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1. Universal CH0-triviality

This notion will likely come up a few times this week.

Definition 1.1. A smooth proper variety X over a field k is universally CH0-trivial if the

degree map deg : CH0(XF )→ Z is an isomorphism for every field extension F/k.

Variants of this notion were introduced by Bloch in his proof of Mumford’s theorem for

algebraic surfaces, and further developed in the work of Bloch and Srinivas. As stated, the

notion was first considered in a paper by Merkurjev, and then developed in a paper by Auel,

Colliot-Thélène, and Parimala and promoted for its use in rationality problems.

Remark 1.2. When X is rationally connected, then any two points defined over an alge-

braically closed field F are connected by a rational curve defined over F . As a consequence,

deg : CH0(XF ) → Z is an isomorphism for every algebraically closed field F/k. This is the

condition studied in the work of Bloch and Srinivas. It has two consequences:

• (Bloch–Srinivas) There exists N ≥ 1 such that N∆X = P ×X + Z ∈ CHn(X ×X),

where P is a 0-cycle and Z is a cycle supported in X × V for a closed subvariety

V ( X (here n = dim(X)). This is called a rational decomposition of the diagonal.

• (Colliot-Thélène) There exists N ≥ 1 such that the kernel of the degree map deg :

CH0(XF ) → Z is N -torsion for every field extension F/k. In this case, we say that

CH0(X) is universally N -torsion.

We now know that these consequences are actually equivalent. The following result, whose

proof is easy in hindsight, is one of the key lemmas proved in our paper.

Lemma 1.3. Let X be a smooth proper variety of dimension n over a field k. Then the

following are equivalent:

(1) X is universally CH0-trivial.

(2) X has a 0-cycle of degree 1 and deg : CH0

(
Xk(X)

)
→ Z is an isomorphism.

(3) X admits an integral decomposition of the diagonal ∆X = P ×X +Z ∈ CHn(X ×X)

where P is a 0-cycle of degree 1 and Z is a cycle supported in X × V for a closed

subset V ( X.

Proof. (1) implies (2) by definition. Letting P be a 0-cycle of degree 1 on X and η ∈ X ×k

k(X) the “diagonal generic point” (which is a 0-cycle of degree 1 on Xk(X)), then (2) implies

that η = P in CH0(X ×k k(X)), which yields (3) upon taking Zariski closure. Thinking of

the integral decomposition of the diagonal as a correspondence CH0(X) → CH0(X) shows
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that every 0-cycle is equivalent to a multiple of P . Since the integral decomposition of the

diagonal persists after extending scalars to F , we arrive at (1). �

There is also a version of this lemma for universal N -torsion.

In our paper, we asked whether there exists a Fano variety that fails to be CH0-universally

trivial. After reading our paper, Voisin provided the first example, and in the process

developed her degeneration method for obtructing universal CH0-triviality.

Universal CH0-triviality is a stable birational invariant of smooth proper k-varieties (Colliot-

Thélène–Coray, Fulton) and has good specialization properties (Voisin, Colliot-Thélène–

Pirutka).

Examples 1.4. The following are examples of universally CH0-trivial varieties:

• X stably rational over k (since Pn is universally CH0-trivial)

• X a smooth projective surface over C with CH0(X) = Z (i.e., pg(X) = q(X) = 0 and

X satisfies Bloch’s conjecture) and NS(X) torsionfree, e.g., X a Barlow surface.

Because of the first example, universal CH0-triviality is an obstruction to stable rationality,

but it is very hard to compute! Mostly, we obstruct one of the following consequences,

which are all arrived at by considering the integral decomposition of the diagonal as a

correspondence acting on various cohomology theories:

• If X is a smooth projective surface over C then transcendental cohomology T (X) =

NS(S)⊥ = 0. Bloch used this to give a new proof of Mumford’s theorem.

• If X is a smooth projective variety over k, then H0(X,Ωi
X) = 0 for all i > 0. In

characteristic zero, this was proved by Bloch; in characteristc p, a proof was given by

Totaro using Gros’ theory of cycle class map in logarithmic de Rham cohomology.

• If X is a smooth projective variety over a field of characteristic p, the Frobenius slope

[0, 1) part of rigid cohomology H i
[0,1)(X/k) = 0 for all i > 0. This was proved by

Esnault, and used, together with an argument involving the Lefschetz trace formula,

to prove that |X(Fq)| ≡ 1 (mod q) if X is defined over Fq.

• If X is any variety over k, then the unramified cohomology groups H i
ur(X/k) are

trivial for i ≥ 0, meaning that the natural map H i(k)→ H i
ur(X/k) is an isomorphism.

This was proved by Merkurjev. We always use coefficients Q/Z(i− 1) in degree i.

In low degree the unramified cohomology groups are well-known. Purity implies

that H1
ur(X/k) = H1

ét(X,Q/Z) (for X locally factorial) and H2
ur(X/k) = Br(X) (for

X regular). A result of Colliot-Thélène and Voisin says that

H3
ur(X/C) = H2,2(X) ∩H4(X,Z)/ im(CH2(X)→ H4(X,Z))

(for X is smooth projective and rationally connected over C), i.e., H3
ur(X/C) is the

obstruction to the integral Hodge conjecture for codimension 2 cycles on X.

Merkurjev proves more generally that X is universally CH0-triviality if and only

if all unramified cohomology groups arising from all cycle modules (in the sense of

Rost) are universally trivial.
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We remark that the first three consequences above (except for triviality of differential forms

in characteristic p) only require CH0 to be universally N -torsion (e.g., rationally connected),

while unramified cohomology is more sensitive to torsion phenomena.

2. Voisin’s degeneration method d’après Colliot-Thélène–Pirutka

Let X be a smooth proper geometrically integral variety over k. Voisin’s degeneration

method, as developed by Colliot-Thélène and Piritka, proceeds as follows:

(1) Fit X into a flat proper family X → B over a scheme of finite type with central fiber

X0 possibly singular.

(2) Find a universally CH0-trivial resolution f : X̃0 → X0, i.e., the pushforward map

f∗ : CH0(X̃0,F )→ CH0(X0,F ) is an isomorphism for all F/k. A sufficient condition is

that every scheme-theoretic fiber of the resolution is universally CH0-trivial over the

residue field.

(3) Show that X̃0 is not universally CH0-trivial, e.g., by obstructing one of the above

consequences (differential forms, unramified cohomology, etc.)

The outcome is that the very general fiber of the family (though perhaps not X itself) will

not be universally CH0-trivial.

Remark 2.1. The notion of a universally CH0-trivial resolution defines a new class of sin-

gularities that should be classified in the spirit of the minimal model program. Some are

known: ordinary double points and, more generally, singular loci with rational exceptional

divisors, but the exceptional locus could also be a Barlow surface.

When X is equipped with a quadric bundle structure X → S over a rational variety S, I’ll

discuss part (3). A program to address part (1) has been layed out by Hassett, Kresch, and

Tschinkel using deformation theory. Part (2) can be complicated to check in special cases.

3. Quadric bundles

Let S be a smooth projective geometrically integral variety. A quadric bundle will be a

proper flat morphism X → S whose fibers are quadric hypersurfaces of positive dimension in

a projective space bundle over S. The discriminant divisor D ⊂ S parameterizes the singular

fibers. We assume that the generic fiber of X → S is a smooth quadric over k(S) but we do

not necessarily assume that X is smooth.

Examples 3.1. The following are motivating examples:

• Conic bundles over rational surfaces, e.g., those considered by Artin and Mumford.

• Given a smooth cubic hypersurface Y ⊂ Pn+1, with n ≥ 3, and a line ` ⊂ Y , the

blow-up Y` of Y along the line resolves the projection from the line, and defines a

conic bundle Y` → Pn−1 whose discriminant is a quintic hypersurface. Interesting

examples are cubic threefolds and fourfolds, where we get conic bundles over Y` → P2

and Y` → P3, respectively.
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• Given a smooth cubic hypersurface Y ⊂ P2m+1 containing a linear space P = Pm.

The blow-up YP → Pm resolves the projection from P , and defines a quadric bundle

with discriminant divisor of degree m + 4. When Y is a cubic fourfold containing a

plane, where we get a quadric surface bundle Y` → P2 with sextic discriminant.

Now I will describe a method to compute the unramified cohomology groups H i
ur(X/k) of

the total space of a quadric bundle, developed by Colliot-Thélène and Ojanguren.

By definition, H i
ur(X/k) is the cohomology in degree 0 of the Gersten complex in Galois

cohomology

H i(k(X))
⊕∂i

v−−→
⊕

vH
i−1(k(v))

⊕∂i−1
v−−−→

⊕
wH

i−2(k(w))
⊕∂i−1

v−−−→ · · ·

where the first sum is taken over all discrete (rank 1) valuations v on the function field k(X),

whose valuation ring Ov contains k and has residue field k(v), and where ∂iv are residue

maps defined as Gysin coboundary maps in étale cohomology for the closed embedding

Spec k(v)→ Spec Ov.

When X is smooth and proper, one only needs to compute residues at divisorial valuations

centered at codimension 1 points x ∈ X(1). Also, by Bloch–Ogus theory, H i
ur(X/k) =

H0(X,Hi) is the set of global sections of the Zariski sheaf associated to the presheaf U 7→
H i

ét(U,Q/Z(i− 1)). Here, the torsion should stay away from any residue characteristic.

Now we assume that S = P2 and that k is algebraically closed. Consider the following

diagram arising from separating out those valuations on k(X) that are trivial on k(S) and

those that dominate higher codimensional points of S. In the diagram, we will only consider

residues at divisorial valuations, which in the case when X is singular, singles out a possibly

larger set than the full unramified cohomology of X:

H i
ur(X/k) �

� // H i
ur(Xk(S)/k(S))

⊕∂i
s //
⊕

s∈S(1) H i−1(k(Xs))
⊕∂i

t //
⊕

t∈S(2) H i−2(k(Xt))

0 // H i(k(S))

rX

OO

⊕∂i
s //
⊕

s∈S(1) H i−1(k(s))

⊕rXs

OO

⊕∂i−1
t //

⊕
t∈S(2) H i−2(k(t))

OO

(3.1)

We will only be interested in the sequence for i = 2, 3. Of particular concern are the

following facts concerning the kernel and cokernel of the restriction maps rX and rXs .

Theorem 3.2 (Arason, Pfister, Kahn–Rost–Sujatha). Let Q be a smooth quadric over a

field K of characteristic 6= 2. Then for i ≤ 2 or i = 3 and Q not an anisotropic Albert

quadric, the restriction map H i(K)→ H i
ur(Q/K) is surjective.

Corollary 3.3 (Colliot-Thélène). If S is a smooth proper surface over C and X → S is a

quadric bundle, then H3
ur(X/k) = 0.

Proof. The function field C(X) is a C2 field, so has cohomological dimension 2 and any

quadric of dimension at least 3 has a C(X) rational point. ThusH3(C(S))→ H3
ur(Xk(S)/k(S))

is surjective (in relative dimensions 1 and 2 by the result above, and in relative dimension

at least 3 since Xk(S) is k(S)-rational). But H3(C(S)) = 0, so we are done. �
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We now assume, in diagram (3.1), that H3
ét(S, µ

⊗2
2 ) = 0 and that the cycle class map

CH2(S)/2 → H4
ét(S, µ

⊗2
2 ) is an isomorphism. For example, we could take S = Pn. From

the Bloch–Ogus spectral sequence, these conditions ensure that H1(S,Hi) = 0 for i = 2, 3,

ensuring that the bottom row in the diagram is exact.

Then by a diagram chase in (3.1), we see that

H i
ur(X/k) ⊂ ker(⊕rXs) ∩ ker(⊕∂i−1

t )

ker(rX)
.

Hence we are particularly interested in the kernel of the restriction map Hj(K)→ Hj(K(Q))

for a (possibly singular) quadric Q over a field K, for j = 1, 2, 3.

• Case j = 1. The restriction map is injective whenever Q is geometrically integral over

K; there is a kernel in the case when Q is geometrically a union of two disjoint lines,

planes, etc., and in this case, the kernel is generated by δ ∈ H1(K,Z/2Z), the class of

the (quadratic) field of definition of the components of Q. When Q is a nonreduced

double line or plane, then the correct analogue of the restriction map (which is twice

the restriction map the the reduced subscheme of Q) has kernel all of H1(K,Z/2Z).

• Case j = 2. For Q a smooth conic, the kernel is generated by the quaternion class

c(Q) associated to Q. If Q is geometrically a union of disjoint lines, then the kernel

is δ ∪ H1(K). For Q a smooth quadric surface, the restriction is injective if Q has

nontrivial discriminant (i.e., Pic(Q) = Z), and generated by the Clifford invariant

c(Q) when the discriminant is trivial (i.e., Pic(Q) = Z2). For Q a cone over a smooth

conic Q′, the kernel of the restriction is generated c(Q′). For Q geometrically a union

of two disjoint planes, the kernel of the restriction is δ ∪H1(K).

• Case j = 3. For Q a smooth conic, the kernel is c(Q) ∪ H1(K). For Q a smooth

quadric surface, the kernel is nontrivial and was computed by Arason.

3.1. Examples (conic bundles over surfaces). Let S be a smooth projective rational

surface over C and X → S a conic bundle with discriminant divisor D ⊂ S and associated

Brauer class α ∈ Br(C(S)). Then ∂2
sα 6= 0 if and only if s is the generic point of a component

of D. By the above, H i
ur(X/C) = 0 for i = 3, so we focus on i = 2.

3.1.1. Assume D is smooth irreducible. This implies that X is smooth. In this case ker(rXs)

is trivial except when s is the generic point of D, when the group is generated by ∂2
sα.

Hence ker(⊕rXs) is generated by the image of α. But also ker(rX) is generated by α. Hence

H2
ur(X/C) = 0. In fact, this argument works exactly the same as long as D is only assumed

to be irreducible (not necessarily smooth).

3.1.2. (Artin–Mumford). Assume D = D1 tD2 disjoint union of smooth irreducible curves.

This implies that X is smooth. Then ker(⊕rXs) = ∂2
s1
αZ/2Z ⊕ ∂2

s2
αZ/2Z and this is

contained in ker(⊕∂1
t ). However, ker(rX) = αZ/2Z. Hence H2

ur(X/C) is Z/2Z × Z/2Z
modulo the diagonal Z/2Z, so is isomorphic to Z/2Z. This is an unramified cohomological

description of the Brauer class discovered by Artin and Mumford.
5



3.1.3. (Colliot-Thélène). Assume D = ∪Di is a strict normal crossings divisor such that X

is smooth (in this case the conic bundle X → S is standard). Each irreducible component Ci

contributes ∂2
si
αZ/2Z to H2

ur(X/C), though if t ∈ Ci ∩ Ci and the residues ∂1
t are nonzero,

then the choice of class at Ci and Cj must agree in order to lie in ker(∂1
t ). Colliot-Thélène

used this method to give a precise formula for H2
ur(X/C).

3.2. Examples (quadric surface bundle over surfaces). Let S be a smooth projective

rational surface over C and X → S a quadric surface bundle with discriminant divisor

D ⊂ S. As before, H i
ur(X/C) = 0 for i = 3 so we focus on i = 2.

3.2.1. Assume D is smooth irreducible. In particular, X is smooth and all fibers Xs are

geometrically integral, being smooth conics for s away from D and being geometrically the

union of two disjoint lines for s the generic point of D. Hence ker(⊕rXs) = 0 and thus

H2
ur(X/C) = 0. In fact, this argument works as long as D is only assumed to be reduced.

3.2.2. Assume D = 2D1 t 2D2 is the disjoint union of two nonreduced divisors whose

reduced subschemes are smooth. In this case, the generic fiber XC(S) is a quadric surface

with trivial discriminant, so there is a Clifford invariant α = c(XC(S)) ∈ Br(C(S)) generating

ker(rX). Then ker(⊕rXs) = ∂2
s1
αZ/2Z⊕∂2

s2
αZ/2Z and this is contained in ker(⊕∂1

t ). Hence

H2
ur(X/C) is Z/2Z× Z/2Z modulo the diagonal, so is isomorphic to Z/2Z.

This seems reminicient of the Artin–Mumford example! In fact, given Y → S a conic

bundle whose discriminant is a disjoint union of two smooth curves D = D1 t D2, then

X = Y ×SY → S is a quadric surface bundle with discriminant D = 2D1t2D2 such that Y is

birational to X×P1. In particular, X and Y have isomorphic unramified cohomology groups.

Thus such examples are really explained by the Artin–Mumford construction. Algebraically,

if α = (a, b) ∈ C(S) is the Brauer class associated to the Artin–Mumford example Y → S,

then the generic fiber of X → S is the quadric associated to the Pfister form 〈1, a, b, ab〉.
However, in such examples, X has a curve (of positive genus) of singularities above D, and

so will likely not have a universally CH0-trivial resolution.

3.2.3. (Pirutka). Gave the first explicit examples of quadric surface bundles X → S with

H2
ur(X/k) 6= 2 and with nontrivial generic discriminant. She also gave a formula for H2

ur(X/k)

using these methods, in the spirit of Colliot-Thélène’s formula for conic bundles.

3.3. What about H3
ur? As we have seen before, if X → S is a quadric bundle with

H3
ur(X/C) nontrivial we must have dim(S) ≥ 3 or be working over a nonalgebraically

closed base field. In the former case, examples of quadric threefold bundles X → P3

with H3
ur(X/C) 6= 0 where discovered by Colliot-Thélène–Ojanguren. In the later case,

this method was used by Auel–Colliot-Thélène–Parimala to prove H3
ur(X/F ) = H3(F ) for a

smooth cubic fourfold X over C containing a plane and F/C any field extension.

One interesting case is the conic bundle X` → P3 arising from a smooth cubic fourfold.

In this case the discriminant D is irreducible but with isolated ordinary double points.

Though Voisin has proved the integral Hodge structure in this case, one might wonder if the

irreducibility of D might generally imply the triviality of H3
ur(X/C) using this method.

6


	1. Universal CH0-triviality
	2. Voisin's degeneration method d'après Colliot-Thélène–Pirutka
	3. Quadric bundles
	3.1. Examples (conic bundles over surfaces)
	3.2. Examples (quadric surface bundle over surfaces)
	3.3. What about Hur3?


