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Abstract

Let F' be a non-Archimedean local field of characteristic 0, complete with respect to a
discrete valuation, with finite residue field, and ring of integers Op. The coefficient-
wise identification of monic degree n polynomials f € Op[z] with points in OF
defines a natural volume (the normalized Haar measure) on this set of polynomials.
For a given extension K of F', and more generally, for a given étale algebra over F', we
wish to compute the volume of polynomials which generate K over F'. Generalizing
methods of Serre in [18], we find this volume in the case of quadratic extensions,
unramified extensions, and in the case of polynomials which split completely over
F, i.e. factor into linear terms. We also find these volumes for all quadratic and
cubic étale algebras over the field of p-adic numbers Q,.






Introduction

Imagine looking at a chocolate mousse pie, but not one which has been cut up
into the canonical thick slices radiating out from the center, but into lots of small
triangles and squares like an abstract painting. Seeing such a pie, one might want to
study the division more closely and wonder at its origin. In this work we are handed
a naturally cut pie and ask for the area of each piece. The motivation for such a
project could be the elegant pie piece formula discovered by French mathematician
Jean-Pierre Serre, and after which much of this work is inspired, or we might just be
intrinsically interested in such a question. Here is our pie: the space of polynomials
with integer coefficients; z2+3x+6 and 2% —2 are two examples. Polynomials are just
strings of powers of an indeterminate = with integers (called coefficients) hung on
each one. We may think of them as formal clotheslines for integers, or as functions
(if we substitute numbers for ). A root of a polynomial is a number «, which when
substituted for x in the polynomial gives 0. Here we have a division: each slice of
the pie corresponds to the collection of polynomials whose roots generate a given
extension of our chosen field of numbers.

What do I mean by that? Roots don’t generally sit in the same field of numbers as
the coeflicients of their polynomials. To give an example, if we choose our coefficients
from the field of rational numbers Q, then it was already known by the 5% century
Greek mathematician Theodorus of Cyrene that the root of the polynomial 22 — 2,
namely the square root of 2, is not a rational number — it’s irrationall’ We don’t
just leave it there. If V2 does not live with the rational numbers then it lives
somewhere, no doubt. We call this place the extension of Q generated by /2 or
simply Q(v/2). It is the smallest reasonable set of numbers which contains both the
rational numbers Q and /2. We think of Q(v/2) as over or covering the field Q and
we express this pictorially as:

Q(v2)
2|
Q

where the 2 in the diagram indicates that the polynomial, of which /2 is a root,
has degree 2 or is quadratic.

So now we want to cut up the set of quadratic polynomials with integer coeffi-
cients into slices according to which extension its roots generate. One problem here
is that there are an infinite number of different extensions over the rational numbers

lsee Plato, Theaetetus, 147d.
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@, i.e. an infinite number of slices. Furthermore, there is no nice way to measure
the various slices of the pie.

Our question is still well posed, we are just choosing the wrong field of numbers.
In the following, we work over a “local” field of numbers F', where our question is a
natural one. In fact there are now only a finite number of pieces to the polynomial
pie, and there is an intrinsic notion of measurement on our pie called the Haar
measure.

To give an example, the field of 2-adic numbers @, (defined in Section 1.1) is
a local field, and there turn out to be 8 pieces to its quadratic pie, i.e. there are
precisely 8 different flavors of extensions.? The following picture actually shows the
pie with the 8 slices color coded.

a
Which flavor of root does 2 + ax + b have?

2This is a bit of a lie, there are actually 7 flavors of extensions, and one “split” polynomial case.



From now on, we will work strictly with monic polynomials, i.e. ones whose
coefficient on the highest power of z is 1. Here is how the picture works: the general
monic quadratic polynomial looks like

z? + ax + b,

where the numbers a and b are now 2-adic integers. To specify such a polynomial
we only need to give a pair of integers (a,b), and conversely, any pair of integers
(a, b) specifies such a polynomial:

> +ar+b < (a,b).

Thus we can think of the monic quadratic polynomials as living on a Cartesian
plane, where a is the coordinate in the horizontal direction, and b is the coordinate
in the vertical direction. The above picture is a representation of that plane. For
further details, see Section 2.3.

This thesis is an attempt to answer the question, “If the total pie has area 1,
how much area does each piece have?” We will discover, among other things, that
in the above picture, the red and blues pieces each have area %, the magenta and
light blue pieces each have area %, and the orange and green pieces only get area
- each.

Specifically, let F' be a non-Archimedean local field complete with respect to
a discrete valuation and with finite residue field. We will also assume throughout
that our field has characteristic 0. We follow some of J.-P. Serre’s techniques in his
1968 paper [18], where he derives his elegant “mass formula” for totally ramified
extensions of local fields. Though Serre briefly notes that his methods hold for both
the mixed and equi-characteristic cases, we have not sufficiently experimented with
the positive characteristic case to be sure. Since our inspiration and examples are
derived from the field of p-adic numbers @Q,, we will err on the side of caution and
only state our results for characteristic 0 local fields, though we expect that they
hold in both cases.

Let F' be such a local field with ring of integers Or. Under the coefficient
mapping

" +a " 4t ay 17+ ap - (ag, ..., a,) € O,

the set of monic polynomials of degree n and with coefficients in Op inherits the
normalized product Haar measure from the compact group Op. Given an étale alge-
bra A, i.e. a finite direct sum of field extensions, we find the volume of polynomials
which generate this algebra over F', call this mp(A), in a number of cases.

Chapter 1 is an introduction to local fields, with special emphasis on algebraic
extensions and their generating polynomials, Haar measure, Hensel’s lemma, and
étale algebras. The bulk of this chapter is meant as a reminder. In it, we will state
most of the definitions and theorems assumed throughout this work. In principle,
one could follow this chapter with just a little field theory and the ability to take a
fair amount on faith.

Chapter 2 deals with general quadratic étale algebras A of a local field F' (i.e.
A is a quadratic extension or the algebra F?). We find that the volume mpg(A) is a



4 CHAPTER 0. INTRODUCTION

simple function of D4, the discriminant of A, (see Definition 43 for D4 when A is a
general étale algebra).

Theorem 45. Let F' be a local field with residue field of order ¢, and let A be a
quadratic étale algebra over F'. Then we have,

1 1 q
) = 5
where d(A) = vp(Da4) is the valuation of the discriminant of A over F. Thus we
have the following identity,

R S
zA:Eqﬂqud(A)l_ ’

where the sum is over all quadratic étale algebras A over F' inside a fixed separable
closure of F.

We also classify the quadratic extensions K of Q,, give the explicit numbers
mgq, (K) in Table 2.1, and show more pretty pictures like the one above.

Chapter 3 deals with general cubic étale algebras of a local field F'. We introduce
the index form of an étale algebra A, and show how it can be used to calculate
mr(A), though this direct method gets increasingly difficult as the degree of the
algebra goes up. We classify the cubic algebras and compute the volumes explicitly
for Q,, see Table 3.3.

In Chapter 4 we find a recursion for the volume of polynomials of degree n that
split completely over F', i.e. that generate the étale algebra F™.

Theorem 53. Let F' be a local field with residue field of order ¢, then we have the
recursion,

mF(Fn) — Z H q_(/\k;l)mF(F)\k)’

where the sum is over all A = (A,..., ;) € N? such that A +---+ X\, = n, and
where mp(F°) =1 by definition and mp(F") = 1 holds trivially.

In Theorem 54, we find a recursion for the volume mp(K) when K is an un-
ramified extension of F. We also give tables (Tables 4.1, 4.2) of these numbers as
rational functions in ¢, and note that they have special factorizations in terms of
cyclotomic polynomials &, and the polynomials ¢, = ¢" — 1. We also describe
asymptotic results for both cases.



Chapter 1

Introduction to Local Fields

1.1 Discrete Valuation Fields

Definition 1. Let F' be a field. Then a discrete valuationon F'isamap v : F* — Z
(or to any discrete subgroup of Q isomorphic to Z) with the following properties,

v(ab) = v(a) +v(b), forall a,be F*,
v(a + b) > min(v(a),v(b)), foralla,be F*.

We make the convention that v is defined on F' by setting v(0) = oo, where the
symbol co obeys the reasonable formal properties n < 0o, o0 < 00, n + 00 = 00,
and co+o00 = oo for all n € Z. Note that the function a — 1 for all @ € F* is always
a discrete valuation, called the trivial valuation. Call a field F' a discrete valuation
field if it admits a nontrivial discrete valuation.

In fact, a discrete valuation v on a field F' satisfies the stronger property,
v(a) #v(b) = wv(a+b)=min(v(a),v(b)).
To see this, first note that
v(l)=v(1-1)=v(1)+v(1) = v(1)=0,
and similarly v(—1) = 0. Thus for any a € F*,
v(—a) =v(—-1) +v(a) = v(a).
Now let a,b € F with v(a) < v(b), then
v(a + b) > min(v(a),v(b)) = v(a) = v(a+ b — b) > min(v(a + b), v(b)),
and thus in fact, v(a + b) = v(a).
Definition 2. Let F' be a discrete valuation field with valuation v. Define

Or = {a€F:v(a)>0}
pr = {a€ F:v(a) >0}

suppressing the dependence on v when it is clear.
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Example 3. For any prime number p, the rational numbers Q form a discrete
valuation field with valuation v, : Q* — Z defined by the relation

r=+[[r"eqQ
p

where the product is the unique prime factorization of r taken over all primes, i.e.
vp(7) is the number of times p divides r. Then
a
Oq = {gp" € Q:ged(a,p) =ged(b,p) =1, n € N} :
Example 4. Let p be a prime number. The field Q, of p-adic numbers consists of
all formal power series in p,

o0
a= Z anp", an €{0,....,p—1},

n=—oo

which are Laurent series, i.e. a, = 0 for all but finitely many negative values of
n € Z. Then Q, is a discrete valuation field with valuation v, = ord, : Q) — Z,
defined by v,(a) = min{n € Z : a,, # 0}. Then Og, = Z,, the set of p-adic integers
and pg, = pZy.

Example 5. Let k be a field and let k(z) be the field of rational functions in x with
coefficients in k. Then k(z) is a discrete valuation field with valuation the degree
function deg : k[z]* — Z, extended to k(x) by

deg(f(z)/g(x)) = deg(f(z)) — deg(g(x)), for all f(z),g(z) € k[z], g(x) # 0.

Then Oy = k[z] and py() is the set of polynomials with zero constant coefficient.
For every irreducible polynomial p(z) € k[z], the field k(x) also has a valuation
Up(z), defined by the relation

f@)=a]]pa)=VeD e k(z),
p(z)

for some a € F, and where the product is the unique irreducible factorization of f(z)
taken over all monic (leading coefficient is 1) irreducible polynomials p(z) € k[z].
In this case,

Ok(z) = {Mp(a:)” € k(z) : f(z), g(x) € k[z] have no factors of p(x), n € N} :

g(x)
Example 6. Let M be the field of complex analytic functions on a deleted neigh-
borhood A of a € C. We identify M with C((z — a)) by writing f € M as its

Laurent series,
o

f(z) = Z an(z —a)", forall z € A.
Then M is a discrete valuation field with valuation the order function at a, ord, :
M* — Z, defined by ord,(f) = min{n € Z : a, # 0}. Then O, is the set of
functions analytic at a, and p the set of functions that vanish at a.
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Note that v(a™!) = —v(a) for all @ € F*, so a € O% if and only if v(a) = 0.
Thus pr is precisely the set of noninvertible elements in Op. This makes Op into a
local ring, called the ring of integers of F' or a discrete valuation ring, with unique
prime ideal pr. The field F = Op/pr is called the residue field of F. Denote by a
the image of an element a € O under the canonical map O — Or/pr. An element
7m € Op is called a uniformizing parameter or prime element of F if v(w) = 1 (or
v(m) generates the group isomorphic to Z).

Example 7. From our previous examples we have: with valuation v,, @, has residue
field F, and a uniformizing parameter p; with valuation deg, k(x) has residue field
k and a uniformizing parameter x; and with valuation ord,, M has residue field C
and a uniformizing parameter z — a.

Proposition 8. Let F' be a discrete valuation field with uniformizing parameter .
Then the following hold:

e p = (m) = 7Op, and any ideal of Op is principal and corresponds with p7 for
some n € N.

e The intersection of all ideals of O is the zero ideal.

e Any element a € F™* can be uniquely written as a = 7ju for some n € Z and
for some unit u € O7,.

Proof. Let I C Op be a proper ideal. There exists some n = min{v(a) : a € Or},
and choose a € I such that v(a) = n. Then v(a) = v(7") and so a = 7"u for some
unit v € Of, thus 7"Op C I. Since n is the minimal such integer, we also have
I C 1%Op. Thus pp = 7O and I = p} for some n € N. Now let a € N,p%, then a
has valuation greater than any given integer so a = 0 by Def. 1.

Now for a € F*, let v(a) = n for some n € Z, then

n

vier™) =0 = aar"€0p = a=7"u,
for some u € 0%, the uniqueness of u follows immediately. O

One may consult [17], Chp. I, §§2-3 for a characterization of discrete valuation
rings and fields via commutative algebra.

Topology and Local Fields

Let F' be a field with discrete valuation v, let d € R with 0 < d < 1, and define an
absolute value |- |, : F* — R by

la|, = d"@, forall a € F*,

extending to F' by letting |0/, = 0. One may easily check that in fact, |- |, satisfies
the conditions of an absolute value on F, i.e. that for a,b € F, |a| > 0, |0], = 0,
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labl, = |al,|bl,, and |a + b|, < |al, + |bl,- In fact, this absolute value satisfies the

stronger non-Archimedean condition,
la 4+ b|, < max(|aly, |b]y)-

We usually call this absolute value | - |r, when the choice of v is clear. As usual,
define the metric d, : F' x F' — R by d,(a,b) = |a — b|,. One may easily check that
this metric induces a topology in which the sets a + p" for n € Z form a basis of
open neighborhoods at a € F. This topology will be called the discrete valuation
topology on F. If F has a finite residue field of order ¢, we usually take d = 1/q¢ in
the above definition. This topology is also independent of the choice of valuation v.

Lemma 9. Let F' be a discrete valuation field with valuations v : F* — Z and
w: F* — T, where I' 2 Z. Then the topologies induced by two discrete valuations
v, w coincide if and only if v = g o w for a group isomorphism g : ' — Z.

We say a field F' is a complete discrete valuation field if ' is complete with
respect to a discrete valuation topology, i.e. if for every Cauchy sequence {a,} in
F, there exists an ¢ € F such that {|a, — a|,} — 0 in R. There is a nice way to
represent elements in a complete discrete valuation field.

Definition 10. Let F' be a discrete valuation field. A set of representatives R for
the residue field F satisfies R C Op, 0 € R, and the reduction mapr —7: R — F
is a bijection.

Proposition 11. Let F' be a complete discrete valuation field with uniformizing

parameter m. Then any element a € F' can be uniquely written as a Laurent series
in 7 with coefficients in R, i.e.

where a,, = 0 for all but finitely many negative values of n € Z.

Let F be a complete discrete valuation field with finite residue field F, then
call ' a local field. The conditions that F' be complete with respect to a discrete
valuation and has finite residue field impart it with nice topological properties, and
from now on, we will only consider local fields.

Lemma 12. Let F be a local field. Then F' is a locally compact field with respect
to the discrete valuation topology. The ring of integers Or and prime ideal pr are
compact subrings. The multiplicative group F* is locally compact, and the unit
group O} is a compact subgroup.

As a converse, any locally compact field F' is isomorphic to R, C, or a local field.
In the latter case we have:

Theorem 13. Let F' be a local field and let char(F') = p. Then char(F) is either 0
or p. If char(F") = 0, then F is isomorphic to a finite extension of Q,. If char(F') = p,
then F is isomorphic to a finite extension of the field of formal Laurent series F, ((x)).

See [15], App. to Chp. 2 or [5], Chp. 4.1.1 for a proof, and for further discussion.
From now on, we restrict ourselves to the case of local fields with characteristic 0.
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1.2 Haar Measure

Since a local field F' is locally compact with respect to its additive group structure,
there exists a Haar measure on F'.

Theorem 14. Let G be a locally compact abelian topological group written ad-
ditively. Let B(G) be the set of Borel sets of G, i.e. the o-algebra generated by
the open sets of G. Then there exists a nonzero measure p : B(G) — R, which is
translation-invariant, i.e.

u(g+ E)=u(E), forall E € B(G),g€G.

For a discussion of the general theory of topological groups and Haar measure,
see [9], Chp. 2-4, or [3].

In the case of a local field F', the Haar measure is usually normalized so that
#(Op) = 1. Let F have finite residue field of order ¢, and let R = {ao,...,a,-1}
with ay = 0, be a set of representatives for F, then by the decomposition of local
fields in Proposition 11, we have the disjoint union,

qg—1

Or = J(a; + pr). (1.1)

1=0

Since u(a; + pr) = p(pr), normalizing u(Op) = 1 forces u(pr) = 1/q. By similar
arguments we have

ppr) =q¢ ", foralln e Z. (1.2)
Similarly, we have, 1
—
05 = [J(@i +pr), (1.3)
i=1
thus we have, .
* q—
n(Op) = T

Another useful disjoint decomposition is
0 = [Jri\pi', (1.4)
n=0

where p% = Op. In this case, we have,

—-n n —n -1
ppE\PE) =g " =" =g —qq . (1.5)

For a general locally compact group G, the Haar measure p defines an integral
on G, i.e. a positive continuous translation-invariant linear functional,

fr—)/Gfd,u:C’c(G)—)R,
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where positive means f > 0 = [, f du > 0, translation-invariant means [ t,f dp =
Jo [ du, where t,f(z) = f(a+ ) for all z,a € G, and where C.(G) is the set of
continuous real functions on G with compact support. From now on we Will be con-
cerned only w1th the unique normalized Haar measure, so we will write [, f o f(x) du(z)
or just [, f(z) dz in place of [ f dp.

Example 15. Let I’ be a local field with finite residue field of order ¢, discrete
valuation v, and normalized absolute value |z|r = ¢ *®). We will integrate the
continuous function z — |z|r : O — R over Op. We employ the decomposition of
Or in Equation 1.4, and note that |- |z has constant value ¢=* on the sets p&\p%tt.

We have,

|z|p dz = / |z|p dz = qk/ 1dzx
/OF Z p\pEt! Z PP
2

_ Zq”kq_l: ¢ g-1_ ¢
P ¢ ¢@-1q g+l

where 1 : Or — R is the constant function with value 1.

In the case of integration on a local field F', almost everything from multivariable
calculus on real manifolds may be carried over to the study of so-called F-analytic
manifolds. Most notably, as in complex analysis, all continuously differentiable
mappings on F' are analytic, i.e. representable by power series. Of particular im-
portance to us here is Fubini’s theorem and the change of variables theorem from
multivariable integration.

Lemma 16. Let GG, H be locally compact groups with respective Haar measures y,
A. Then the measure y ® A on G x H defined by

(L@ N(E x F) = y(E)A(F), forall E x F € B(G x H),

is a Haar measure on G' x H with the product topology.

Theorem 17 (Fubini). Let G, H, pu, and ) be as above, and let f € C.(G x H),
then

mH/f(x,y)dy:G—)]R and yH/f(:v,y)dx:H—)R
H G

are functions in C.(G) and C.(H), respectively, and furthermore,

[ pawey) - /G(/Hf(x,y) dy) dr
_ /H(/Gf(ac,y) dm) dy.

For a discussion of Fubini’s theorem on arbitrary locally compact groups, see [9],
Chp. III, §13 or [3], Chp. VII, §1, n° 5.
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Theorem 18 (Change of Variables). Let F' be a local field, let E € B(F™), let
¢ : E — F™ be an F-analytic even k-fold covering map onto its image, and let
f € C.(F™). Then p(F) € B(F"), and

1
/M) fle)de =g /E(f 0 p)(x) |det(Jo(z))|r da,

where | - |p is the normalized absolute value on F', and where z — Jp(z) is the
Jacobian matrix of ¢ at z.

For a statement of this theorem and a general treatment of local F-analytic
manifolds, see [4], §10, and for a proof of this theorem in the case where ¢ is a
polynomial function and another general and interesting discussion, see [10], Chp. 2.

Example 19. We compute the same integral here as in Example 15, except here we
employ the change of variables theorem. Let F' be a local field with finite residue field
of order ¢ and uniformizing parameter 7. In this case, we employ the decomposition
Op = O} U pp, and so

/ |x|Fd:r=/ |$|Fd$+/ |z|p dx.
Op 0} PFr

Now, the map ¢ : Op — pp, where ¢(x) = wz for all x € OF is a bijection and has
det(Jo(x)) = w. Thus by the change of variables theorem,

1
/ 2|y dr = / 2| da = / R —2/ 2| da,
pFr QD(OF) Op q Or

and, using Equation 1.3,

-1 1 -1
/ alpde=2"24 2 [ |glpdz = (1—q—2)/ 2lp dr = 121

Of

Again, we arrive at

q
T\lp de = ——.
/(')F|| g+1

We will be using this technique of changing variables and then solving a recursion
many times throughout this work.

1.3 Extensions of Local Fields

In this section we study extensions of local fields, ramification, and review the basic
properties of polynomials which generate extensions of a particular type. For a
wonderful and very general discussion of these topics, consult [5], Chp. II.2, or for
a very terse review, see [17], Chp. I, §§1-7, and Chp. II, §§2-3.

Lemma 20 (Gauss). Let F be a local field, and let f € Op[z] be monic with a
root a € F', then in fact, a € O.
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Let K be a field such that F' C K, then we say that K is an extension of F'. We
define the degree of the extension K over F, or dimp(K) to be the dimension of K
as a vector space over F.. We say K is a finite extension of F if dimp(K) is finite.
Unless otherwise stated, all extensions will be over the field F.

If o is the root of a monic polynomial with coefficients in F', we say « is an
algebraic number; if this polynomial is monic and has coefficients in Op, we say «
is an algebraic integer. The unique monic irreducible polynomial of minimal degree
of which an algebraic number « is a root, is called the minimal polynomial of .

Proposition 21. Let K be a finite extension of a local field F', then Og is the
integral closure of Op in K, i.e. if f is the minimal polynomial for a € Ok, then
f € Oplz], and conversely, if f € Op[z] is monic and ¢ € K is a root of f, then
a € OK.

Define F'(«), or the extension generated over F' by «, to be the smallest field
containing both F' and «. If o has a minimal polynomial of degree n then F(«) is
a finite extension of F' of degree n. Call an extension K of F' a separable extension
if every element o € K has a minimal polynomial over F' with no multiple roots.
In the case that F' has characteristic 0, every extension of F' is separable. Let
a separable closure of F', or F*P be a separable extension of F' containing every
algebraic number.

Theorem 22. Let K be a finite separable extension of a local field F' of degree n,
then K = F(«a) for some algebraic integer o € O, with minimal polynomial of
degree n over F'. Also, the ring of integers Ok is simply generated over O by an
algebraic integer 3 € Ok, and we write Ox = Op[f], i.e. the powers 1,3,..., 8"}
form a module basis for O over Op.

Let K be a finite extension of a local field F' with discrete valuation w : K* —
Z. Then the restriction w|p : F* — Z is a discrete valuation on F, and the
group index [w(K*) : w(F*)] is called the ramification index, or e(K/F). Thus
wlp: F — e(K/F)Z=27Z,ie w(a) =e(K/F)v(a) for a € F, where v is a discrete
valuation on F. Under this induced valuation, the ring of integers Op is a subring
of the ring of integers O, and the prime ideal pr = px N Op is contained in p%. In
other words, for respective uniformizing parameters 7r and g, we have 7p = 7% u
for some unit u € O}. Also in this picture, the residue field F' = O /py is a subfield
of K = Ok/pk. The degree of the field extension K over F is called the residue
degree, or f(K/F).

K Pr K =Ty
n‘ L f
F Pr F = I,

Figure 1.1: Diagram of ramification index and residue degree.
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Theorem 23. Let K be an extension of a local field F' of degree n, then
e(K/F)f(K/F) =n.

Remark 24. Let K be an extension of F of degree n, with e(K/F) =e, f(K/F) =
f, uniformizing parameters mr and 7k, discrete valuations vgx and vg, and nor-
malized absolute values | - | and | - |[p. Then if F' has residue field of order g,
K has residue field of order ¢/, and we make the following simple but important
observation,

vg(mr) =e = |Tp|lk = g TvEr) = g=el = g7 = \Tp |-

Since knowing the absolute value of a uniformizing parameter determines it every-
where, we have,

|- lx =117 (1.6)

where |- |r and | - | are the normalized absolute values on F' and K, respectively.

Definition 25. Let K be a finite extension of F' of degree n. If e(K/F) = 1, so
f(K/F) = n, then say K is an unramified extension of F. If e(K/F) = n, so
f(K/F) = 1, then say K is a totally ramified extension of F. Let char(F) = p.
If pfe(K/F), then say K is tamely ramified. If p|e(K/F), then say K is wildly

ramified.

Definition 26. For a polynomial f(z) = a,2™ + - - + a9 € Oplz], define the
reduction of f in the residue field,

flx) =@a" +---+7a € Flz].
If , 8 € Op, or f,g € Op[z], then say
a = mod py or f=gmodypyr

if o — § € p}, or f(x) — g(x) € pi[z], respectively. Also, for ag € F, or f, € Flz],
define a lift to be any element o« € Op, or f € Op[z] such that @ = «y, or f = fo,
respectively.

Definition 27. A monic polynomial f(z) = 2"+ ap_12™ 1 + -+ ag € Op is called
an FEisenstein polynomial over F if ag,...,a,_1 € P, but ag € p2.

Proposition 28. Let K be a finite separable extension of F' of degree n, and let
7k and mr be uniformizing parameters for K and F', respectively.

e If K is an unramified extension of F', then K = F(¢) and Og = O/[(] for some
¢ € Ok for which K = F((), i.e. such that  satisfies an irreducible polynomial
of degree n over F. Conversely, for any monic irreducible polynomial f € O of
degree n such that f is irreducible over F, a root of f generates an unramified
extension of degree n in which 7y is still a uniformizing parameter.
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e If K is totally ramified, then K = F(7g), Ox = Op[rk], and 7x is the root of
an Eisenstein polynomial of degree n. Conversely, any Eisenstein polynomial
of degree n over F' is irreducible, and for any root 7, F'(7) is totally ramified
over F' of degree n, 7 is a uniformizing parameter in F'(7), and Opr) = O[n].

See specifically [5], Chp. I1.3.3 for a proof.

Definition 29. Let K be a separable extension of a field F' of degree n. Then let
Autp(K) be the set of automorphisms of K which fix F, i.e. automorphisms s :
K — K such that sa = a for every a € F. Define w(K/F) = w(K) = #Autp(K).

If K is an extension of F of degree n, then w(K) < n. If w(K) = n we say K is
a Galois extension of F', and call Autr(K) the Galois group of K over F.

Definition 30. Let K be a separable extension of a field F' of degree n. Then let
Homp (K, F*®?) be the set of continuous injective homomorphisms o : K — F5%P
which fix F', called embeddings of K over F.

Theorem 31. Let K = F(a) be a separable extension of F' of degree n. Then
#Homp (K, F*P) = n, and for each 0 € Homg(K, F*P), o« is a root of the minimal
polynomial of a.

Let o € F*®? be an algebraic number with minimal polynomial f over F. Then
any root 8 of f is said to be a conjugate of o over F. If K = F(«), then
Homp (K, F*%P) acts on K by shuffling the conjugates of a.

Definition 32. Let K be a separable extension of F', and let H = Homp (K, F5P).
Then for o € K define,

NK/F H oo, TK/F ZO‘&
o€H ocH

and call these the norm and trace, respectively, of a from K down to F.

Proposition 33. For «, 8 € K, we have Ng/r(), Tk/r(a) € F, and

Ni/r(aB) = Niyr(a)Nk/r(B), Tx/r(a+ B) = Tryr(a) + Tryr(B).
If K = F(«) and f is the minimal polynomial of « over F', then

f(z) = Ngrlz—a)= H(x —oa)

o€EH
= 2" — TK/F(Oz):Ic"_1 + -4+ (=1)"Ng/p (o).

The norm and trace are examples of the elementary symmetric functions,
€1,...,6en, of n indeterminates a4, ..., a,, and defined by the relation,

n

H(x—ai) =a"—ei(a1,...,a,)2" " +ea(ar, ..., a,)T" = 4+ (=1)"en (a1, ..., an),
i=1

or explicitly given by

€1 al,..., E a;, €9 al,..., E a;Qj, .., nal, IICLZ

1<J
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Definition 34. Let f € Og[z] be monic, and let « be a root of f. Then define the
discriminant of f by,
discr(f) = H(aioz —oja)?,
i<j
where {o1,...,0,} = Homp(F(«), F*P). Now let K be an extension of F', and

let f be a polynomial whose root generates Ok over Op. Then define Dy, the
discriminant of the field K, by Dg = discr(f), and define d(K) = vp(Dg).

Example 35. Let K be an extension of F' of degree n. If K is unramified over F',
then d(K) = 0. If K is tamely ramified over F, then vp(K) =n — 1. If K is wildly
ramified over F, then d(K) >n — 1.

A celebrated lemma we will need later on is:

Lemma 36 (Krasner). Let F' be a local field, and let «, 5 € F*P_ then
la — Blp < |a— d|p, for every conjugate o' of @ = «a € F(B).

This says that for a given extension K of a local field F', the set of elements
which generate K over F'is an open subset inside K.

Hensel’s Lemma

Hensel’s Lemma is a tool for determining when a polynomial with coefficients in a
local field factors, and will be invaluable to us soon enough. Let F' be a local field
with ring of integers O, prime ideal p, and residue field F = O/p = F,.

A handy tool for checking the irreducibility of a polynomial with rational integer
coefficients f € Z[z] is to reduce f in the field F, for various rational primes p. If
the reduction of f is irreducible for a given prime p, then f is irreducible over Z.
This trick also holds for monic polynomials f € O[z| with reduction to the residue
field F. In general, the converse of this is not true, i.e. if f € Z[z] is reducible
modulo every prime p, it does not follow that f is reducible over Z (the polynomial
1*—102%+1 is an example). Hensel’s Lemma gives the extent to which this converse
is true in a local field.

Lemma 37 (Hensel’s Lemma). Let f € O[z] be monic. Then if f splits in F into
relatively prime factors, then f splits in F, i.e. if there exist relatively prime and
monic g, h € F with f = gh, then there exist monic lifts g, h € O[z] with f = gh.

This gives the main idea of Hensel’s Lemma. In practice though, a slightly
stronger version is usually needed.

Lemma 38 (Hensel’s Lemma). Let f € O[z], ap € O, and n € N be such that
flao) € p™*" and f'(ao) ¢ P e |f(ao)|r < [f'(c0)lE
then there exists a lift « € O, such that f(a) = 0, with a = ap mod p™*+.

See [5], Chp. 2.1 for a very general proof or [8], Chp. 3.4 and 5.4 for a very friendly
introduction and a concrete proof.
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1.4 Quadratic Extensions of QQ,

Using Hensel’s Lemma, we will classify all quadratic extensions of Q,. By the
quadratic formula, we need to consider only the equivalence classes of nonsquare
elements, i.e. the multiplicative group

Q /(@)

Indeed, given a coset a(Q;)?, any = € a(Q})? is represented as z = ay® for some
y € Q,, so the quadratic extensions @Q,(y/z) and @Q,(y/a) will be equal. It is our
task to find suitable coset representatives for this group. To this end, we study the
polynomial f,(x) = z? — a for a given a € @, and ask whether or not it splits, i.e.
has a root in Q,. The polynomial f, splits if and only if /a € Q,.

First note that for a € @}, to be a square, vp(a) must be even, i.e.

a=p™d forsomen € Z,d €L,
Thus we are reduced to finding which p-adic integer units a € Z; are squares. By
Hensel’s Lemma, we just need to know whether f, splits in Q, = F,, into relatively
prime factors. For p = 2, f, is always a square in Fy, since for any a € Z3,

a=1 inF, = f)=2*-a=2"-1=(z-1)> inF.

The first version of Hensel’s Lemma doesn’t apply here since the factors of f, aren’t
relatively prime in Fy. Before proceeding, also note that given a € Zj5, we can write
a = 1+ 2b for some b € Z,, then

a®>=1+4(b+b*) +4b* =1+ 8¢, for some c € Zy,

since b+ b?> = 0 in Fy. Now given any a = 1 + 8Z,, we can use the stronger version
of Hensel’s Lemma, with oy = 1. We have,

fo(l)=1—-a€8Zy and f,(1)=2¢ 4Z,,

thus f, has a root if and only if a € 1 + 8Zs,.
For odd p, the first version of Hensel’s Lemma applies whenever a is a quadratic
residue modulo p, i.e. @ is a square in F,. Indeed, given a € Z; with @ = b?, we have

Ta) =2’ —a=(z-b)(@+b) inF,

thus f, has a root in Z,. Of course, this condition is necessary. We have proved the
following:

Proposition 39. The squares in ZJ} are precisely the units of the form 1 + 8Z,.
The squares in Z; for odd p are precisely those of the form r + pZ,, where 7 is a
quadratic residue modulo p.
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@(HV2) (W3 W) QW6 Q) (V10) V14)

2

Q(Va) Q) Q(Vap)

AN

Q,

Figure 1.2: Quadratic Extensions of Q,

Corollary 40. For p = 2, the group Q5 /(Q5)? is of order 8 with coset representatives
{1,2,3,5,6,7,10,14}. For odd primes p, the group (@;/(Q;)2 is of order 4 with
coset representatives {1, a,p, ap} for some fixed nonquadratic residue a modulo p.
The square roots of these elements generate the isomorphism classes of quadratic
extensions over (@, and @, respectively.

We picture these extensions in Figure 1.2, and can now proceed to identify the
ramification type and calculate the discriminant of each.
First let p = 2.

e We first notice that the minimal polynomials of \/5, \/6, \/ﬁ, and /14 are
22 —2, 22—6, £2—10, and 2214, respectively. Each is an Eisenstein polynomial
f, whose roots generate a totally ramified extension K by Proposition 28, with
d(K) = v(discr(f)) = 3 (remember that discr(z? + ax + b) = a® — 4b).

e Next notice that the minimal polynomials for v/3 and /7 are 2> —3 and 2% —7,
respectively, and can be translated to the polynomials (z+1)?—3 = x2+21—2
and (z+1)?2—7 = 22+ 2x — 6. Thus each is an Eisenstein polynomial f, whose
roots generate a totally ramified extension K with d(K) = v(discr(f)) = 2.

e Finally, for the extension K = Q,(1/5), note that o = % € K, but further-
more, that the minimal polynomial of o, 22 — 2 — 1 is monic and irreducible
in Fy. So in fact @ € Ok, and by Proposition 28, K is unramified over Q,,
Ok = Zs(), and d(K) = 0.

Now for an odd prime p and a fixed nonquadratic residue a modulo p.

e The minimal polynomial of \/p and \/ap is 22 — p and z? — ap, respectively.
Each is an Eisenstein polynomial that generates a totally ramified extension
K with d(K) = 1.

e The minimal polynomial of \/a is ¥? — a, which is irreducible in the residue
field F,, thus \/a generates an unramified extension K with d(K) = 0, and
generates Ok over Z,,.
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1.5 KEtale Algebras

Our study of polynomials generating a given extension of a local field F' will soon
lead to considering reducible polynomials. The roots of reducible polynomials don’t
naturally lie in any single finite extension of F', but in a number of them. The natural
generalization of the root field of an irreducible polynomial is a direct sum of root
fields of the irreducible factors of a reducible polynomial. This direct sum forms an
algebra, i.e. a vector space over F' with a defined multiplication ([2], Chp. III).

Definition 41. Let F' be a field, and let A be a finite dimensional commutative
F-algebra, then call A an étale algebra over F' if

for finite separable extensions K; of F. Define dimg(A) to be the vector space
dimension of A over F. Denote by A,(F) the set of isomorphism classes of étale
algebras A over F' with dimp(A) = n inside a fixed F®P.

One should note that in the characteristic 0 case, which we are restricting our-
selves to, there is a finite number of extensions of F' of a given degree. Thus the set
of isomorphism classes A, (F) is finite.

Example 42. The only quadratic étale algebras over a local field F' are quadratic
extensions of F' and the algebra F?. From Corollary 40, we know the quadratic
extensions of (,, and thus we have,

A (@) = {Q}U{Q(Va):a=2,3,5,6,7,10,14}
A Q) = {Qf,,@p(\/ﬁ),Qp(\f), Q@ (vap)},

where in the second case, for odd p, a is a fixed nonquadratic residue modulo p.

From now on let F be a local field. If f € F[z] is irreducible over F', then

Fla]/(f) = F(a),

where « is a root of f, and is thus an étale algebra. Moreover, if f is reducible
but square-free, and f = Hle fi, where each f; is irreducible over F', then by the
Chinese Remainder Theorem,

Fla]/(f) = Fla]/(ITi /i) @F[xl/ fi) —ED i

where each K; = F(«;) is a root field of f;. Since every direct sum of separable
extensions of F' can arise in this way, we have, for any étale algebra A over F,

A= Flz]/(f),

for some square-free f € F[x]. Note that f is square-free if and only if discr(f) # 0.
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Definition 43. Let A € A,(F) with A = @!_, K;, and let O be the ring of integers
of F'. Define the ring of integers of A to be

‘
O, = @ Ok;»
i=1
Also define the discriminant of A by
¢
Dy = H Dk,
i=1

and let d(A) = vp(D,) for a valuation vg on F.

For a definition of the discriminant of an arbitrary algebra, see [2], Chp. III, §9.
For a very general discussion of étale algebras, see [12], Chp. 5, §18. By Theorem
22, if A is an étale algebra of dimension n over F' then, Oy = O", and is thus a
compact topological group in the product topology with normalized Haar measure
p = p$". In most respects, we treat an étale algebra as a field extension in the
following chapters.






Chapter 2

Quadratic Volume Computations

Fix a local field F' with ring of integers O, prime ideal p, uniformizing parameter
7, and residue field of order ¢q. For n € N, let P,(F) = P, C O[z] be the set of all
monic polynomials of degree n with coefficients in . Under the isomorphism,

" +a "+t ap_1r 4 ap - (a,. .., 0,) € O" P, = OF

the set of polynomials P, = O™ becomes a compact topological group in the product
topology with normalized Haar measure p = p%" inherited from F. Let P, be the
set of those polynomials with nonzero discriminants. Since the set of polynomials

with discriminant zero has measure zero in P, u(P,) = u(P,) = 1.
For an étale algebra A € A,(F), let P4 C P, be the set of polynomials
f € P, for which f generates the algebra A, i.e. such that F[z]/(f) = A. Also let

mp(4) = u(P4).

2.1 Completely Split Quadratic Polynomials

Quadratic polynomials that split completely and have non-zero discriminant, (i.e.
have distinct roots) generate the étale algebra F? over F. In this section we will
calculate mp(F?).

To that end, first note that by Gauss’ Lemma (Lemma 20), if f € P anda € F
is a root of f, then in fact @ € O. Now define the mapping, taking a pair of distinct
roots to the polynomial with those roots, ¢ : @2 — PF* given by

o(a,b) = (z —a)(z —b) =2% — (a+b)z+ab, for all (a,b) € O?,

where O? = {(a,b) € O® : a # b}. Note that ¢ is a surjective 2-to-1 mapping
(since ¢(a,b) = ¢(b,a)). Thus mp(F?) = u(p(O?)), and by the change of variables
theorem (Theorem 18),

me(F?) = u(p(0%) = / 1 dy

»(0?)

1 1
- / | det(Je)  du = / | det(Jo) i di,
02 02
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where |- | is the normalized absolute value on F. Written in coordinates, ¢ : 0% —
PF* <5 O2 is given by

©(a,b) = (—(a +b),ab), for all (a,b) € O,

and we can calculate

-1 -1

J(go(a,b)):( b4 ) = det(Jp(a,b)) =b—a.

Thus we have

mp(F?) = %/ |a—b\Fdadb_—/ (/ |a—b|Fda>
- /(/ |a|pda>db— /|a|pda

= 2.1

2 q —|— g+ 1 2.1)

by Fubini’s Theorem (Theorem 17), and by the calculation in Example 15. It is
interesting to note here, and we will return to this point, that

2.2 Irreducible Polynomials

Now we want to extend this idea to compute the volumes of irreducible quadratic
polynomials with roots in a given quadratic extension K of F. Let Ok be the ring
of integers of K, and let O be the set of elements that generate K over F, i.e.
Ok \O. The lower dimensional embedded subset O C Ok = 0? has measure zero,
so 1(Og) = u(Ok) = 1. If a is a root of f that generates K, then so is o/, where
o is a conjugate of a. By Proposition 21, we know that if « € K is a root of f,
then in fact o € Ok. Define the mapping, taking roots to minimal polynomials,
¢x : Ox — PK given by

vr(a) = (z —a)(z —a') =22 — T(a)z + N(a), forall a € Ok,

where T'(co) = Tk/r(r), and N(a) = Nk (o). As in the previous calculation, ¢k is
a surjective 2-to-1 mapping (since g (a) = g (a’)). Thus mp(K) = u(px(Ok)),
and again, by change of variables,

1 1
me()= [ vdp= [ detIledu=j [ IdettTo)lr d
©(Ok) Ok Ok

where here |- |p is appropriate since Ok = PE = 02 and we are really thinking of
K as a mapping of O2. Thus to really compute Jip, we need to choose a (module)
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basis of Ok over 0. Write O = O[f] = O @ BO where we can choose 8 € Ok,
then in coordinates pg : O? &2 O — PX — O? is given by

QOK(av b) = (_T(a + bﬁ)u N(CI, + bﬂ))
= (=2a—bT(B),a® +abT(B) + b¥’N(B)), for all (a,b) € O

where here O = {(a,b) € 0% : b # 0} = O. Thus we calculate,

-9 -T(8
det(Jok(a,b)) = det(za—i-bT(ﬁ) aT(B) +(2b)N(/3))

= O(T(B)* —4N(B))
—  Dgb,

where Dy is the discriminant of the extension K. Note that since Oy = O[f], and
the minimal polynomial of 8 is f(z) = 2?—T(8)z+ N(B), we have Dy = discr(f) =
T(8)? — 4N(B). Proceeding as above, we have

1
me(K) = 5 [ Dl dadh = 5 d(K)/ bl db
1 1 q
= 2.2
2¢UK) g+ 1 (2:2)

Each polynomial f € P, with nonzero discriminant must generate either the
algebra F? (in the case that f splits over F'), or one of the finite number of quadratic
extensions K of F. Thus we have the disjoint union,

U »*=7,
AeAy(F)

and putting together Equations 2.1 and 2.2, we have the following:

Theorem 44. Let F be a local field with residue field of order ¢ and let Ay(F)
denote the set of all isomorphism classes of quadratic algebras over F'. Then we

have,
Z 1 1 1 _1
20+ 1qiA-1 7
A€A(F) 2 q+ 1 q

where recall that by Definition 43, d(A) = 0 for A = F? € Ay(F).

Quadratic Polynomials over Q,

By Corollary 40, we know models for the isomorphism classes of quadratic extensions
K of Q,, and we calculated d(K) for each. Using Equation 2.2 to compute explicit
numbers for the volumes mg, (K), we summarize all this in Table 2.1. In accordance
with Theorem 44, the sum of these volumes is 1.
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A€ A (Qp) d(A) | mg,(A)
p=2
Q 0 3
Q (V) 0 !
@ (V3), &(V7) 2 v
@ (v2), @(V6), @ (V10), @:(vV14) | 3 2
p odd
@ 2 it
Q(Va) 0 | 3%
Q (), Q,(/ap) I

Table 2.1: Volumes for Quadratic Etale Algebras over Q

2.3 Visualizing Quadratic Polynomials over Q,

Now that we know the volume of monic Z, polynomials that generate a given
quadratic extension of QQ,, we give a way to “visualize” them. To this end we
describe a way to embed P, = P5(Q,) = Z2 into the plane R®.

By the definition in Example 4, a € Z, is uniquely representable as a formal
power series in the integer p, i.e.

a=ay+ ap + agp® + azp® + - --

where the coefficients a; € {0,1,...,p — 1}. There is an obvious continuous map
r: Ly — R,
a a a
r(ag + a1p + agp® + azp® + - --) =a0+;1+p—§+p—g+---=a0.a1a2a3...,

sending p-adic expansions to base-p expansions of real numbers. We normalize this
map to the surjection r : Z, — [0, 1], given by
( () 1 00 a
(o) -3
n=0 p n=0 pn

This map is not injective because of differing decimal expansions of real numbers.
For a rigorous treatment of this “visualization” and other possible ones, see [15],
Chp. 2.

To visualize the p-adic integer plane Zf,, we just need to extend component-wise
in the obvious way, r : Z — [0,1] x [0,1],

r(z,y) = (r(z),r(y)), forall (z,y) € Z].
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Now we can visualize the set Py(Q,) as follows: for each point (a,b) € Z2,
color the point r(a, b) € [0, 1] according to which quadratic algebra the polynomial
fiap) (@) = 2%+ ax+ b generates. We implement this in a C program which computes
the the discriminant of the polynomial f(,;), and after dividing out by the necessary
powers of p looks modulo p, if p is odd, or modulo 8, if p = 2. By the work proceeding
Corollary 40 this decides which algebra f(, 5 generates, and our program colors the
corresponding point. If p = 2, red is for split, blue is for unramified, magenta
and light blue are for totally ramified with discriminant 2, and shades of green and
orange are for totally ramified with discriminant 3. For odd p, red is for split, blue
for unramified, and light blue and green for totally ramified extensions. We give the
pictures here for p = 2,3,5,7,11.

Figure 2.1: Picture of Splitting Behavior of Quadratic Polynomials over (@,
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Looking at Figure 2.1, a few of the key details are explainable.

In the lower right quarter, where a = 1 mod 2 and b = 0 mod 2, the reduced
polynomial is f,; (z) = 2° + 2 = z(z + 1) in Fy. So fi4,) splits over Q, by
Hensel’s Lemma. Accordingly, this entire quarter is colored red.

In the upper right quarter, the reduced polynomial f(a,b) (r) =2 +x+1isir-
reducible over F,. By Proposition 28, f(,5 generates the unramified extension
of Q. Accordingly, this entire quarter is colored blue.

The upper half of the lower left quarter consists of all @ = 0 (mod 2) and
b=1 (mod 4), i.e. all Eisenstein polynomials. Accordingly, these areas are all
colored magenta, light blue, or shades of green and orange for totally ramified
extensions.

The self-similar scaling and repetition going into the lower left corner is ex-
plained by looking at the discriminant of f(,;. Under the scaling (a,b) —
(2a, 4b), the discriminant transforms by a? — 4b — 4(a® — 4b), and thus the
scaled polynomial generates the same algebra as the original. The entire pic-
ture is thus scaled by a factor of 2 in the a direction, and by a factor of 4 in
the b direction.

In all the pictures, the areas where the “fractal” nature of the image seem to
proceed indefinitely into the page correspond to the points of the discriminant va-
riety, i.e. the points (a,b) € Z such that a® — 4b = 0. Looking at Figures 2.2, 2.3,
2.4, and 2.5, similar comments can be made when p is odd.

In the lower p'" section, to the right of the lower left corner square, where
a # 0 (mod p) and b = 0 (mod p), fia,) splits over Q, by Hensel’s Lemma.

Each polynomial f(,) in the left p'" section for which b is congruent to minus
a quadratic residue modulo p splits again by Hensel’s Lemma, for in this case
fap (@) =22 —r? in F,.

The top p — 1 of the p'™ sections of the lower left p*™ square correspond to
Eisenstein polynomials.

It is a bit more difficult to see, but the entire picture is scaled by a factor of p in
the a direction, and by a factor of p? in the b direction, since (a,b) — (pa, p*b)
leaves the algebra generated by f(, unchanged.

The isolated squares of “fractal” like self-similar behavior follow the discrimi-
nant variety, and correspond with the squares where b = a?/4 mod p.

Except for the @ = 0 mod p column, the picture has a right-left symmetry
since the discriminant is invariant under the transformation (a,b) — (—a,b).
Really, the @ = 0 mod p column itself (without the a = 0 mod p? column) has
this right-left symmetry, and so forth.
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Figure 2.2: Picture of Splitting Behavior of Quadratic Polynomials over Q3
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Figure 2.3: Picture of Splitting Behavior of Quadratic Polynomials over Q5
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Figure 2.4: Picture of Splitting Behavior of Quadratic Polynomials over Q;
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Figure 2.5: Picture of Splitting Behavior of Quadratic Polynomials over
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Figure 2.6: Detail of Picture 2.3 for Q5, where ¢ =1 mod 5 and b = 4 mod 5.
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Figure 2.7: Detail of Picture 2.4 for Q;, where ¢ =6 mod 7 and b = 2 mod 7.



Chapter 3

Cubic Volume Computations

3.1 Cubic Polynomials in General

Irreducible Polynomials

Again, fix a local field F' with ring of integers O, prime ideal p, uniformizing pa-
rameter 7, and residue field of order ¢q. Let P,(F) = P, C Olz] be the set of all
monic polynomials of degree n with coefficients in @, and let P, be those polyno-
mials with nonzero discriminant. For an étale algebra A € A, (F), let P4 C P, be
the set of polynomials f € P, for which f generates the algebra A, i.e. such that
F[z]/(f) = A, and let mp(A) = u(P4). Following our earlier work in Section 2.2,
we calculate the volume of cubic polynomials which generate a given cubic extension
K of F. As always, let Ok be the ring of integers of K, and O = Ok \O be the
set of elements that generate K over F' (again u(Ok) = u(Ok) = 1). For a root «
of f € PX, we denote by oo = o), o?, and a® the three conjugates of «; each
generates a cubic extension L 2 K, and by Proposition 21, each lies in Oy,. Define
the mapping, taking roots to minimal polynomials, px : Ox — PX given by

() = (z — o) (z — a@)(z — a®) = 23 — T(a)z? + S(a)z — N(a),
for all o € Ok, and where T(a) = Tx/r(e), S(a) = Sg/r(a) = ex(a®,a?, o),
and N(o) = Ng/r(a). As in the previous calculations, ¢k a is surjective w(K)-to-1
mapping (since px (o) = i (a®) if o € K). Thus mp(K) = pu(px(Ok)), and by
change of variables,

1
me(K) = o /@ Jdet(T) e

where as always, the normalized absolute value |- |r is appropriate. Now to compute
Jpr, we choose a module basis of Ox over 0. Writing Ox = O|[p] for suitable
B € O, the induced mapping px : O® = O — PX is given by

vr(a,b,¢) = 2° = T(a+bf + cf%)a” + S(a+ B + cf*)x — N(a+ b + cB?),

for all (a,b,c) € O3 = Oy. We are really computing the minimal polynomial of a
general element a + b3 + ¢8? € Ok in terms of indeterminates a, b, c. Letting the
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minimal polynomial of 8 be 2® — Ax? + Bz — C € Olz], we are in effect computing
the resultant (with the help of Maple),

@K(aa b, C)
= Rg(z— (a+bB+cB),8 — A+ BB —O)
z* — (3a + Ab + (A? — 2B)c)a?
+(3a® + Bb? + (B% — 2AC)c* + 2Aab + (2A? — 4B)ac + (AB — 3C)bc)x
—(a® + OV + C*c + Ad®b + (A% — 2B)a’c + Bab® + ACb*c
+(B?% — 20)ac* + BCbhc® + (AB — 3C)abc).

Thus in coordinates, g : O3 — PK — O3, we find that
det(Jpk(a,b,c)) = =Dk (b* + 2Ab*c + (A% + B)bc? + (C — AB)c?).

And thus we have, integrating over the absent variable a,

1
mp(K) = ) /02 ly? + 24y°2 + (A? + B)yz* + (C — AB)2%|p dydz. (3.1)

w(K)q*

Notice that the above integrand is a homogeneous polynomial of degree 3 in 2
variables. In each volume calculation so far, we define a mapping ¢4 parameterizing
the space of polynomials that generate a given étale algebra A over F', and we are
lead to integrate the polynomial form det(Jyg). The discriminant of the algebra
has been a common factor in our forms so far, so without this factor, we will call
this form the index form, or 1,4, of the algebra A. For example, the index form of a
general cubic extension of F' is the integrand in Equation 3.1. The index form of a
number field was independently defined and studied by Kronecker and Hensel, who
called it the “Fundamental-diskriminante,” and it is interesting that it arises in this

context. See [7] for an overview of its uses in computing integral bases of number
fields.

Reducible Polynomials

We compute one more index form explicitly here. To completely cover the splitting
behavior of all monic cubic polynomials, we need to consider splittings into a linear
factor and an irreducible quadratic. This type of polynomial generates the algebra
A=F®K over F, where K is a quadratic extension of F. Let O4 = O & Ok, and
define O4 = O & Ok. Once more, define the mapping, taking roots to polynomials
with those roots, ¢4 : A = O4 — P4 given by

pala,0) = (x—a)(z—a)(r—a) =2>— (T(a) +a)z’ + (aT(a) + N(a))z — aN(a),

for all (a,0) € O & Ok. This is a surjective 2-to-1 mapping (since ¢(a, ) =
¢(a,a)). In this case we say that w(A) = 2. In general, one must be careful in
defining the set of automorphisms of an étale algebra. To compute the index form
for the algebra A, we choose a module basis of Ok over O. Writing Ox = O[f]



3.2. EXPLICIT COMPUTATIONS FOR CUBICS OVER @Q, 35

for suitable § € Ok with minimal polynomial 2> — Bz + C € O[z], in coordinates,
oK 0P 20 x O — PE — O3 is given by
vala,b,c)
= (—a—=T0b+ch),al(b+cB)+ N+ cB),—aN(b+ cB))
= (—(a+2b+ Bc),2ab + Bac + b* + Bbc + Cc?, —(ab® + Babc + Cac?)),

for (a,b,c) € O, This time, we find that
det(Jpa(a,b,c)) = —Dgc(a* + b* + Cc® — 2ab — Bac + Bbe).

In the above two cubic cases, evaluating the necessary integral seems difficult for a
general local field F', thus we proceed for QQ,, with explicit generating polynomials.
The index form of a general algebra seems to become increasingly complicated as
the degree of the algebra gets larger. We organize the index forms computed so far
into Table 3.1, and include the “completely split” index form of the étale algebra
F3, to be computed in general in Chapter 4, for completeness.

Structure | Generating Polynomial Index Form, I4(a,b, c)
2 > — Az + B b
1-1 (x —A)(x — B) a—b
3 23— Ax?> + Bx — C | b® + 2Ab%c + (A% + B)bc? + (C — AB)¢?
1-2 (x — A)(2? — Bx + C) c(a? +b? + Cc? — 2ab — Bac + Bbe)
1-1-1 | (z—A)(z—B)(x—-0C) (a—b)(a—c)(b—rc)

Table 3.1: Index Forms of Quadratic and Cubic Etale Algebras

3.2 Explicit Computations for Cubics over Q,

To determine the structure of A3(Q,), we first need to know the cubic extensions of
@y, which are given by the following:

Proposition 45.

e The field Q3 has a unique unramified C3 extension, 3 nonisomorphic totally
ramified C3 extensions, and 6 nonisomorphic totally ramified S3 extensions.

e For p = 1 mod 3, the field Q, has a unique unramified C3 extension, and 3
non-isomorphic totally ramified C3 extensions.

e For p = 2 mod 3, the field Q, has a unique unramified C3 extension, and a
unique totally ramified S35 extension.

See [6], Chp. VI for a proof using local class field theory, noting the error in the
proposition on p. 57 regarding the case p = 1 mod 3 which is corrected here (in this
case, 3|p —1, thus Q, does in fact contain the third roots of unity; see [8], Chp. 3.4
or [15], Chp. 6.7).
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Case p=1 mod 3

Using Hensel’s Lemma and methods similar to those in Section 1.3, we can show
that in this case, any cube in Z, has the form r + pZ, for some r that is a cube
in F,. The cubes in F, make up a subgroup of index 3, with lifted representatives
1, b, and b?. Thus we have Q/(@)? = {1,b,0%,p, bp, b2p, 2 bp?, b’p?}, where many
of the cube roots of these elements generate isomorphic extensions. The element
/b generates a model of the unique unramified cubic extension of Qp, and the 3
nonisomorphic totally ramified extensions with Galois group C3 can be generated
by ¥/p, /bp, and f/% The unramified case will be taken care of in general in
Chapter 4.

Let K = Q,(¥/ap), where a equals 1, b, or b*. Each extension K has Galois
group Cj, thus w(K) = 3, and d(K) = v,(discr(z® — ap)) = v,(—27a*p?) = 2. By
Table 3.1, we have I (z,y, z) = Ix(y, 2) = y> + apz®, so by Equation 3.1,

mq, (K) = E | — D (y® + apz®)|, dv dy dz = po/ 1y + ap2®|, dydz = s
3 Jzg 3 72 3

Using the standard decomposition, we have,
I= > I
(4,5)€{0,...,p—1}2

where we define

L; = / 1y + ap2®|, dy dz
(t4+pZp) % (j+PZp)

_ / 1], dydz,

I} = Ixc(i + py, j + pz) = i + apj® + 3apyi® + p* Py, 2),
for some polynomial P(y, z). Now from the above we clearly see that
1 ifi#0
119], = p! ifi=0,j#0 , (32)
Uk (y,2)]p ifi=j=0

and thus we have,

I = p2plp-1)+pHp—1)+p°)
_ Pe-D+p-1 1  pP-10"+1) (3.3)
P 1—p5 p—1 ’ '

so finally

ma, (K) = %(p _;5)(_1’21+ Y for kK = Q,(9ap). (3.4)
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Case p =2 mod 3

In this case, every element of F, is a cube. The unique totally ramified extension
K can be generated by ¢/p. Since it has Galois group S, w(K) = 1. Besides this,
the rest follows exactly as in the previous computation. So we have,

s _;5)(_1921-1— 1)’ for K = Q,(v/p)- (3.5)

mg, (K) =

Case p=3

In this case, Table 3.2 gives a list of polynomials that generate the various noniso-
morphic extensions of Q3. The right-hand side of this table is taken from [6], p. 66.

Polynomial d(K) Polynomial d(K)
Unique Unramified C's Extension | Totally Ramified S3 Extensions
22+ 2z +1 0 23+ 3r+3 3
Totally Ramified C3 Extensions | z® — 3z — 3 3
23+ 322 -3 4 3+ 322+ 3 4
3 — 322 -6 4 34+ 91r+3 5
3 — 622+ 6 4 22— 9z +3 5

3 +3 )

Table 3.2: Generating Polynomials of Cubic Extensions of Q5

We proceed just as in the above cases, and again, leaving the unramified case
for later. In fact, the analysis of the index forms of the totally ramified extensions
is exactly as in Equation 3.2, and thus the integral computation is exactly as in
Equation 3.3. The only differences here are the discriminants and the number of
automorphisms of the extensions. For each totally ramified cubic extension K over
Qs we have,

1 2-32.5
w(K)g¥K) 112

mg, (K) = (3.6)

Reducible Polynomials

Case p odd

In this case, the set of isomorphism classes of quadratic extensions is A3(Q,) =

{Q,(Va), Q,(\/p, Q,(\/ap)} for some nonsquare @ mod p. Let A = Q, @ Q(Vd),
where d is equal to a, p, or ap. The volume mg, (A) can be computed similarly as
above. By Table 3.1, we have I4(z,y,2) = z(2? + y* — dz* — 2zy), so by Equation
3.1,
1 1
mq, (4) = 9. 9—d(A) 23 [La(z,y, 2)|p dody dz = mf-
p
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Again, using the standard decomposition, we have,

I= Y Iy,

(1,5,k)€{0,....p—1}3

where we define

Iﬁfk = Ia(i+pz,j+py, k+p2)
= (k+pc){(i—4)* —dk*> +2p((j — i)y + (i — j)z — dkz) (3.7)
+p*La(z,y,2)}-

Case where d = a is a nonquadratic residue modulo p

In this case, v/d generates the unramified extension over Q,, and generates Ok over
Z,, and
D)

1 if E#0
13 = P~y if k=0,i#j
p 3| Ia(z,y,2)|, if k=0,1=7}j
To see this, note that in Equation 3.7, if £ # 0, then we need consider only the

“inside” term, and

(i — j)? = dk* mod p, (3.8)

is impossible since d is a nonquadratic residue modulo p, so in this case, \Ii{k|p =1
If £ = 0, but ©+ # 7, then again Equation 3.8 applies and the “inside” term has
valuation 0, so we are left with just |pc/,. When £ = 0 and ¢ = j, Equation 3.7
reduces to I9° = p*I4(x,vy, 2), thus we have, recalling the calculation in Example
15,

) _Pe-DFE+p+1)

I=q"° (pQ(p ~ D)+ P —p) p el p+)P -1

p+1

and so finally,

1p’(p =D’ — 1)
"= e

for A=Q, ® Q,(Va). (3.9)

Case where d = p,ap

In this case, v/d generates a totally ramified extension, and

1 it k£0,i#]

‘IA ‘p:< 1 . . .t
p el if k=0, i#]
PP a(m,y,2)lp, i k=0, 0=
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To see this, let t be either 1 or a, and stare at
17" = (k+po){(i = 5)* + p(2( — i)y + 2(i — §) + tk?) + P*(tk + La(w, y, 2)}.

Thus we have, again recalling the calculation in Example 15,

[ = p (<p— D@ —p) + (= Dp-p~ + (" —p) - =2 +p-p—3f)

p+1
Pr-1)p*+p+1)
p+1)@P—-1)

and so finally

mq, (A) = %p(}?p—j)l(;?(;:—_pl-; 1), for A=Q, ® Q,(vtp), t =0,a. (3.10)

Case p=2

This case is special because of the exceptional structure of the quadratic extensions
of @y, we have A(Qy) = {Q2} U {Qy(v/a) : a=2,3,5,6,7,10, 14}.

Recalling the discussion after Corollary 40, the unique unramified quadratic
extension K = Q,(v/5) has ring of integers Ok generated over Z, by a root of
r? —x — 1. By Table 3.1 we have I4(z,vy,2) = z(z® + y* — 22 — 22y — vz + yz), and

S0
1 1

mg, (4) = 3 [La(z,y,2)|o dvdydz = S 1,
73 2

where we make the similar definitions
I= ) Iy,
(i,k)€{0,1}2
and
I% = I4(i+ 22,5 + 2y, k + 22)
(k +22)(i* + j* — k* — ik + jk +2(—ij — kx — iz + ky + jz) (3.11)
+4(( — j)a+ (j — )b+ La(z,y, 2)))-

By Equation 3.11, we have

1 if k £ 0
[13F ]2 = 2zl itk =0, (i,5) # (1,1) :
2_3\IA(ar,y,z)|2 if (i,7,k) = (0,0,0), (1,1,0)

and so it follows, again recalling the calculation in Example 15, that

23.7
3-31°

2
I::23<4—k2-21§—+2-2‘31) —
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and so 0 7
mg, (A) = 3737 for A=Q & Q(Va). (3.12)

The rest of the volumes are computed similarly to the odd p totally ramified
cases, since the generating element is still a square root. Only the discriminants of
the extensions and the number of them is different.

Finally, we compile all this data into Table 3.3. We will compute the volume for
completely split polynomials and for polynomials generating the unramified exten-
sion in general in Chapter 4, but will include the data here for completeness. Let
@, (¢) denote the cubic unramified extension of @,. Quite expectedly, the sum over
all of A3(Q,) of these formulae, given as rational functions in p, is 1. When checking
this, make sure to count for the multiplicity of extensions in each line of the table.
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Cubic algebra A over Q, Generating polynomial | w(A) | d(A) mgq, (A)
p=2
Q3 (x—A)(z—B)(z—C)| 6 0 Z-
@ x @ (V5) (@—A)a?—z-1) | 2 | 0 T
Q, x Q(Vd),d=3,7 (x — A)(z? — d) 2 2 A
Q, x Q,(Vd), d=2,6,10,14 (x — A)(2? — d) 2 3 L
Q:(0) P4z —1 3 0 z
Q. (V/2) z® —2 1 2 =
p=3
Q (x—A)(z—B)(z—C)| 6 0 2T
Qs x Qs(V2) (z — A)(@* —2) 2 0 —_
Qs x Qs(V3t), t=1,2 (z — A)(z” — 3t) 2 1 5912
Q@ () 2+ 2z + 1 3 0 2
Qs (m), i =1,2,3 (Cs) see Table 3.2 3 4 s
Qs(m;), i =1,2 (Ss) see Table 3.2 1 3 P
Qs (m) (Ss) 23 4+3224+3 1 4 s
Qs(m;), i =1,2,3 (S3) see Table 3.2 1 5 R
p=1 mod 3
Q@ (z— A)(z—B)(z—C)| 6 0 | iEeeortl
Q *x Q(va) (z — A)(=* - a) 2 | 0 | ERe
Q x Q,(Vip), t=1,a (z — A)(2” — ap) 2 | 1| e beietD
Q,(€) Irred. cubic mod p 3 0 %’%
Q,(/ap), a = 1,b, 1 2 — ap 3 2 L
p=2 mod 3
Q (z—A)(z—B)(z—C)| 6 0 | il lerl)
Q x Q,(va) (¢ — A)(a* - a) 2 | 0 | EEREEY
Q % Q (VD) t =1, (x=A)a?—ap) | 2 | 1 | FEehEiED
Q () Irred. cubic mod p 3 0 | izeDeh)
@ (/p) = p 1| o2 | e

Table 3.3: Volumes for Cubic Etale Algebras over Q,







Chapter 4

General Volume Computations

Fix a local field F' with ring of integers O, prime ideal p, separable closure F*®°P,
and let A, (F') be the set of isomorphism classes of étale algebras of degree n over
F inside a fixed F*P. Recall that P,(F) = P, C O|x] is the set of monic degree n
polynomials with coefficients in . Let P, C P, be those polynomials with nonzero
discriminant, and for A € A,(F) define P4 C P, to be those polynomials that
generate A, i.e. such that A = Flz]/(f).

The set of polynomials P,, has a natural compact group structure under the
isomorphism

x”-l—alx"_l—i----—i-an_lx—l—anl—)(al,...,an)E(’)”:’Pn—>(’)”,

with normalized Haar measure y = 2" inherited from F™. We have u(P,) = u(P,),
since the set of polynomials with zero discriminant has measure zero. Also define
O" = P4 by the above isomorphism. By Krasner’s Lemma (Lemma 36), the set
P4 is an open subset inside P,. Indeed, let v € A generate A over F. Since
each coefficient of the generating polynomial of « is a polynomial function of its
conjugates (and hence is a continuous function of «), another generating element
B, which is nearby by Krasner’s Lemma, has coefficients of its minimal polynomial
nearby to those of a.

Definition 46. Let K be a separable extension F' of degree n. Call o« € K a
primitive element if K = F'(«) or equivalently, if  is not contained in any proper
separable subfield of K, and denote by K the set of all primitive elements of K,
OK =Kn Ok, and define the corresponding notions A and OA for an étale algebra
A€ A,.

Note once more that since separable subfields are lower dimensional vector sub-
spaces, we have p(O04) = p(04) = 1.
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4.1 The Index Form of an Algebraic Extension

We restrict to the case when A = K is an extension of F'. Then define the mapping,
taking elements to their minimal polynomials, ¢x : Ox — PX, given by

or(a) = Ng/p(z —a) = H(ac —oa), forall o€ O,

oc€EH

where H = Homp (K, F°P) is the set of embeddings of K into a fixed F**® . Note
that indeed discr(px(a)) # 0 for all o € O, and that @ is a surjective w(K)-to-1
mapping (since px () = px (') if and only if o/ = oa € K for some 0 € Autp(K)).
The mapping is also F-analytic since it is a polynomial mapping as we shall see.
Now under the natural isomorphisms Ox — O", and P,(F) — O™ we have the
induced mapping

o =, o
zL zL
Ox —K. pK

so that mp(K) = u(Pk) = u(ex(O™)). By the change of variables theorem (Theo-
rem 18),

mp(K) = [0 o L= ﬁ / Jdet(Jpr)| e dp (4.1)

To compute det(Jpg), we first note that ¢ : Ok — O™ is given by,
vk(a) = e(o(a)), forall ac Ok,
where e : O} — O} is the elementary symmetric function mapping defined by
e(z) = (e1(x),...,e4(x)), forall z € OF,
and o : Ox — O% is defined by
o(a) = (o1a,...,0pa), forall @ € O,

where {01, ...,0,} = Homp(K, F*P).

Now, by Theorem 22, choose a generating element 8 € Ok such that O =
O[F] = O". Then we have

o(a)=oa(a+af+- -+ a, 18" = (6:6)a,

where a = (a1, ...,a,) € O", and where (0;/3’) denotes the obvious n x n Vander-

monde matrix. Thus the induced mapping o : Ox = O™ — OV} is linear, and we
have

v (a) = e((0;87)a), forallac€ o".
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Lemma 47. For all x € O%, we have

det(Je(z)) = A(z) = [ [ (zi — ;).

1<j

We will give the proof shortly. Now, in coordinates, ¢k : O" = O — PK —
O™, and we compute using the chain rule,

det(Jox(a)) = det(Je((0:8)a) - (0:87)) = A((0:87)a) Ao (8))
= [](0iB - 0;8) [[(oic — 0;0), for a € Ok (4.2)

i<j 1<J
n—1 n—1
= \/BKH (Z a0 " — Zak0j5k>
i<j \k=0 k=0
n—1 k-1
= DKH (Z k (Z Uzﬂlajﬁk_l_l)> ;
i<j \k=1 1=0

for a € O™. Aside from the factor of the discriminant Dy, this is the index form of
the extension K.

Definition 48. Let K be an algebraic extension of a local field F'. We define the
index form Iy of K by

det(Jyk(a)) = Dglx(a), forall a € O™

The index form is a homogeneous polynomial of degree n(n—1)/2 in n— 1 variables
with coefficients in O, and is given explicitly by the formula,

I(a)=]] (i ay (i ek 55?“) ) : (4.3)

i<j \k=1
where (3; = o;0.

In general we see that the index form is cumbersome to work with, and as shown
by our examples in Chapter 3, is increasingly difficult to integrate directly. Thus we
retreat a bit, and assume that K over F' is a Galois extension,

det(Jpr(a))|p = ‘\/BKA((J,ﬂj)a)‘F = g K2 H oo — o
i<j
= ¢ UK H |0j_10i04 _ O“F — g~ 4K)2 H o300 — a|%/2
i<j i=2
= 0 [ foa—afl?)
ocEH*
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where H* = Homp (K, F**?)\{1}, and using Remark 24. Now recalling that O™ =
Ok under the map a +— o = Y7 " a; 3, we have,

1
me(K) = —m /@ det(Jpr() . da

1 1 1/2
_ I] loa- 4.4
w(K) iR/ /OK oo = ol da, (44)

ocEH*

where da = da; day - - - da, and da are the normalized Haar measures on O™ and
Ok, respectively. Now we finally prove Lemma 47.

Proof of Lemma 47. First note that the claim holds trivially when the entries in
x € O% are not distinct. We will first illustrate the proof with the case n = 3. In
that case,

o(a,b,c) = (a+b+c,ab+ ac+ be,abc), for all (a,b,c) € OF.

Now given (z,y,z) € O3 with distinct entries, define the affine transformation
Tw,) * Ok — O by

Ty (a,b,¢) = (2° — az® + br — ¢, y® — ay® + by — ¢, 2° — az® + bz — ¢),
for all (a,b,c) € O%. Now note that
(T(mayaz) © 0-) (CI,, bi C)
= (2* = (a +b+ )2z + (ab+ ac + be)x — abe,
y® — (a+ b+ c)y® + (ab+ ac + be)y — abe,
22— (a+b+c)z* + (ab + ac + bc)z — abe)

= (z-a)(z-b)(z—c),(y—a)ly —b)(y —¢),(z = a)(z = b)(z — ¢)),

and so,
(z—b)(z—c) (z—a)(z—c) (z—a)(z—D)
J(Teyzoo)(a,bc)=—| (y=by—c (-aly—-c y—-aly->b) |,
(z=b)(z—¢) (z—a)(z—¢) (z—a)(z—0b)
(z —y)(z—2) 0 0
J(Tay,z) 0 0)(7,y,2) = — 0 (y —2)(y — 2) 0 :
0 0 (z —z)(z —y)
and finally,
det(J (Tizy, 0 o) (2,y, 2)) = (z — y)*(z — 2)*(y — 2)°.
But now,

det(J(T(a,y,2) © o)(a,b,c)) = det(JT {5y, (0 (a, b, c))) det(Jo(a,b,c)),
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and we have,

det(JT(zy,,)) = det [ —y? ¢y -1

and so
(@ =y’ -2y —2)° = (@ —y)(e-2)(y - 2)Jo(z,y,2).
Solving, we have,
Jo(z,y,2) = (z—y)(z - 2)(y — 2).
In general, for each z = (x4, ..., z,) € OF% with distinct entries, define the affine
transformation 7, : O% — O% given by

T.(a) = (27 —aa?™ + -+ (=D "ap, ..., 2" —arx" '+ -+ (=1)"a,),

for all a = (a1, ..., a,) € O%. Now note that
(Twoa)(a):(H 1 — ag), H —ak>,
and that .
(J(Teo o) (a)ij = — | [ (wi — a)
( H(ﬂil - xlc) 0 \
ITyo0)(z) = -

\ Hiew=2) )

So finally,
det(J(T; 0 o)(z)) = H (i — 2;)" = (=)™ HPA(2),

since there are n sign changes from the —1 multiplying the entire matrix and (n? —
n)/2 more from negating each term (z; — x;) once, 1 < i < j < n. But now,

J(T,o0)(a) =JT,(o(a))Jo(a),

so we have,
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and thus ,
det(JT,) = (—=1)™+M/2A (),

since there are 1 + 2+ ---+n = (n? + n)/2 total sign changes. Finally, we have,

Jo(z) = H (i — ;) = A(x).

1<i<j<n

4.2 Serre’s “mass formula”

In a 1978 paper [18], Jean-Pierre Serre introduced his “mass formula” for totally
ramified extensions of local fields. By restricting attention to Eisenstein polynomials
(which generate only totally ramified extensions by Proposition 28) the necessary
volume integral computations become easy. The current work generalizes Serre’s
techniques and is motivated in part by a hope to generalize his formula to all étale
algebras over a local field. Thus for completeness, I will include a derivation of
Serre’s “mass formula” here.

As always, fix a local field F' with ring of integers O, prime ideal p, and finite
residue field of order ¢q. For a positive integer n, let AY(F) = A" be the set of
isomorphism classes of totally ramified extensions K of F' of degree n inside a fixed
F*_ For any extension K € A, let

o(K)=d(K)—n+1.

The number ¢(K) is sometimes called the valuation of the wild part of the discrim-
inant of K. Note that by Example 35, ¢(K) > 0 for all K € A" and ¢(K) = 0 for
every tamely ramified extension. Serre’s “mass formula” is then:

Theorem 49.

1
3y () = 1. (4.5)

KeAtlr

Note that each isomorphism class K € A consists of n/w(K) extensions. If we
let % be the set of all totally ramified extensions of F' of degree n, we may restate

Theorem 49 as 1
_ = n
> =
Kextr q

which is the canonical form of Serre’s formula.

Proof of Theorem 49. Let £, C P, be the set of monic Eisenstein polynomials of
degree n (see Definition 27), i.e.

flz) =2" + a1z + - + ap,
with a; € p, but a, & p2. Under the isomorphism P, = O, we have,

n 2P X p\p?,
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and thus by Equation 1.2, we have,

&) =g g =g ) =qg"1-q").

Let c‘fn =&, N 75n consist of tho§e polynomials with nonzero discriminant. As

always, u(&€,) = pu(&,). Every f € &, generates a totally ramified extension, so for

K € AT, let EK = &£, N PX. Recall that by Proposition 28 each f € £X is the
minimal polynomial of a uniformizing parameter 7= of K. Letting

I = pr\pk (4.6)

denote the set of uniformizing parameters of K, the restriction ¢ : Ilx — EX
is a surjective w(K)-to-1 mapping. Also recall that each uniformizing parameter
m € Ik generates Ok over O, so fix mx € IIg such that O = O[nk]. Then by
Equation 4.2, we simply have,

det(Jpk (7)) = H(JﬂrK — 0jTK) H(O‘iﬂ' —ojm) = Dk, forallmellgx — O

i<j 1<j

Comparing with Definition 48, we see that the index form of a totally ramified
extension K over F' is trivial. Thus we can easily evaluate the volume integral
(similarly as in Equation 4.1),

Ky __ 1 / _ 1 -1 -2
:U'(gn ) - w(K)qd(K) g 1 da - w(K)qd(K) ((] q )

Now, we have the disjoint union,

and by taking volumes,
1—q7!
—n 1 — S
¢ "(1—q) thrw(K)qd(K)—l—l'

After dividing through by ¢~"(1 — ¢~ '), we arrive at

1
Z w(K)qUK)—n+l =1

KeAtr

which is exactly Serre’s formula. O

4.3 Completely Split Polynomials

The derivation of Serre’s formula works because of the connection between Eisenstein
polynomials and totally ramified extensions. Most importantly, the discriminant of
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any Eisenstein polynomial is equal to the discriminant of the extension it generates,
which makes the index form of the extension trivial. In this section, we compute the
volume of polynomials that split completely over a local field F', i.e. that generate
the étale algebra F™.

Throughout this section let A = F™ € A, (F). The mapping, taking roots to the
polynomial with those roots, @gn : O™ — P4 is simply given by

wrn(a) = H(x —a;), foralla=(a,...,a,) €O,

i=1

where here, O" = {(ay,...,a,) € O" : the a; are distinct}. The mapping @pn
is invariant under permutation of the “roots”, i.e. the automorphisms of F™ just
permute the coordinates of a point, thus w(F") = n!. Also, in accordance with
Definition 43, we also have Dg» = 1. In coordinates, @pn : O" — O" is given by
the elementary symmetric function mapping ¢ (a) = e(a), and so by Lemma 47,

det(Jppn(a)) = H(ai —a;), forallae O™

1<j

Thus we have,
= [ Tle-aleda= [ T[loi-aleda (47
mpg = — a; — a;|lp aa = — a; — a;|p aa. .
n' @nZ<J J n' oni<j J

To compute this integral, let R = {py,..., p,} be a set of representatives for F
and decompose

o" = U(r1+p)><---><(rn+p)= U(r+p"), for r = (ry,...,m) € R".

reR™ reRm™
Changing variables by the mapping (a1, ..., a,) — (r1 +7aq,...,r, +7ay,), we have
/ H|ai—aj|pda = Z/ H\ai—aj|pda
O™ i<y reRn VTP <y
= Z/ H|ri—rj+7r(ai—aj)|p|7r"|p da.
rern YO icj

Note that for each factor in the above integrand,

1 if r; £ r;
ri—rj+mla—a)lr=q L
q Ha; —a;| ifr;=r,

To see what is happening here, take for instance the “ordered” vector

7":(7"11,...,7‘)\11,’/"12,...,7‘)\22,...,7’1(1...,7",\(1(1),
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where Ay + ---+ A\, = n, and where each 7;; = p;. We have

q
/ H‘az’_aj|Fda = /OH H q 'aix — ajx|r da
4

TP i<y k=1 1<i<j<Ap

>‘k
= Hq IT e — aslr da
O™ 1 cici<ag
q

= Hq_(AkZ-H) )\k!mF(F)\k),
k=1

where we conveniently set my(F°) = 1. Note once more that for any permutation

TES,,
/ Il\az—aj\pda—/ Il\ai—aj\pda.
r+pn

1<J r)+pn 1<j
Thus for any A = (A,..., ;) € N satisfying A\; + -+ + A\, = n, form the corre-
sponding “ordered vector” r, as above, then we have the decomposition,

-UU

Ty

where the union is taken over all such A, and where r ~ r, if there exists some
permutation 7 € S, such that 7(r) = r,. For a given \, the number of vectors
equivalent to 7, is given by the multinomial,

ﬁ!_ n . n!
Al AL,y Ag _)\1!---)\q!’

and so we arrive at the recursion,
| n n' q /\k+1 ' )\k
nlmp(F") = E QH(] )\k mp(F*).
A k=1

Theorem 50. Let F' be a local field with residue field of order ¢, then we have the
recursion,

where the sum is over all A = (Ay,..., ;) € N? such that A\, +---+ XA, = n. We
define mp(F°) = 1, and note that mg(F') =1 holds trivially.

We list mp(F™) as rational functions in ¢ for a few values of n in Table 4.1, and
note that we may partially factor them into the cyclotomic polynomials ®,, and again
into the polynomials ¢, = ¢" — 1. There is oftentimes an irreducible polynomial in
the numerator with neither of these shapes which we call f,,, and which is of high
degree, thus we don’t show very many. The structure of these factorizations is still
somewhat mysterious.
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n ) 0]
1 1 1
2 14q 1 019
21D, 2! ¢
3 1 g’ 1 ¢1d6q”
3 By 3 Ghnds
4 1 f4 q6 1 ¢/11f4 q6
370,05, A G55
5 1 fig" 16t fsq"
O! @%@3@5@7@9@14 5' ¢ 5¢9¢14
6 1 fo " 1 8 fed”
61 950,30, 00 DP1P14Dsy 6" pocpspora o
7 1 fr g 1 ¢ frg”
T D) D3D, DID, DD 1Dy Doy Doy 7! o oprahoodor
3 1 fs q*® 1 s ¢? fs ¢*®
8! 03D, PED2D DD 1y Doy Doy Pss 8! 33 o praPa0BarPas
9 1 fo @ 1 ¢7 fo ¢*°
I D03 B B D7 PG D19P11 P14 oo Poa Por P35 Paa 9 o 29 Brahoodarhaspas
10 1 fio q45 1 ¢?¢7 fio q45
10! @5 D507 D3 D D2, D19 P11 B, P15 Do Pon D3, P35PssPsy | 10! 2o T, oo hor hasPashsa
In
4 ¢ =20 +¢"+2¢° —¢" +2¢* + ¢ — 29+ 1
5 q16 _ 6q15 + 14q14 _ 14q13 + 9q12 _ 4q11 _ 4q10 _ 6(]9
+5¢% — 697 — 4¢° — 4¢° + 9¢" — 14¢® + 14¢*> — 6q + 1

Table 4.1: Volumes for completely split polynomials as rational functions in ¢ and
factored into cyclotomic polynomials ®,, and into ¢, = ¢" — 1.
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Asymptotics of mp(F")

One wonders if there exists a closed formula for the numbers mg(F"), though at
this time this seems doubtful. Instead, we will describe some asymptotic results.
We show that the asymptotic limit as ¢ — oo might have been guessed from staring
at Table 4.1.

Theorem 51. For any n € N we have,

1
mp(F") - —, as ¢q— oo.
n!

Proof. For the duration of this proof, let s, (q) = mg(F™), and let

Gz) =Y sal@)z",  g@) = a )s(@)a"

be generating functions. Then the recursion in Theorem 50 says (see [19], Chp. 2.2
for example),

G(z) = g(z)".
Since [s,(g)] < 1 for all n € N, the coefficients of g(z) are very rapidly decreasing,
thus ¢g(z) and hence G(z) represent analytic functions on C. Now writing out the
first few terms,

() =1+-z+ ! 2+
x) = — - ,
g g 2¢q+1
and thus .
G(z) = (1 +24 O(q2)> —e¥,  as q— 0o,
q
by a well-known calculus limit, which proves the theorem. O

For the case ¢ = 2, the recursion in Theorem 50 gives
mp(F*) = 3 o= (%)= U ymp (Fymp (F9),
+j=n
where the sum is taken over all nonnegative integers ¢ and j, with i +j =n. As a

n+1
side note, letting ¢, = 9~ (": )mF(F"), this can be rewritten as

n
2(n;1)cn = Z CLCp—k-
k=0

It is still an open problem to find a closed form for this seemingly simple recursion.
We now describe some of the asymptotic behavior as n — oc.
Theorem 52. For all n € N, we have the lower bound,
11 45, 1 1
57 i Enlogqn+ iq——ln < log, mp(F")

Furthermore, for ¢ = 2 we have the upper bound,

1 1
log, mp(F™) < —§n2 — §n10g2 n+ 1.1n — 0.6. (4.8)
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Proof. By induction on n. For the duration of the proof, fix ¢, let s, = mp(F"),
and for some A € R to be decided later, let

1 1
2qg—1

S(n) =

1
— §nlogq n+ An.

Now suppose that for all & < n, log, s, > S(n). We will approximate s, by the
“middle” (and dominant) terms. To this end, let n = ag + b where 0 < b < ¢, and
in the sum describing s, in Theorem 50, we keep only the ¢ terms involving A with
g — 1 entries equal to @ and one entry equal to a + b. Throwing away the rest, we
have

sn > qq @) g1,

a

and using the fact that ¢ < n/q, and the induction hypothesis,

log, s, > —ga(a +1) + qlog, s, + E(n)

2

1n? 1 1
> 1n n n )_Enlogq(n/q)—i-Ag-l-E(n)

2q 2 2¢(q-1)
= S(n)+ E(n),

where the error term is

a+1 a+b+1
E(n) = logqsa+b—logq5a+< 5 )—( 5 )

b 1 1
= a2+a+—+Ab+§alogqa——

>
5 2(a—l—b)logq(a—|-b) >0

by elementary estimates. Now log, s; = 0 so setting A = %q%l gives equality for the
base case estimate. Thus by induction, we have proved the first part of the theorem.
For the second part of the theorem, we fix ¢ = 2, and again we proceed by

induction on n. Suppose that the upper bound holds in Equation 4.8 for all natural
numbers 0 < j < n, i.e. that

1. 1., . .
log, 55 < —532 — 5dlogy j + Aj + B,

for some constants A, B € R to be determined later. Then for all 0 < 7 < n we
have,

logy (277" sj5,-;) < =2(j = 5)° + An+ 2B — S[jlogy j + (n = j) logy(n — j)].

First solving for s,, we have

1 (1) (n—j+1
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Now for n > 1 we calculate,

1 _(3H1)_ (n—j+1

n—1

1 1,2 1 .9 .
— —2—571 —3n 2—] +n38'8 »
1—9-("3)+ JZ:; gon=i
< 275n2 inlog, n+An+BE(n)’
where the error term is
E(n) _ 1 2—fn+ n10g2n+BZQ 1 (jlogy j+(n—j) logy(n— 7).

1—9- (n+1)+1

First we note that the minimum of L(j) = jlog,j + (n — j)logy(n — j) occurs at
j =n/2. To see this, first differentiate

L'(j) = log, j — logy(n — j).

Thus we see that on the interval [1,n — 1], L(j) reaches a minimum at j = n/2.
Using this we have,

B S gy P O g
1-2

We also estimate for, n > 3,

n—1 n/2 n/2
S22 < 142) oW =142(272 4278 +Z2 2
j=1 j=1
n/3 n/2-3
< 1.51+2Zz—2j =151 4275 Z 92
=3 =0

4 1
— *5_ _ —n+4 < <
L5142 751 -2 ") <151+ o, <16,

and thus finally,
1.6
1—9" (n+1)_|_1

To satisfy the base case n = 1 and to avoid contradicting the lower bound we need
%n < An + B for all 1 < n, and thus A and B must satisfy

E(n) < 2 <1 & B<-—log,16+]log, (1 - r(”#)ﬂ) .

1 n
(5 — A) n < B < —log, 1.6 + log, (1 — 2_( ;1)+1> , foralln>1.

The minimal uniform solution is A = 1.1 and B = —.6, though one should note that
asymptotically as n — oo, A — % should be the case. O
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We conjecture that the first two terms of the upper and lower bounds in the
above theorem actually represents the dominant terms of the asymptotic limit for
general ¢, as n — oo but cannot currently show it.

Note that one can give another form for the recursion in Theorem 50. Using the
generating functions from Theorem 51, we have

60) =90 = Gf =i = g0 = 1 (06

= Z g (%) i(j +1)s; Z q(i + 1)q_(i§2)sisj

1+j=n t+j=n
7,+1 l+1
= Y g sy = Y igg (Fsgs
+j=n i+j=n
n—1
_(n+1 qg+1 i+l
= (1—¢q (3 )H)sn:;( - 2—1) (2)sisn_i,
[

which may be useful for proving these asymptotic limits.

4.4 Unramified Extensions

Throughout this section let K = A € A,,(F) denote an unramified algebraic exten-
sion of F', which is always a Galois extension of F' with cyclic group of automor-
phisms. For the computation of mg(A) it is more convenient to alter our setup.
Namely, fix a local field K with residue field IF,, and let K, be a subfield of K
such that K is an unramified extension of K, of degree n. We will then calculate
7nK%(l()

In this case, d(K) = 0, and let G,, = Autp(K) = C,, be the cyclic Galois group
of order n. By Equation 4.4,

1 1
mg, (K) = E/o | | |sa — Oz|}(/2 do = EUn'
K

seGr,

Now to compute this integral, choose the unique set of multiplicative or Teich-
miiller representatives R for K (see [5], Chp. L.7), i.e. such that R\{0} is the cyclic
group of ¢ — 1 roots of unity. Letting m be a (G,, stable uniformizing parameter of
K, we have,

U, = / H \Sa—aﬁ(ﬂ da—Z/ H |so<—oz|}(/2 do

K seGy, reR ¥ TTPK scay,
_ 1/2
= E ql/ H|3r—7‘+7r(sa—oz)}é do.
TER Ok seay,

Now if s7 — 7 = 0 mod pg, i.e. if 57 = 7, then by the uniqueness of multiplicative
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representatives, in fact, sr = r. Thus for each factor in the above product we have,

¢ tsa—alg ifsr=r
|sr —r +7m(sa—a)|g =

1 if sr #£7r

Now for a given r € R, sr = r if and only if 7 is contained in a subfield of I, which
the subgroup (3) fixes. More precisely, r is fixed by the subgroup G, C G,, of order
d|n and by no smaller subgroup if and only if 7 is a primitive element of the subfield
K4 over K.

K F,
[e? ke?
K, F /0
| |
K, Fy1/n

Thus we calculate

U, = Zq_l/ H\sr—T+7r(soz—oz)%2doz

TER Ok seay,

= Za(d, n)q_I/ H Y% so — oz|}(/2 da
djn Ok seay

= Y a(d,n)g Py, (4.9)
dln

where a(d,n) is the number of primitive elements of F/a over F,i/». We also note
that U; = 1. We will give a closed formula for the combinatorial numbers a(d, n).

Lemma 53. The number of primitive elements of F,» over F, is given by

> uln/d)g’,

dln
where p is the Mobius function.
Proof. We decompose F,n as
Fqn == U Iqu,
dln

where I~qu is the set of primitive elements of 4 over F,. Letting ay = #qud, we

have
=) e & a,=Y pun/d)g,
dln

dln

by Mébius inversion (see [11], Chp. 3.2). O
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Now we can write a(d,n) as the number of primitive elements of F,/a)/» over
F,1/n, and thus by the Lemma 53,

a(d,n) = Z p(n/de)g®™. (4.10)

el%

Letting b(d, n) = £a(d, n), note that b(d,n) is the number of irreducible polynomials
of degree n/d over F,i/., again, see [11], Chp. 3.2.

Theorem 54. Let K be the unramified extension of degree n of a local field K,
then .
mi, (K) = —Un = §d| Jb(d,n)g I Pmy, (K), (4.11)

where b(d, n) is the number of irreducible polynomials of degree n/d over F/n .

To revert back to our old notation, we fix a field F' with residue field of order
q, and let K be the unramified extension of F' of degree n. By Figure 1.1, K has
residue field of order ¢, and thus to recover mp(K) we just need to make the
substitution ¢ — ¢™ in the final formula for mg, (K) (this last point is important),
i.e. mp(K) = 2Un(¢"). Solving the recursion for n = 2 and making the substitution

g — ¢ recovers our original formula in Equation 2.2,
1 q
B = -

for an unramified extension K of F' of degree 2. More generally, for any prime n we
can also easily solve the recursion in Equation 4.9 (now with the fixed K notation),

U, = a(1,n)q U, + a(n,n)g~ "2y,
g—g'" 1
q 1 — gl/ng-(ntD)/2°

Substituting g — ¢", we have

Un qn = o )
( ) qr 1 — qq_( -2H)
and thus, for an unramified K over F' of degree n,
(" = 1)@ 14,140

n+1

1
mFK = - =
HTR T T T ey

(4.12)

I

whenever n is prime.
Again with our fixed K regime, we solve the recursion in Equation 4.9 when
n = p? for a prime p. In this case we have,

n+1

Up = a(l,n)g"'Us +a(p,n)q" "> U, +a(n,n)g~">"
_en (q—q'?) ¢!

— ntl
= (=P g '+ (P -¢M g T —— s+ Mg U,
1 —ql/l’q 2
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using our previous formula for n = p. Now we can let ¢ — ¢", and we have
1 _ et (" —=qP) g

Un(@") = ——w | (" =) "+ (@ -7 —— %
1-qq (%) L—grqg™>

bnp gD LGy, TC T g (G) T Gyt Gy

Py 1) Y- %)

2

Noting that ¢° ¢, + ¢s = ¢, for any r, s € N, we finally have

1 ¢p2fp ¢p(p;—1)_1 q(pzz)

(4.13)

mpg K)=
WA .
in the case that K has degree p? over F, and F has residue field of order q.
In Table 4.2, we list a few values of my, (K) as rational functions in ¢ where
we make the substitution ¢ — ¢™. Again we notice that these have factorizations
into the cyclotomic polynomials @, and into the polynomials ¢, = ¢™ — 1, where
again, the strange irreducible polynomial in the numerator will be called f,,. These
factorizations are also mysterious.

Asymptotics of my (K)

Again, one wonders if there exists a closed formula for the numbers mg, (K). We
will end by providing some asymptotic results in this case.

Theorem 55. We have

1
mg,(K) = —, as q— oo,

n

and .
mg,(K)~—, as n— oo.

n

Proof. We show these both by showing that U, — 1 as ¢ — oo for arbitrarily
large n. First note that a(1,n) = ¢ + O(¢'/?) and so the d = 1 term is dominant in

the sum
Up = Z a(d, n)g~ 2y,
dln
Also note that if char(F,) = p, then n is bounded above by the condition ¢'/* > p.
Now by a gracious estimate
n/d

la(d,n)| <) ¢/ =
=0

q(n/d+1)/n -1 - q(n/d—H)/n
g'/m—-1 = p-1

< cq'/"g"e,

for some positive constant ¢ depending only on ¢, and thus we have

Un =1 = [0(¢™*)+ ¢ ald,n)g Uy
o
< 0(g1?) +q71/20q1/nzq1/dq—d/2Ud 0,
dln

d>1

as ¢ — oo independently of n, for n > 2. This proves the theorem. O
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CHAPTER 4. GENERAL VOLUME COMPUTATIONS

n d 10)
1 1 1
2 lg 1414
29, 2"
3 1P, ¢ 192 ¢
3 D R
4 1 ®5¢° 1 ¢a¢s ¢°
Z(I)3(I)4(I)g 1 ¢4¢9
5 1 @4 qIO 1 ¢4 q10
5 Prdyy 5 i
6 1 fo q®® 19503 fo "
6 ©,0,D2D D7, Py 6 d6pro920
7 1 D@6 ¢* 16 g
T DgDyy; T o7
8 1 P19P19 ¢ 1 Gab10¢19 ¢°°
B8P3 DD PPy D13P35 8  Psghigdss
9 1 PePy7 ¢*° 1 P17 ¢°°
90,D5P11P15P0Pus 15044
10 1 10 ¢" 1 91949506 f10 q*
1009 P3D7 PP 19 P14 P13 P27 PogPss 10 ¢3010P28054
11 1 PPy g 1 ¢10 ¢
1T ®13P65 1T o5
12 1 fi2 q66 1 ¢0¢1¢3¢i¢6 fi2 q66
128,020, 0®2 011 P12, PorPugPr7 | 12 ProP20barPaodrr
In

Table 4.2: Volumes for unramified extensions as rational functions in ¢ and factored

into cyclotomic polynomials ®,, and into ¢, = ¢" — 1.




Appendix A

Glossary of Terms

e ANz

N
S

(vr)

N ms e [ R

The set of natural numbers: 0,1,2,...

The set of integers: ..., —2,—1,0,1,2,...
The set of rational numbers.

The set of real numbers.

The set of complex numbers.

The finite field of order gq.

The set of p-adic numbers.

The set of p-adic integers.

Isomorphism of fields or topological groups.
Inclusion mapping.

Direct sum of vector spaces or rings.

A normalized discrete valuation, (on a field F).
A local field, (Section 1.1).

The n-fold Cartesian product F' x -« x F'.
A finite separable extension of F.

The multiplicative group of a field F.

A group G without its identity element.
The multiplicative group of n'® powers of elements in F.
The ring of integers of local field, (of F').
The group of integer units.

The prime ideal of O, (of Op).

The residue field of a local field F'.

A uniformizing parameter, (of F).

The normalized absolute value, (on F'), (Section 1.1).
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R A set of residue field representatives of a local field.
F[z] The set of polynomials in x with coefficients in F.

F(x) The set of rational functions in z with coefficients F'.
F((z)) The set of Laurent series in z with coefficients in F.
w, (1r) The normalized Haar measure, (on F'), (Section 1.2).
ne A The product measure of x4 and A, (Section 1.2).

J The Jacobian matrix of a mapping ¢.

dimp(K) The degree of the field extension K over F.

Autp(K) The set of F-automorphisms of an extension K.

#S The cardinality of a set S.

w(K) The cardinality of Autp(K).

Fsep A fixed separable closure of F'.

Homp(K, F*P) The set of embeddings of K into F*P.

0,01,...,0, Embeddings of K into F®°P.

Ng/r, Tk/r The norm and trace of K down to F.

€1,.-.,€n The elementary symmetric functions.

discr(f) The discriminant of a polynomial f.

Dy The discriminant of an extension K over F

d(K) The number vg(Dk).

A An étale algebra over a field F', (Section 1.4).

A, (F Isomorphism classes of étale algebras over F' of dimension n.
Al (F) Totally ramified extensions in A, (F).

Pu(F), P, The set of monic polynomials f € Or[z] of degree n.
PA The set of monic polynomials which generate A over F.
mp(A) The volume u(P4).

VA Mapping that parameterizes the set P4.

F, (Op) The set of primitive elements of a field F, (Op N F).
Ik The index form of an extension K over F', (Section 4.1).
Sn The symmetric group on n letters.

C, The cyclic group of order n.

c(K) The wild part of the discriminant, d(K) —n + 1.

En The set of Eisenstein polynomials of degree n over F'.
A A g-tuple, A € N? with )", \; = n, (Section 4.3).

P, The n*® cyclotomic polynomial.

The polynomial ¢™ — 1.
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