2.22, we have

ι∗c1(H ,µ2) = ι∗
(
(−1) · w1(H , h) + w1(H , h) · w1(H , h)

)
= ι∗(−1) · ι∗w1(H , h) + ι∗w1(H , h) · ι∗w1(H , h)
= ι∗

(
(−1) · (−1) + (−1) · (−1)

)
which is trivial, since ι∗w1(H , h) = ι∗(−1) ∈ H1

ét(X,κ(H , h)) by Theorem 2.11. Finally, we
obtain the stated formula.
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2.2.2 Invariants of metabolic spaces

Recall from §1.4 the notion of L -valued metabolic spaces onX . For the following, fix (H , h) =
HOX

(Om
X ) as the n = 2m dimensional OX -valued hyperbolic space with trivial lagrangian and

denote GSOm,m = GSO(H , h). As a consequence of the following lemma, every oriented
metabolic space is a GSOm,m-torsor.

Lemma 2.23. Let (E , b,L ) be a metabolic space of rank n = 2m on X . Then any choice of
lagrangian V ↪→ E induces an orientation ζV : 〈(−1)m〉 ∼−→ disc(E , b,L ).

Proof. The proof is a straightforward adaptation of the classical case of OX -valued metabolic

spaces, see Knebusch [30, IV Proposition 3.2]. Let 0 → V
j−→ E

p−→ W → 0 be the exact
sequence of vector bundles associated to the lagrangian V . First, we’ll compute the determinant
form of (E , b,L ). There’s a canonical isomorphism α : detV ⊗ det W → det E defined by

v1 ∧ · · · ∧ vm ⊗ w1 ∧ · · · ∧ wm 7→ v1 ∧ · · · ∧ vm ∧ w1 ∧ · · · ∧ wm

on sections over U → X , where U is fine enough so that lifts wi ∈ E (U) of wi ∈ W (U) via p
exist. Since V is a lagrangian, the choice of lifts does not matter, and the map is well defined.
There’s also a canonical perfect pairing,

V ⊗ W → L
v ⊗ w 7→ b(v, w)

defined on section whenever U → X is fine enough so that w ∈ E (U) is a lift of w ∈ W (U)
via p. The pairing has an adjoint OX -module isomorphism ψ : W → Hom(V ,L ), and an
induced isomorphism detψ : det W → det Hom(V ,L ) of determinants. Recall, from §1.2.1,
that there’s a canonical isomorphism can : detHom(V ,L ) → Hom(detV ,L ⊗m). Then
define an OX -module isomorphism ζ : L ⊗m → det E via the commutativity of the following
diagram,

det V ⊗Hom(detV ,L ⊗m)
ev

- L ⊗m

det V ⊗ det W

id⊗ (can ◦ detψ)

6

α
- det E

ζ

?

of vector bundles on X . We now claim that ζ : (L ⊗m, 〈(−1)m〉,L ⊗n) → det(E , b,L ) is an
isometry of L ⊗n-valued lines. This may be verified locally just as in the classical case. Moving
from determinants to discriminants, i.e. tensoring with (L ∨⊗m, 〈1〉,L ∨⊗n), yields the desired
orientation ζV : 〈(−1)m〉 ∼−→ disc(E , b,L ).

Remark 2.24. As a consequence of the lemma, if (H , h) is metabolic (in particular hyperbolic)
then gwH

1 (E , b,L ) is trivial as they have isometric discriminants.
Any hyperbolic space HL (V ) comes equipped with the orientation ζV . Note that under

the switch isometry, the hyperbolic space HL (Hom(V ,L )) has the opposite orientation. This
means that while HL (V ) and HL (Hom(V ,L )) are isomorphic as GOm,m-torsors, they rep-
resent (with their natural orientations) different isomorphism classes of GSOm,m-torsors.
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Group schemes isomorphic to µ2 × µ2

Denote κ = κm,m = κ(H , h) and then recall that by Example 2.10,

κm,m ∼=
{

µ2 × µ2 if m odd
µ4 if m even

In m is odd, then by our running hypothesis that X is connected, κ = {±1,±ε} is generated
by global sections. Thus κ has a canonically determined subgroup scheme κ0 = {±1} and
subgroup schemes κ+ = {1, ε} and κ− = {1,−ε} that are determined up to a choice of global
section ε ∈ κ(X). For the standard hyperbolic basis e1, . . . , em, f1, . . . , fm, we will fix the
choice of global section ε =

∏m
l=1(1− elfl), to be the one from Example 2.10.

There’s a split exact sequence,

1 → κ
p−×p0×p+−−−−−−−→ µ2 × µ2 × µ2

m−→ µ2 → 1,

well-defined up to ordering the three subgroups, where for • ∈ {−, 0,+}, p• is the quotient map,

1 → κ• → κ
p•−→ µ2 → 1,

and m is the total multiplication homomorphism. In particular, there are exact sequences,

0 → H i
ét(X,κ) → H i

ét(X,µ2 × µ2 × µ2) → H i
ét(X,µ2) → 0.

for each i ≥ 0. If (E , b,L ) is an (H , h)-oriented L -valued symmetric bilinear space of rank
n ≡ 2 mod 4 on X , then the formula

p0
∗gw

H
2 (E , b,L , ζ) = c1(L ,µ2) ∈ H2

ét(X,µ2)

is a restatement of Proposition 2.16b. Thus by the above exact sequence of cohomology groups
(for i = 2),

p−∗ gw
H
2 (E , b,L , ζ) + p+

∗ gw
H
2 (E , b,L , ζ) = c1(L ,µ2) ∈ H2

ét(X,µ2).

In particular, the elements p+
∗ gw

H
2 (E , b,L , ζ) and c1(L ,µ2) in H2

ét(X,µ2) completely deter-
mine the invariant gwH

2 (E , b,L , ζ) ∈ H2
ét(X,κ).

As for m even, κ = κm,m ∼= µ4 by Example 2.10, and there is no method analogous to the
above for identifying elements of H2

ét(X,κ). Instead, we’ll introduce the following notation. For
a line bundle L on X and for m even, define

c1(L ,κ) = c1(L ,κm,m) = gwH
2 (HL (Om

X ))

in H2
ét(X,κ), where as always (H , h) = HOX

(Om
X ). The notation is justified since for any

group scheme isomorphism µ4 ∼−→ κ, we have that ±c1(L ,µ4) 7→ c1(L ,κ) under the induced
isomorphism H2

ét(X,µ4) ∼−→ H2
ét(X,κ).

Recall that when we speak of the similarity 2nd Hasse-Witt invariant of a hyperbolic form on
a particular lagrangian V , we are implicitly considering the form with the canonical orientation
ζV of Lemma 2.23.
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Theorem 2.25. Let (H , h) = HOX
(Om

X ) and let V be a vector bundle of rank m on X .

a) If m is odd, then (using the notation of the above discussion)

p+
∗ gw

H
2 (HL (V )) = c1(V ,µ2) +

m+ 1
2

c1(L ,µ2)

in H2
ét(X,µ2).

b) If m is even, then

gwH
2 (HL (V )) = ι∗

(
c1(V ,µ2) +

m

2
c1(L ,µ2)

)
+ c1(L ,κ),

in H2
ét(X,κ).

Proof. We proceed by a Čech cohomology and Clifford algebra calculation, the spirit of which
must be classical. But as no suitable reference exists in the literature, we include all the details
here.

First, to fix the idea, we cover the case m = 1. Let U = {Ui}i∈I be a Zariski open covering
of X splitting L and V via OUi-module isomorphisms

λi : OUi
∼−→ L |Ui , νi : OUi → V |Ui ,

for each i ∈ I , and similitudes,

(ϕi, λi) : H |Ui = HOUi
(OUi) → HL (V )|Ui

e1 7→ νie1

f1 7→ λif1ν
−1
i

where e1 and f1 are global sections of H forming a hyperbolic basis. Now define

lij = λij
−1 ◦ λij ∈ Gm(Uij), vij = νij

−1 ◦ νij ∈ Gm(Uij),

and
aij = ϕij

−1 ◦ ϕij ∈ GO1,1(Uij).

With respect to the ordered basis e1, f1, we express aij as matrices,

aij =
(
vij 0
0 lij vij

−1

)
= l̃ij

(
(l̃ij vij−1)−1 0

0 l̃ij vij
−1

)
,

refining over the étale topology, if necessary, the covering U so that over each Uij we can choose
a square root l̃ij of lij . Similarly for the vij . Then over Uij , one checks that aij lift to sections

Aij = ṽij

(
l̃ij vij

−1 +
1
2
(1− l̃ij vij

−1)e1f1

)
∈ Γ1,1(Uij).

Then an étale Čech 2-cocycle representing the coboundary map gwH
2 (HL (V )) ∈ H2

ét(X,κ1,1),
is given by AijAjkAik−1. A straightforward (but tedious) computation in the Clifford algebra
shows that

AijAjkAik
−1 =

ṽij ṽjk
ṽik

l̃ij l̃jk

l̃ik

(
1− 1

2

(
1− l̃ik

l̃ij l̃jk

)
e1f1

)
∈ κ1,1(Uijk)
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Note that the étale Čech µ2-valued 2-cocycles,

ṽij ṽjk
ṽik

and
l̃ij l̃jk

l̃ik
,

are representatives of the classes c1(V ,µ2) and c1(L ,µ2) in H2
ét(X,µ2), respectively.

Now for our fixed choice of global section ε = 1− e1f1 of Γ1,1 satisfying

N(ε) = −1, r(ε) = −id, and ε2 = 1,

the étale Čech κ1,1-valued 2-cocycle,

1− 1
2

(
1− l̃ik

l̃ij l̃jk

)
e1f1 =

 1 if l̃ij l̃jk

l̃ik
= 1

ε|Uijk
if l̃ij l̃jk

l̃ik
= -1

,

is trivial modulo κ+
1,1, i.e. modulo ε. Finally, we have

p+
∗ gw

H
2 (HL (V )) = c1(V ,µ2) + c1(L ,µ2),

in H2
ét(X,µ2).

For the general case of m odd, and since the formula is invariant under base change, use the
splitting principle for Chern classes of vector bundles to reduce to the case where V ∼= V1⊕· · ·⊕
Vm is a direct sum of line bundles. Then choose, as before, a Zariski covering U = {Ui}i∈I ,
simultaneously trivializing V1, . . . ,Vm and L via OUi-module isomorphisms,

νsi : OUi
∼−→ Vs|Ui , λi : OUi

∼−→ L |Ui ,

for each s = 1, . . . ,m and i ∈ I , and furthermore by refining the cover in the étale topology,
ensuring that the transition maps,

vsij ∈ Gm(Uij), lij ∈ Gm(Uij),

all have square roots. Then for each (i, j) ∈ I2 define trivializing similarities,

(ϕi, λi) : H |Uij → HL (V )|Ui

es 7→ νsi es

fs 7→ λi fs ν
s
i
−1

where e1, . . . , em, f1, . . . , fm are global sections of H forming a hyperbolic basis. With respect
to this basis, we express the transition maps,

aij = ϕij
−1 ◦ ϕij =



v1
ij

. . .
vmij

lij v
1
ij

. . .
lij v

m
ij


,
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in GOm,m(Uij). Then over Uij , one can lift aij to sections,

Aij =
(

1
lij

)m−1
2

m∏
s=1

ṽsij

(
l̃ij v

s
ij
−1 +

1
2

(
1− l̃ij v

s
ij
−1
)
esfs

)
,

of Γm,m(Uij). A similar computation in the Clifford algebra yields

Aij Ajk Aik
−1 =

(
l̃ij l̃jk

l̃ik

)m+1
2 m∏

s=1

ṽsij ṽ
s
jk

ṽsik

(
1− 1

2

(
1− l̃ik

l̃ij l̃jk

)
esfs

)
.

Note that the étale Čech µ2-valued 2-cocycles,

m∏
s=1

ṽsij ṽ
s
jk

ṽsik
,

(
l̃ij l̃jk

l̃ik

)m+1
2

,

represent c1(V ,µ2) and m+1
2 c1(L ,µ2) in H2

ét(X,κ
0
m,m) = H2

ét(X,µ2), respectively, while the
κm,m-valued 2-cocycle,

m∏
s=1

(
1− 1

2

(
1− l̃ik

l̃ij l̃jk

)
esfs

)
=

 1 if l̃ij l̃jk

l̃ik
= 1

ε|Uijk
if l̃ij l̃jk

l̃ik
= -1

,

is trivial modulo κ+
m,m, where

ε =
m∏
s=1

(1− esfs) ∈ Γm,m(X),

is our fixed global splitting section. Finally, we have

p+
∗ gw

H
2 (HL (V )) = c1(V ) +

m+ 1
2

c1(L ),

in H2
ét(X,µ2).

The case of m even is similar, though we work over the étale double cover X̃ = X ×Spec Z[ 1
2
]

Spec Z[12 ,
√
−1] → X , where κm,m ∼= µ4 is trivialized as the constant group scheme Z/4Z.

Remark 2.26. By the splitting principle for metabolic forms (see Theorem 1.29), we can reduce
the calculation of gwH

2 of an oriented metabolic form to the above calculation for hyperbolic
forms.
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Chapter 3

Forms of low rank

The classification of quadratic forms of low rank is an endeavor going back to the third century
Greek geometers, who classified quadratic forms of rank 2 and 3 over the real number via the
geometry of conic sections. Over fields, Minkowski first gave the classification of quadratic
forms (of arbitrary rank) over Q in 1890. Dickson gave the classification over finite fields Fp in
1899 and attacked the question over general fields in 1907. It was Witt’s famous 1937 paper that,
for the first time, truly used the power of algebra and geometry to bring the classification problem
to a modern setting. The next breakthrough was Pfister’s series of papers in the 1960s.

In the context of quadratic forms over schemes, low rank usually means of rank ≤ 6. In
this interval, the accidental isomorphisms of Dynkin diagrams, A1 = B1 = C1, D2 = A1 + A1,
B2 = C2, and A3 = D3, have beautiful reverberations in the theory of quadratic forms of rank 3,
4, 5, and 6, respectively. Aside from connections with triality for forms of rank 7 and 8, beyond
this interval, there are no further accidental isomorphisms to exploit, and the theory becomes
much more difficult. Over rings, the accidental isomorphisms were heavily utilized by Knus,
Ojanguren, Parimala, Paques, and Sridharan in the 1980s and 1990s. Now, a standard reference
on this work is Knus [34, Chapter V]. Over fields (and more generally, over division algebras), a
wonderful reference is Knus/Merkurjev/Rost/Tignol [35, IV §15]. Over general schemes, much of
the theory over rings can be globalized, but a unified treatment does not yet exist in the literature.

Concerning the classification of line bundle-valued quadratic forms of low rank, when the line
bundle is a square in the Picard group, the theory reduces to that of classical OX -valued symmetric
bilinear forms over schemes. In particular, this applies to schemes with trivial Picard group (e.g.
local rings), and to the case of odd rank forms. As for the case when the line bundle is not a
square, Bichsel/Knus [7] mostly handle the case of rank 4 and 6 with trivial Arf invariant over
affine schemes. Here, to give a taste of the theory, we’ll provide a treatment of the classification
of line bundle-valued symmetric bilinear forms over schemes (with 2 invertible) of rank 6 from
the point of view of cohomological invariants.

As usual, let X be a noetherian scheme with 1
2 ∈ OX , considered in the étale topology, and

let L be a fixed line bundle (i.e. invertible OX -module) on X . As usual, for simplicity we will
assume that X is connected.
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3.1 Forms of rank 6

The “accidental isomorphism” of the Dynkin diagrams A3 and D3 is reflected in the isomor-
phism of algebraic groups SL4

∼= Spin(Alt4(OX),pf), where (Alt4(OX),pf) is the canoni-
cal quadratic form given by the pfaffian map on the rank 6 space of alternating 4×4 matrices.
There’s a dictionary between certain degree 4 Azumaya algebras of period 2 and symmetric bilin-
ear forms of rank 6 with trivial Arf invariant, via the reduced pfaffian construction of Knus [31]
and Knus/Parimala/Sridharan [32]. Later, Bichsel/Knus [7] gave an extension of this work to the
line bundle-valued case.

For a construction of the reduced pfaffian over any base scheme using Brauer-Severi varieties,
see Parimala/Sridharan [40]. In this section, we use an alternate construction of the reduced pfaf-
fian over any base scheme to clarify and complete the above dictionary. We show that there’s
an equivalence of categories between 2-torsion data (i.e. equivalence classes of degree 4 Azu-
maya algebras with chosen trivializations of their tensor squares) and oriented line bundle-valued
symmetric bilinear forms of rank 6 with trivial Arf invariant. This dictionary is reflected in the
isomorphism of algebraic groups GL4/µ2

∼= GSO(Alt4(OX),pf). The main result of this sec-
tion is to show that the similarity 2nd Hasse-Witt invariant respects this refined equivalence of
categories.

3.1.1 2-torsion datum

Consider the sheaf of groups GLn/µ2 defined as the sheaf cokernel of the exact sequence of
sheaves of groups,

1 → µ2 → GLn → GLn/µ2 → 1, (3.1)

in the étale topology on X . Then GLn/µ2 is a smooth affine algebraic group on X . Note that
GL1/µ2

∼= Gm via the Kummer sequence, but that in general, GLn/µ2 is not isomorphic to
GLn for n ≥ 2. The category of GLn/µ2-torsors on X is equivalent to the category of 2-torsion
data, see Knus [34, III §9.3].

Definition 3.1. A 2-torsion datum on X is a triple (A ,P, ϕ), consisting of an Azumaya algebra
A of rank n2 on X , a vector bundle P of rank n2 on X , and an OX -algebra isomorphism
ϕ : A ⊗ A ∼−→ End(P). In particular, the class of A in the Brauer group has period ≤ 2.
We will call n the degree of the 2-torsion datum. A isomorphism of 2-torsion data is a pair
(ψ, g) : (A ,P, ϕ) → (A ′,P ′, ϕ′), where ψ : A → A ′ is an OX -algebra isomorphism and
g : P → P ′ is an OX -module isomorphism rendering commutative the following diagram of
OX -algebras,

A ⊗A
ϕ
- End(P)

A ′ ⊗A ′

ψ ⊗ ψ
? ϕ′

- End(P ′)

ig
?

where ig is defined locally on sections over U → X by f 7→ g◦f ◦g−1. The category of 2-torsion
datum on X is thus a groupoid.

To every vector bundle V of rank n on X , we associate a split datum (End(V ),V ⊗V , ϕV ),
where

ϕV : End(V )⊗ End(V ) ∼−→ End(V ⊗ V ),
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is the canonical OX -algebra isomorphism.

Proposition 3.2. Let X be a noetherian scheme with 1
2 ∈ OX . The category of 2-torsion data of

degree n on X is equivalent to the category of GLn/µ2-torsors for the étale topology.

Proof. As in Appendix A.2.2, it’s enough to verify that every 2-torsion datum of degree n is
locally isomorphic (for the étale topology) to a split datum (this is done in Knus [34, III Lemma
9.3.1]), that every GLn/µ2-torsor has the structure of a 2-torsion datum of degree n, and then to
show that the isomorphism group scheme of a certain split datum is isomorphic to GLn/µ2. To
this end, let T = (End(On

X),On
X ⊗ On

X , ϕOn
X

) be the split datum associated to the trivial vector
bundle of rank n on X .

We proceed following Knus/Merkujev/Rost/Tignol [35, VII §31 Exercise 5]. For any 2-torsion
datum (A ,P, ϕ) of rank n, the conditions defining automorphisms of 2-torsion data translate
into a cartesian diagram of group schemes

Aut(A ,P, ϕ) - GL(P)

AutOX -alg(A )
? ϕ ◦ (−)⊗2 ◦ ϕ−1

- GL(P).

i
?

Thus on sections over U → X we have

Aut(A ,P, ϕ)(U) = {(ψ, g) ∈ AutOX -alg(A )(U)×GL(P)(U) : ϕ ◦ (ψ ⊗ ψ) = ig ◦ ϕ}.

Now identifying PGLn2 = AutOX−alg(End(On
X)) and GLn2 = GL(On

X ⊗ On
X), we have

Aut(T )(U) = {(ψ, g) ∈ PGLn2(U)×GLn2(U) : ϕOn
U
◦ (ψ ⊗ ψ) = ig ◦ ϕOn

U
}.

As for identifying Aut(T ), we’ll show that the homomorphism

GLn(U) → Aut(T )(U)
α 7→ (iα, α⊗ α)

is locally surjective in the étale topology on X , and has kernel µ2 ↪→ GLn. To this end, let
(ψ, g) ∈ Aut(T )(U). By the strong Skolem-Noether theorem, see Milne [36, IV Proposition
2.3], there’s an exact sequence of group schemes,

1 → Gm → GLn
i−→ AutOX -alg(End(On

X)) → 1.

in the étale topology on X . In particular, there exists an étale map V → U and a section β ∈
GLn(V ) so that iβ = ψ|V . But now by the cartesian product structure of Aut(T ) and a general
formula (the final equality), we have

ig|V = ϕOn
V
◦ ψ|V ⊗ ψ|V ◦ ϕ−1

On
V

= ϕOn
V
◦ iβ ⊗ iβ ◦ ϕ−1

On
V

= iβ⊗β.

Again using the strong Skolem-Noether theorem, this time for the group GLn2 , we can find an
étale map V ′ → V and a section c ∈ Gm(V ′), so that g|V ′ = c · β|V ′ ⊗ β|V ′ . Now let refining
V ′ to an étale V ′′ → V if necessary, we can assume that c has a square root c̃. Finally, letting
α = c̃ · α|V ′′ ∈ GLn(V ′′), we have that (iα, α ⊗ α) = (ψ|V ′′ , g|V ′′). Thus the homomorphism
GLn → Aut(T ) is locally surjective in the étale topology, thus is an epimorphism of group
schemes. Its kernel is clearly the diagonal subgroup µ2 ↪→ GLn. Thus we’ve identified Aut(T )
with the sheaf cokernel of µ2 → GLn, i.e. with GLn/µ2.
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The interpretation of exact sequence (3.1) on nonabelian étale Čech cohomology,

H1
ét(X,GLn) → H1

ét(X,GLn/µ2) → H2
ét(X,µ2) (3.2)

is that the isomorphism class of a vector bundle V of rank n is mapped to the isomorphism class
of the associated split datum (End(V ),V ⊗V , ϕV ). The 2nd coboundary map, assigning an iso-
morphism class of 2-torsion datum (A ,P, ϕ) to a cohomology class a(A ,P, ϕ) ∈ H2

ét(X,µ2)
is related to the involutive Brauer group.

3.1.2 The involutive Brauer group

An involution (of the first kind) on an OX -algebra A is an OX -algebra isomorphism σ : A →
A op satisfying σop ◦ σ = id. We will consider Azumaya algebras A on X with involution, see
§1.1.1. Locally in the étale topology, see Milne [36, IV Proposition 2.1], A is isomorphic to an
endomorphism algebra, and the involution restricts to an involution on an endomorphism algebra,
see Proposition 1.2 or Knus/Parimala/Srinivas [33]. Such involutions are either of orthogonal
type or symplectic type. For a given Azumaya algebra with involution, the type is locally constant
in the étale topology on X and gives rise to a global section of µ2. We will only be interested in
Azumaya algebras with orthogonal involutions.

Parimala/Srinivas [41] construct a “Brauer group” consisting of isomorphism classes of Azu-
maya algebras with involution (of any type) modulo classes of endomorphism algebras with invo-
lution coming from OX -valued symmetric bilinear forms on X . We will denote by Br+(X) the
subgroup consisting of classes of Azumaya algebras with orthogonal involutions.

The category of Azumaya algebras of degree n with orthogonal involution is equivalent to the
category of POn

∼= PGOn-torsors on X , see Theorem 1.4. As in §1.1.1, to every OX -valued
symmetric bilinear space (E , b) of rank n on X , we associate an Azumaya algebra (End(E ), σb)
with orthogonal involution, where σ(ϕ) = ψ−1

b ◦ϕ∨ ◦ψb on sections over U → X . The interpre-
tation of the projective orthogonal exact sequence,

1 → µ2 → On → POn → 1

on nonabelian étale Čech cohomology,

H1
ét(X,On) → H1

ét(X,POn) → H2
ét(X,µ2),

is that the isometry class of an OX -valued symmetric bilinear space of rank n on X is mapped to
the isomorphism class of its associated endomorphism algebra with involution. The 2nd cobound-
ary map is trivial on classes of such endomorphism algebras with involution, and thus factors
through Br+(X), yielding a group homomorphism

a : Br+(X) → H2
ét(X,µ2).

By Parimala/Srinivas [41, Theorem 1] this homomorphism is injective, and is surjective if and
only if every 2-torsion element in H2

ét(X,Gm) is represented by an Azumaya algebra on X (for
example, this holds for any affine scheme).

61



There’s a commutative diagram of “forgetful” homomorphisms of group schemes in the étale
topology on X , with exact rows (but not exact columns),

1 - µ2
- On

- POn
- 1

1 - µ2

wwwwww
- GLn

?
- GLn/µ2

?
- 1

1 - Gm

?
- GLn

wwwww
- PGLn

?
- 1

The mapH1
ét(X,POn) → H1

ét(X,GLn/µ2) is interpreted as associating to an Azumaya algebra
(A , σ) of degree n with an orthogonal involution, the canonical 2-torsion datum (A ,A , ϕσ)
given on sections by

ϕσ : A ⊗ A ∼−→ End(A )
a ⊗ b 7−→ x 7→ axσ(b).

The map H1
ét(X,GLn/µ2) → H1

ét(X,PGLn) is interpreted as associating to a 2-torsion datum
its underlying Azumaya algebra. The cohomological coboundary,

H1
ét(X,POn) → H2

ét(X,µ2),

associates to an Azumaya algebra (A , σ) with orthogonal involution, the image of its class in
the involutive Brauer group under the injective homomorphism a described above. There’s also a
commutative diagram,

H1
ét(X,POn) - Br+(X) ⊂

a
- H2

ét(X,µ2)

H1
ét(X,PGLn)

?
- Br(X)

?
⊂ - H2

ét(X,Gm)
?

showing that the invariant a(A , σ) is a refinement of the class of A in the Brauer group.
By a result of Saltman [45] that generalizes a theorem of Albert, for every 2-torsion Azumaya

algebra A , there’s an Azumaya algebra (A ′, σ) with orthogonal involution such that A ′ Brauer
equivalent to A . Indeed, considering the following commutative diagram,

1 - µ2
- GLn - GLn/µ2

- 1

1 - µ2

wwwwww
- On,n

?
- POn,n

?
- 1

of group schemes in the étale topology on X with exact rows, the map H1
ét(X,GLn/µ2) →

H1
ét(X,POn,n) is interpreted as the following construction of Knus/Parimala/Srinivas [33]. Given

a 2-torsion datum (A ,P, ϕ) of degree n, the authors construct a degree 2n Azumaya algebra
(A ′, σϕ) with orthogonal involution, where A ′ = (EndA op(A op⊕P), σϕ). By the commutativ-
ity of the diagram, the 2nd coboundary maps coincide a(A ′, σϕ) = a(A ,P, ϕ) in H2

ét(X,µ2).
By abuse of notation, if (A ,P, ϕ) is a 2-torsion datum, we simply refer to its class in Br+(X)
as the class of (A ′, σϕ) just constructed.
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3.1.3 The reduced pfaffian

Given a 2-torsion datum (A ,P, ϕ) of degree n on X , by the strong Skolem-Noether theorem
the switch map ωA : A ⊗A → A ⊗A is an inner automorphism. In fact, there’s a canonical
section u ∈ A ⊗A (X) called the Goldman element satisfying u2 = 1A , iu = ωA , and

A op ⊗A ∼−→ End(A )
u 7−→ x 7→ Trd(x) · 1A ,

by taking global sections via the canonical isomorphism, see Knus [34, Lemma 8.4.1]. Let ψ =
ϕ(u) : P → P be the induced morphism of OX -modules. Then ψ is an A − A op-algebra
homomorphism satisfying ψ2 = idP and is called the module involution of (A ,P, ϕ). Denote
by S −

ϕ (P) the sheaf image of the morphism idP − ψ, i.e. the sheaf of alternating elements of
P with respect to ψ. Then S −

ϕ (P) is a locally free OX -module of rank n(2n− 1) on X , a fact
that can be verified locally in the étale topology, see Knus [34, Theorem 9.3.2].

The reduced pfaffian construction associates to a 2-torsion datum (A ,P, ϕ) of degree n on
X , a functorial pfaffian line bundle pf(P) and polynomial map pf : S −

ϕ (P) → pf(P) of
degree n. Applied to a split datum (End(V ),V ⊗ V , ϕV ), the module involution ψ : V ⊗ V →
V ⊗ V coincides with the switch map and S −

ϕ (V ⊗ V ) =
∧2V , then the reduced pfaffian

gives pf(V ⊗ V ) = detV and pf :
∧2V → det V coincides with the classical pfaffian. Knus

[31] and Knus/Parimala/Sridharan [32] construct the reduced pfaffian over affine schemes by
faithfully flat descent. Parimala/Sridharan [40], give a construction over arbitrary schemes by
pulling back to Brauer-Severi varieties. Over schemes in which 2 is invertible, we realize the
reduced pfaffian, restricted to 2-torsion data of degree 4, as a map on torsors induced from an
exceptional isomorphism of algebraic group schemes.

Applied to a 2-torsion datum of degree 4, the reduced pfaffian yields a symmetric bilinear
space of rank 6 with valued in the pfaffian line bundle and with trivial Arf invariant. This fact
was the basis for much work on the classification of rank 6 symmetric bilinear spaces by degree
4 Azumaya algebras, see Knus [31], Knus/Parimala/Sridharan [32], and Bichsel/Knus [7]. Our
realization of the reduced pfaffian in this case clarifies and organizes these results.

Let Alt4 = Alt4(OX) be the free vector subbundle of End(O4
X) consisting of alternating

matrices and pf : Alt4 → OX be the classical pfaffian map. Then (Alt4,pf,OX) is the reduced
pfaffian construction applied to the 2-torsion datum (End(O4

X),End(O4
X), ϕ) given by

ϕ : End(O4
X) ⊗ End(O4

X) ∼−→ End(End(O4
X))

x ⊗ y 7−→ z 7→ xyzt

Note that this 2-torsion datum is isomorphic to the split datum (End(O4
X),O4

X⊗O4
X , ϕO4

X
). Thus

(Alt4,pf) is an OX -valued symmetric bilinear form on X .
Finally, define a group scheme homomorphism by

GL4
Φ−→ GSO(Alt4)

x 7−→ y 7→ xyxt

on sections, noting that by properties of the classical pfaffian pf(xyxt) = det(x) pf(y) so that
indeed Φ maps x to a well-defined similarity transformation of (Alt4,pf) with multiplier det(x).
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It’s also well-known that det(y 7→ xyxt) = det(x)3, i.e. Φ maps x to a proper similitude. In fact,
by descent, given a 2-torsion datum (A ,P, ϕ) there’s a canonically defined orientation

ζP : 〈−1〉 ∼−→ disc(S −
ϕ (P),pf,pf(P))

on the reduced pfaffian.

Theorem 3.3. Let X be a noetherian scheme with 1
2 ∈ OX and considered in the étale topology.

a) There’s a commutative diagram with exact rows and columns,

1 1

1 - µ2
- SL4

? Φ
- SO(Alt4)

?
- 1

1 - µ2

wwwwww
- GL4

? Φ
- GSO(Alt4)

?
- 1

Gm

det
?

======= Gm

µ
?

1
?

1
?

of group schemes in the étale topology on X .

b) The associated isomorphism of group schemes,

GL4/µ2 ∼−→ GSO(Alt4)

in the étale topology on X yields an equivalence between the category of 2-torsion data
of degree 4 on X and the category of oriented similarity classes of line bundle-valued
symmetric bilinear spaces of rank 6 with trivial Arf invariant on X . Furthermore, this
isomorphism induces the (oriented) reduced pfaffian construction,

H1
ét(X,GL4/µ2) ∼−→ H1

ét(X,GSO(Alt4))
(A ,P, ϕ) 7−→ (S −

ϕ (P),pf,pf(P), ζP)

on isomorphism classes of objects.

Remark 3.4. The category of SL4/µ2)-torsors is equivalent to the category of 2-torsion data with
a fixed trivialization of the pfaffian line bundle. The isomorphism of group schemes SL4/µ2 ∼−→
SO(Alt4) from Theorem 3.3 then yields, on isomorphism classes of torsors, exactly the classi-
fication of OX -valued symmetric bilinear forms of rank 6 with trivial Arf invariant obtained by
Knus/Parimala/Sridharan [32].
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We must point out that there are two points where our classification of rank 6 forms seems
to differ from the approach of Knus [31], Knus/Parimala/Sridharan [32], and Bichsel/Knus [7].
In previous formulations of the classification of rank 6 forms, the complications of “similarity up
to multiplication by a discriminant module” and “equivalence of Azumaya algebras” seemed to
arise. We’ll now explain how our classification circumvents these complications.

While the isomorphism class of the Azumaya algebra A doesn’t uniquely determine the simi-
larity class of the reduced pfaffian (S −

ϕ (P),pf,pf(P)) – it only determines the reduced pfaffian
up to multiplication by an OX -valued line – the full 2-torsion datum (A ,P, ϕ) does uniquely de-
termine the similarity class of the reduced pfaffian. Classically, the inverse functor of the reduced
pfaffian was “half” the even Clifford algebra, or “half” the generalized even Clifford algebra in the
line bundle-valued case. The even Clifford algebra is invariant under multiplication by OX -valued
lines (N , n),

C0(N ⊗ E , n⊗ b,L ) ∼−→ C0(E , b,L )
(a⊗ x) (b⊗ y) 7−→ n(a, b)xy

while the Clifford bimodule is not,

C1(N ⊗ E , n⊗ b,L ) ∼−→ N ⊗ C1(E , b,L )

Thus the associated 2-torsion data differ between forms scaled by OX -lines. Specifically, if N is
not a square in the Picard group, then

(C0(N ⊗E , n⊗ b,L ),C1(N ⊗E , n⊗ b,L ), ·) ∼= (C0(E , b,L ),N ⊗C1(E , b,L ), canN ◦ ·)

and
(C0(E , b,L ),C1(E , b,L ), ·)

define nonisomorphic 2-torsion data. Keeping track of the full 2-torsion data, not just the iso-
morphism class of the Azumaya algebra, removes the complication of considering forms up to
multiplication by OX -lines.

The next complication arises because opposite Azumaya algebras yield similar reduced pfaf-
fians. This led previous authors to introduce the notion of equivalence of Azumaya algebras
A ∼ A ′ if A ∼= A ′ or A op ∼= A ′ (when the base scheme X is connected, as we are always
assuming). Again, keeping track of the full 2-torsion datum, not just the isomorphism class of
the Azumaya algebra, eliminates this complication. Indeed, given a 2-torsion datum (A ,P, ϕ)
the canonical opposite 2-torsion datum (A op,P∨, ϕ∨) gives rise to a similar reduced pfaffian.
However, the canonical orientation induced by the dual datum ζP∨ is equal to the orientation in-
duced by the datum ζP if and only if A ∼= A op. Thus the oriented reduced pfaffian distinguishes
between an Azumaya algebra and its dual (unless they are isomorphic).

3.1.4 Hasse-Witt invariants and the reduced pfaffian

Fix (H , h) as the OX -valued symmetric bilinear space associated to (Alt4,pf). The choice of
Alt3 ⊂ Alt4 as a lagrangian induces an isometry (H , h) ∼−→ HOX

(O3
X), under which the global

section
ε = (1− 2e12e34)(1 + 2e13e24)(1− 2e23e14) ∈ κ(X),
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(where the global sections eij of Alt4(OX) form the standard basis of the alternating matrices)
maps to the fixed global section ε ∈ κ3,3(X) chosen in Example 2.10. It is with respect to this
choice that we now define the subgroups κ± ↪→ κ and the corresponding quotient maps p±. The
main theorem of this section is a refinement to the similarity 2nd Hasse-Witt invariant of the fact
that the classical 2nd Hasse-Witt invariant of a reduced pfaffian is the class in the Brauer group of
the corresponding Azumaya algebra.

Theorem 3.5. Let X be a noetherian scheme with 1
2 ∈ OX considered in the étale topology. Let

(A ,P, ϕ) be a 2-torsion datum of degree 4 on X . Then

p+
∗ gw

H
2 (S −

ϕ (P ),pfA,pf(P ), ζP) = a(A ,P, ϕ),

in H2
ét(X,µ2), i.e. the similarity 2nd Hasse-Witt invariant of a reduced pfaffian is uniquely deter-

mined in H1
ét(X,κ) by the classes a(A ,P, ϕ) and c1(pf(P),µ2) in H1

ét(X,µ2).

The proof links the reduced pfaffian and the similarity Hasse-Witt class via their interpreta-
tions of maps on étale cohomology induced from diagrams of group schemes. From the work
we’ve already done, it’s quite a simple diagram chase, combining the n = 4 version of (3.2), The-
orem 3.3, and the key diagram given in the following proposition, which employs the construction
of a particular half-spin representation of the Clifford group.

Proposition 3.6. There exists a “half-spin” representation

ρ+ : SΓ(Alt4) → GL4,

rendering commutative the following diagram of group schemes,

1 1

1 - κ+(Alt4)
?

- κ+(Alt4)
?

1 - κ(Alt4)
?

- SΓ(Alt4)
? s

- GSO(Alt4) - 1

1 - µ2

p+

?
- GL4

ρ+

? Φ
- GSO(Alt4)

wwwww
- 1

1
?

1
?

in the étale topology on X with exact rows and columns.

Proof. For the Clifford algebra of a split pfaffian form there’s a canonical OX -algebra isomor-
phism defined on sections x of Alt4 ↪→ C (Alt4,pf) over U → X , by

Ψ : C (Alt4(OX),pf) ∼−→ M2(M4(OX))

x 7−→
(

0 π0(x)
x 0

)
,
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where π0 : Alt4(OX) → Alt4(OX) is the (amazing) OX -module morphism defined by

π0


0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0

 =


0 −a34 a24 −a23

a34 0 −a14 a13

−a24 a14 0 −a12

a23 −a13 a12 0


and satisfying xπ0(x) = π0(x)x = pf(x) · id for sections x of Alt4(OX) over U → X . For all
this, see Knus [34, V §5.2.1]. The OX -algebra isomorphism Ψ induces the following canonical
identifications: the even Clifford algebra (resp. and multiplicative group) with the block diagonal
OX -subalgebra (resp. general linear group) of the matrix algebra,

C0(Alt4(OX),pf) ∼−→ M4(OX)×M4(OX)
C0(Alt4(OX),pf)× ∼−→ GL4 ×GL4

the even Clifford and spin groups with certain subgroups of invertible matrices,

SΓ(Alt4(OX),pf) ∼−→
{

(x, y) ∈ GL4 ×GL4 :
xyt = a · id4

detx = det y = a2
a ∈ Gm

}
Spin(Alt4(OX),pf) ∼−→ {(x, (xt)−1) : x ∈ SL4}

the Clifford norm sequence and vector representation sequence,

1 → Spin(Alt4(OX),pf) → SΓ(Alt4(OX),pf) N−→ Gm → 1
(x, y) 7→ xyt

1 → Gm → SΓ(Alt4(OX),pf) r−→ SO(Alt4(OX),pf) → 1
(x, y) 7→ z 7→ yzx−1

and finally, the Clifford sequence for the orthogonal similitude group,

1 → κ(Alt4(OX),pf) → SΓ(Alt4(OX),pf) s−→ GSO(Alt4(OX),pf) → 1
(x, y) 7→ z 7→ yzyt.

Furthermore, there’s a diagram of double covers of groups schemes,

SΓ(Alt4)

GL4

�

ρ
−

Gm × SO(Alt4)

N × r

?
GL4

ρ +

-

GSO(Alt4)

m

?�

Φ

det ·Φ ◦ (−) t−
1
-
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in the étale topology on X , where ρ−(x, y) = x, ρ+(x, y) = y, and Φ is the homomorphism

GL4 → GSO(Alt4(OX),pf)
y 7→ z 7→ yzyt

and where det ·Φ ◦ (−)t−1 is interpreted as

GL4 → GSO(Alt4(OX),pf)
x 7→ z 7→ det(x) (xt)−1zx−1.

The kernels of m and ρ± are canonically identified with the subgroups κ0 and κ±, respectively,
where κ = κ(Alt4(OX),pf) itself is canonically identified with µ2 × µ2 = {(±id,±id)} ↪→
SΓ(Alt4(OX),pf). A rearrangement of this diagram – using the above canonical identification
– focusing on ρ+ yields the proposition.

Remark 3.7. The case of arbitrary Arf invariant will be treated in future work in the spirit of Knus,
Parimala, and Sridharan [32].
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Chapter 4

Future directions and open questions

4.1 Further investigation of the similarity Hasse-Witt invariant

There is still much work ahead to fully understand the general classification of L -valued symmet-
ric bilinear forms, properties of the invariant gw2, and theory of other cohomological invariants
of these forms.

a) Describe a “splitting principle” for line bundle-valued symmetric bilinear forms. If L is
not a square in the Picard group, L -valued symmetric bilinear spaces are necessarily of
even rank. Given an L -valued form, can one always find a morphism f : Y → X that is
injective on cohomology and such that the pull back form is a sum of hyperbolic planes?
Use this to give a nice characterization of how the invariant gw2 behaves with respect to
Whitney sums.

b) Since our invariant is only defined for forms of a fixed discriminant, we’ve taken great care
to keep track of the the base form. When L is not a square, there’s a question as to what
values in H1

ét(X,µ2) can the discriminant of L -valued forms take. One possible guess
(at least for the case of varieties over a field) is that all L -valued forms have trivial Arf
invariant, i.e. discriminant isometry to a discriminant of a hyperbolic form. Note that this
guess would indeed follow from an affirmative answer to the question in a) concerning
splitting in terms of hyperbolic planes. We ask for examples of L -valued forms with L
not a square and with nontrivial Arf invariant.

c) Complete the investigation of L -valued symmetric bilinear forms of rank 6 with arbitrary
Arf invariant.

d) Relating the invariant gw2 of L -valued symmetric bilinear forms of rank 4 to the corre-
sponding classes of quaternion algebras, following Knus, Parimala, and Sridharan [32] and
Bichsel and Knus [7].

e) How is the invariant gwH
2 (E , q,L ) related to the class of the generalized even Clifford

algebra C0(E , b,L ), in the corresponding hermitian involutive Brauer group of Parimala
and Srinivas [41]?
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f) Computing the invariant gw2 for other arithmetically and geometrically significant L -
valued forms not occurring in the above considered general families, e.g. those arising
from octonian algebras and the cohomology of varieties.

g) Providing a “universal” description of the invariant gw2 in the spirit of Jardine [27]. This
would require a calculation of H2

ét(BGSO,κ). The mod 2 cohomology of BSO is a
polynomial ring in the universal Hasse-Witt invariants. The multiplier sequence induces a
fibration Gm → BSO → BGSO on the level of simplicial classifying schemes. Holla
and Nitsure [25], [26] compute the action of Gm on the universal Hasse-Witt classes to give
a presentation of the mod 2 cohomology ring of BGO in terms of generators and relations.
Similar methods will work to calculate the cohomology of BGSO with coefficients in κ
(and it’s tensor powers). This first requires explicit generators of the “mod 4” cohomology
of BSO. In particular, we would ask for a calculation of H2

ét(BGSOm,m,µ4) for m even,
and in general, H i

ét(BGSOm,m,µ
⊗i
4 ) to perhaps find higher invariants for line bundle-

valued forms.

4.2 Isometry class cohomological invariants

We ask for the precise relationship of the 2nd coboundary of the outer twisted spin cover (see
Theorem 1.40)

1 → µ2 → Spin(HL (Om
X )) → SO(HL (Om

X )) → 1

in terms of the invariants already described.
Fix a line bundle L on a scheme X . The following holds for general n even, but later we

will care only about the case when L is not a square in the Picard group. For each element
δ ∈ H1

ét(X,µ2) such that there exists an L -valued symmetric bilinear space of even rank n and
with discriminant δ, fix such a form TL = (TL , tL ,L ). Let (E , b,L , ζ) be an oriented L -
valued symmetric bilinear space of rank n with orientation ζ : disc(TL ) ∼−→ disc(E , b,L ). Let
(H , h) be any OX -valued symmetric bilinear form of rank n with discriminant δ (we can always
find such an OX -valued form) and choose orientations ζE : disc(H , h) ∼−→ disc(E , b,L ) and
ζL : disc(H , h) → disc(TL ) such that ζE = ζ ◦ ζL . We will show that the element,

gwH
2 (E , b,L , ζE )− gwH

2 (TL , ζL ),

in the image of H2
ét(X,µ2) → H2

ét(X,κ(H , h)), is independent of (H , h) and the orientations
ζE and ζL , and so only depends on TL and the orientation ζ. Indeed, for any other choice of
(H ′, h′) of rank n and discriminant δ and orientations ζ ′E : disc(H ′, h′) ∼−→ disc(E , b,L ) and
ζ ′L : disc(H ′, h′) → disc(TL ) such that ζ ′E = ζ ◦ ζ ′L , by the comparison formula of Theorem
2.18, we have that

gwH ′
2 (E , b,L , ζ ′E ) = ιH

′
∗ wH ′

2 (H , h) + (ζ ′E
−1 ◦ ζE )∗ gwH

2 (E , b,L , ζE )

and
gwH ′

2 (TL , ζ
′
L ) = ιH

′
∗ wH ′

2 (H , h) + (ζ ′L
−1 ◦ ζL )∗ gwH

2 (TL , ζL )

in H2
ét(X,κ(H ′, h′)). Noting that ζ ′E

−1 ◦ ζE = ζ ′L
−1 ◦ ζL , we have that

gwH ′
2 (E , b,L , ζ ′E )− gwH ′

2 (TL , ζ
′
L ) = (ζ ′L

−1 ◦ ζL )∗
(
gwH

2 (E , b,L , ζE )− gwH
2 (TL , ζL )

)
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inside the image of H2
ét(X,µ2) → H2

ét(X,κ(H ′, h′)). We are looking for a common canonical
lifting of this element to H2

ét(X,µ2).
Our question is how does such a canonical lift relate the 2nd coboundary map,

wTL
2 : H1

ét(X,SO(TL )) → H2
ét(X,µ2)

[E , b,L , ζ] 7→ wTL
2 (E , b,L , ζ)

of the (outer) twisted spin cover,

1 → µ2 → Spin(TL ) → SO(TL ) → 1

in the étale topology on X , defined in §1.5.2 Theorem 1.40?

4.3 Transfers in Grothendieck-Witt theory

There has been much recent activity in the calculation of Grothendieck-Witt groups of schemes.
The proper transfer homomorphism has played a strong role in these calculations. For example,
Walter [51] following work of Arason [1], Szyjewski [49], and Gill [21], calculates all derived
Grothendieck-Witt groups of projective bundles. As for other projective homogeneous varieties,
Pumplün [42], [43] handles the case of Brauer-Severi varieties, while Balmer and Calmès [6]
handle Grassmann varieties.

As Grothendieck-Witt groups of schemes are explicitly calculated, the dependence of the in-
variant gw2 on the relevant geometry can be more fully investigated. Also important is the behav-
ior of gw2 under the transfer homomorphism. This is a generalization of the study of invariants
of trace forms in number theory on the one hand, and of the study of the invariants of intersection
pairings on varieties of dimension divisible by 4 on the other. Understanding this behavior will
give insight into the “orthogonal Riemann-Roch” question posed by Shapiro [48] and by Taylor
[50]. Namely, given a proper morphism f : X → Y of schemes of relative dimension d divisible
by 4, does there exist a diagram of the form,

GW d(X,ωf )
“gw”

- H∗
ét(X)

GW 0(Y,OY )

f∗
?

w
- H∗

ét(Y,µ2)

“f∗”
?

for some theory of cohomology H∗
ét(X), theory of cohomological invariants “gw” (perhaps with

some defect factor included), and some theory of cohomological transfer “f∗”, only depending on
the morphism f? The theory of gw2 is a first approximation at filling in the top portion of this kind
of diagram. Strictly speaking, gw2 does not naively descend to the Grothendieck-Witt group (due
to the dependence on κ) but it might descend to a certain refinement of the Grothendieck-Witt
group, e.g. by keeping track of orientation. Perhaps a lesson is that it’s necessary to expand the
coefficients taken in étale cohomology beyond µ2, in order to define cohomological invariants of
ωf -valued forms.
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Appendix A

The categorical language of torsors

A.1 Torsors

Let X be a scheme with a fixed (Grothendieck) topology. By a sheaf on X we mean a sheaf of
sets on the site associated to this topology. Let G be a sheaf of groups onX with a fixed structural
morphism G → X , considering X as a sheaf on X via its functor of points. A (right) G-sheaf
on X is a triple (E , ·, p), where E is a sheaf on X with a (right) G-action E ×X G ·−→ E and
a G-invariant morphism of sheaves p : E → X , called the projection. By abuse of notation we
will often write E in place of (E , ·, p). Morphisms of G-sheaves are G-equivariant functors. The
trivial G-sheaf is G itself, together with its own (right) multiplication action and fixed structural
morphism as projection.

Definition A.1. A (right) G-sheaf E is a (right) sheaf G-torsor over X if there exists a cover
U = {Ui → X}i∈I of X so that E is trivial over U , i.e. for each i ∈ I , the G|Ui-sheaf E |Ui is
isomorphic to the trivial G|Ui-sheaf on Ui.

Note that the notion of sheaf torsor depends on the topology on X . The category Tors(G), of
sheaf torsors for G over X is a full subcategory of the category of G-sheaves and is a groupoid,
see Demazure/Gabriel [14, III §4.1.3].

Proposition A.2. Let X be a scheme, G a sheaf of groups on X , and f : E → E ′ a morphism of
G-sheaves on X . If E and E ′ are sheaf torsors for G over X then f is an isomorphism.

Some well known properties of sheaf torsors are corollaries of this fact, again see Demazure/
Gabriel [14, III §4.1.5-7].

Corollary A.3. Let X be a scheme, G a sheaf of groups on X , and E a G-sheaf on X .

a) Then E is trivial if and only if E is a sheaf torsor for G over X and the projection p : E →
X has a section.

b) Then E is a sheaf G-torsor over X if and only if the projection p : E → X is an epimor-
phism of sheaves on X and the canonical morphism of sheaves on X ,

E ×X G → E ×X E ,

defined on sections over U → X by (y, g) 7→ (y, y · g), is an isomorphism of sheaves on
X .
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If E is a sheaf G-torsor over X , then we call E a principal homogeneous space for G over
X (or G-torsor over X) if E is representable by a scheme over X . It is a subtle matter to decide
which sheaf torsors are representable, for instance see Milne [36, III, Theorem 4.3, Remark 4.4].

Theorem A.4. Let X be a scheme, G a group scheme over X .

a) If X has the flat topology and G is flat, locally of finite-type, and affine over X , then every
sheaf G-torsor over X is representable by a scheme.

b) If X has the étale topology and G is smooth, locally of finite-type, and affine over X , then
every sheaf G-torsor over X is representable by a scheme.

A.2 Twisted forms

Let X be a scheme with a topology and G be a sheaf of groups on X . For the following general
theorem, see Giraud [23, Théorème 1.4.5, Exemple 2.1.2, Corollaire 2.2.6].

Theorem A.5. Let X be a scheme with a topology and G be a sheaf of group on X .

a) For any object E of Tors(G), the presheaf of groups AutG(E ) defined by

AutG(E )(U) = AutTors(G)(E |U )

over U → X , is a sheaf of groups on X .

b) For any objects E and E ′ of Tors(G), the presheaf of sets IsomG(E ,E ′) defined by

IsomG(E ,E ′)(U) = IsomTors(G)(E |U ,E ′|U )

over U → X , is a sheaf on X and has a canonical structure of (right) sheaf torsor for
AutG(E ) over X .

c) There’s a canonical isomorphism,

G → AutG(G),

of sheaves of groups on X , where on the right, G denotes the trivial sheaf torsor for G
over X .

More generally, for each U → X , Tors(G|U ) is a category over U . We denote by TORS(G)
the associated fibered category over the topology on X . Then TORS(G) is a stack, see Giraud
[23, II] for a precise definition, but colloquially we say that TORS(G) satisfies descent. Con-
versely, we fix a stack T over the topology on X (e.g. the stack associated to the category of
schemes over X , sheaves of groups on X , vector bundles on X , or bilinear forms on X , etc).
Let E be an object of T |X . We call an object E ′ of T |X a (twisted) form of E if these objects
are locally isomorphic, i.e. if there exists a cover U of X so that E and E ′ are isomorphic when
restricted to U . Denote by Forms(E ) the category of forms of E and FORMS(E ) the associated
sub-stack of T of twisted forms of E , i.e. FORMS(E )|U = Forms(E |U ) for U → X . For an
object E in T|X denote by Forms(E ) be the set of isomorphism classes of forms of E over X ,
which is a pointed set with distinguished element the class of E .
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A.2.1 Twisted forms vs. torsors

In parallel with Theorem A.5, we can compare twisted forms and torsors for the sheaf of auto-
morphism group, see Giraud [23, Théorème 2.5.1].

Theorem A.6. Let T be a stack over the topology of a scheme X and let E be an object of T|X .
Let Aut(E ) be the sheaf on X of automorphism groups of E in T . Then there’s an equivalence
of stacks FORMS(E ) → TORS(Aut(E )), given by the equivalences of categories

Forms(E |U ) → Tors(Aut(E |U ))
E ′ 7→ IsomAut(E |U )(E |U ,E ′)

for U → X . In particular, there’s an equivalence of categories Forms(E ) → Tors(Aut(E )).

A.2.2 The case of symmetric bilinear forms

We consider the case of symmetric bilinear forms. The case of general bilinear forms can be
treated similarly.

Theorem A.7. Let X be a scheme with 1
2 ∈ OX considered in the étale topology. Let (H , h,L )

be a fixed L -valued symmetric bilinear space of rank n on X .

a) The category of O(E , b,L )-torsors is equivalent to the category of whose objects are L -
valued symmetric bilinear spaces of rank n and whose morphisms are isometries.

b) The category of SO(E , b,L )-torsors is equivalent to the category whose objects are pairs
((E ′, b′,L ), ψ′) consisting of an L -valued symmetric bilinear space of rank n together
with an isometry ψ′ : disc(E , b,L ) → disc(E ′, b′,L ) of discriminant forms, and whose
morphisms between objects ((E ′, b′,L ), ψ′) and ((E ′′, b′′,L ), ψ′′) are isometries ϕ :
(E ′, b′,L ) → (E ′′, b′′,L ) such that ψ′′ = disc(ϕ) ◦ ψ′.

c) The category of GO(E , b,L )-torsors is equivalent to the category whose objects are all
symmetric bilinear spaces of rank n with values in a line bundle and whose morphisms are
similarity transformations.

d) Let n be even. The category of GSO(E , b,L )-torsors is equivalent to the category whose
objects are pairs ((E ′, b′,L ′), ψ′) consisting of an L ′-valued symmetric bilinear space of
rank n (for some line bundle L ′ on X) together with an isometry ψ′ : disc(E , b,L ) →
disc(E ′, b′,L ′) of discriminant forms, and whose morphisms between any two objects
((E ′, b′,L ′), ψ′) and ((E ′′, b′′,L ′′), ψ′′) are similarity transformations ϕ : (E ′, b′,L ′) →
(E ′′, b′′,L ′′) such that ψ′′ = disc(ϕ) ◦ ψ′.

Moreover, the above sheaves of groups are smooth, locally of finite-type, and affine overX , hence
all respective sheaf torsors are representable as schemes.

Proof. In each case, we identify the stated category of sheaf torsors with a corresponding category
of twisted forms (inside the sub-stack of OX -modules that locally have the structure of a bilinear
form) of a base object, then we’ll appeal to Theorem A.6. There are two steps. First, we show that
the sheaf of automorphism groups of the base object is isomorphic to the stated sheaf of groups.
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Second, we identify all twisted forms of the corresponding base object. To this end, we prove that
every object of the stated form is a twisted form of the base object by finding a suitable covering,
we then prove that every twisted form is of the stated type by using properties of the contracted
product.

For a) and c), first note that O(H , h,L ) (resp. GO(H , h,L )) is defined as the sheaf of
isometry (resp. similitude) groups of (H , h,L ). Second, let (E , b,M ) be a symmetric bilin-
ear space of rank n on X and let U = {Ui → X}i∈I be an étale cover of X trivializing both
L and M via li : OUi

∼−→ L |Ui and mi : OUi
∼−→ M |Ui . Since every OX -valued symmet-

ric bilinear form is locally isomorphic for the étale topology, see for example Demazure/Gabriel
[14, III, §5.2], we can refine the cover U , finding isometries ϕi : (H |Ui , l

−1
i ◦ h|Ui ,OUi) ∼−→

(E |Ui ,m
−1
i ◦ b|Ui ,OUi) for each i ∈ I . Now note that these isometries induce similarities

(ϕi,mi ◦ l−1
i ) : (H |Ui , h|Ui ,L |Ui) ∼−→ (E |Ui , b|Ui ,M |Ui), which are themselves isometries

of the corresponding line bundle-valued forms if and only if M |Ui = L |Ui and mi ◦ l−1
i is the

identity map for all i ∈ I , i.e. M = L . Thus (H , h,L ) and (E , b,M ) are locally similar in the
étale topology, and are locally isometric if and only if M = L . Now we prove that every twisted
form E (i.e. OX -module with the structure of a bilinear form on some étale cover) of (H , h,L )
has the structure of a symmetric bilinear form with values in L (resp. a line bundle) on X . To
this end, let G be O(H , h,L ) (resp. GO(H , h,L )) and consider the corresponding (sheaf)
G-torsor P = IsomG(E , (H , h,L )) of isometries (resp. similitudes). Then there’s a canonical

isomorphism of OX -modules P
G
∧ H ∼−→ E . The map P × (H ⊗H ) id×h−−−→ P ×L induces a

symmetric OX -bilinear morphism,

P
G
∧ (H ⊗H ) → P

G
∧ L ,

where L has the structure of left G-sheaf via the multiplier coefficient. In particular, if G =

O(H , h,L ), then by definition G acts trivially on L and there’s a canonical isomorphism P
G
∧

L ∼−→ L , thus there’s a symmetric OX -bilinear morphism E⊗E → L . If G = GO(H , h,L ),
then there are canonical OX -module morphisms,

P
G
∧ L ∼−→ (P

G
∧ Gm)

Gm∧ L = µP
Gm∧ L ,

where µP is the canonical (sheaf) Gm-torsor induced from P by extension of structure group

GO(H , h,L )
µ−→ Gm. In particular, P

G
∧ L is some line bundle M , and thus there’s a sym-

metric OX -bilinear morphism E ⊗ E → M .

A.3 Nonabelian Čech cohomology

We’ll first review the necessary notation of nonabelian cohomology in the spirit of Serre [47, §5],
but valid for the étale site over X . We mostly follow Giraud [23, III §3].

Definition A.8. Let U = {Ui → X}i∈I be an étale cover of X and G be a sheaf of groups on
X .

• For each multi-index (i1, . . . , in) ∈ In, let Ui1...in = Ui1 ×X Ui2 ×X · · · ×X Uin .
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• For each section si1...in ∈ G(Ui1...in) and 1 ≤ m ≤ n, let si1...im−1imim+1...in denote the
image of si1...in under G(Ui1...im−1im+1...in) → G(Ui1...in) induced from the projection
Ui1...in → Ui1...im−1im+1...in .

• We’ll call a family (uij)(i,j)∈I2 of sections uij ∈ G(Uij) an étale Čech 1-cocycle for U
with valued in G if for each (i, j, k) ∈ I3 we have the equality

uijk uijk = uijk,

in G(Uijk).

• We say that two Čech 1-cocycles (uij) and (u′ij) for U with valued in G are cohomologous
if there exists a family (ai)i∈I of sections ai ∈ G(Ui) such that for each (i, j) ∈ I2 we
have the equality,

u′ij = aij uij (aij)−1,

in G(Uij). This is an equivalence relation on the set of all 1-cocycles for U .

• The set of all cohomology (equivalence) classes of Čech 1-cocycles for U with values in
G is denoted H1

ét(U /X,G), and is a pointed set with distinguished element the class of
the constant identity 1-cocycle.

• Define the étale Čech cohomology set by the direct limit under refinement of covers,

H1
ét(X,G) = lim

−→
U

H1
ét(U /X,G)

it’s a pointed set with distinguished element the direct limit of the constant identity 1-
cocycles.

A.3.1 Torsors vs. Čech cohomology

Under certain conditions, torsors locally trivial in the étale topology and nonabelian étale Čech
cohomology sets are in bijection, see for instance, Milne [36, Chapter III, Remark 4.8].

Theorem A.9. Let G be a smooth affine group scheme over X considered in the étale topology,
then there’s a canonical bijection,

Tors(G) → H1
ét(X,G),

of pointed sets.

Proof. In fact, it’s true that for a given étale cover U = {Ui → X}i∈I of X , the set of iso-
morphism classes of torsors for G over X that become trivial over U is in bijection with the
cohomology set Ȟ1

ét(U /X,G). A map is defined as follows.
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A.3.2 Twisted forms vs. Čech cohomology

Combining Theorems A.6 and A.9, we arrive at a direct comparison between isomorphism classes
of twisted forms and Čech 1-cohomology classes.

Theorem A.10. Let T be a stack over the étale topology on X and let E be an object of T|X .
Assume that Aut(E ) is a smooth affine group scheme over X . Then there’s a canonical bijection

Forms(E ) → Ȟ1
ét(X,Aut(E ))

of pointed sets.

A.3.3 Exact sequences in nonabelian cohomology

Definition A.11. Let (A, eA), (B, eB), and (C, eC) be pointed sets and A
f−→ B

g−→ C a sequence
of morphisms of pointed sets, i.e. set maps with f(eA) = eB and g(eB) = eC . Then the sequence
is called exact if ker(g) = im(f), where ker(g) = g−1(eC). The sequence is called strongly exact
if it is exact and furthermore, there’s an action of A on B – a map A × B

·−→ B with eA · b = b
for all b ∈ B – so that the orbits of A in B are the fibers of g, i.e. for each c ∈ C, and b ∈ g−1(c),
A · b = g−1(c).

Proposition A.12. Let 1 → G′ → G → G′′ → 1 be an exact sequence of sheaves of groups on
X . Then there’s an associated strongly exact sequence of pointed sets,

1 → G′(X) → G(X) → G′′(X) d0−→ H1
ét(X,G

′) → H1
ét(X,G) → H1

ét(X,G
′′).

Furthermore, if G′ → G is central, then the the above exact sequence of sets has a strongly exact
extension to the right,

· · · → Ȟ1(X,G′) → Ȟ1(X,G′′) d1−→ H2(X,G′).
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