
QUADRATIC FORMS OVER LOCAL RINGS

ASHER AUEL

Abstract. These notes collect together some facts concerning quadratic forms
over commutative local rings, specifically mentioning discrete valuation rings.

Let R be a commutative local ring with maximal ideal m, residue field k, and
field of fractions K. A symmetric bilinear form (M, b) is a projective R-module of
finite rank together with a symmetric R-module homomorphism b : M ⊗RM → R,
equivalently, an element b ∈ S2(M)∨. A quadratic form (M, q) is a projective R-
module M of finite rank together with a map q : M → R satisfying the usual
axioms, equivalently q ∈ S2(M∨). In particular, a quadratic form has an associated
symmetric bilinear polar form bq. Recall that every projective module of finite rank
over a local ring is free.

We say that a symmetric bilinear form (M, b) is nondegenerate (resp. regular)
if the canonical induced map M → M∨ = HomR(M,R) is an injection (resp. iso-
morphism). We say that a quadratic form is nondegenerate (resp. regular) if its
associated symmetric bilinear form is. If 2 /∈ R×, then no regular bilinear form has
odd rank. To repair this, there is a notion of semiregularity, due to Kneser, for
quadratic forms of odd rank, see Knus [6, IV §3.1]. If 2 ∈ R× then semiregularity is
equivalent to regularity.

Throughout, ∼= means isometry. If N ⊂M is a subset and (M, b) a bilinear form,
N⊥ = {v ∈ M : b(v,N) = 0} is the orthogonal complement (for quadratic forms
this is defined via the polar bilinear form).

We thank Jon Hanke, whose question concerning possible cohomological descrip-
tions of Jordan splittings of quadratic forms motivated the drafting of these notes.
We also thank Baptiste Calmès and Jean-Louis Colliot-Thélène for pointing out
mistakes in earlier drafts.

1. Regular forms

Fact 1.1. Regularity is a local property. A symmetric bilinear or quadratic form
over R is regular if and only if the reduction modulo m is regular.

Fact 1.2 (Baeza [1, I Prop. 3.2], Knebusch [5, I Prop. 2]). Let (M, q) be a quadratic
(resp. symmetric bilinear) form over R and N ⊂M a R-submodule. If qN is regular,
then there is a decomposition (M, q) ∼= (N, q|N ) ⊥ (N⊥, q|N⊥).

Fact 1.3 (Baeza [1, I Cor. 3.4]). Let (M, q) be a quadratic (or symmetric bilinear)
form over R. Every orthogonal decomposition (M, q) ⊗R k ∼= (M ′1, q

′
1) ⊥ (M ′2, q

′
2),

with (M ′1, q
′
1) a (semi)regular quadratic or (symmetric bilinear) form over k, lifts

to an orthogonal decomposition (M, q) ∼= (M1, q1) ⊥ (M2, q2), where (M1, q1) and
(M2, q2) are quadratic (or symmetric bilinear) forms over R reducing to (M ′1, q

′
1)

and (M ′2, q
′
2), respectively, and with (M1, q2) is regular.
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Proof. Let q ⊗R k ∼= q′1 ⊥ q′2 with q′1 regular. Then there exists M1 ↪→M with q|M1

regular by Fact 1.1. But then by Fact 1.2, q ∼= q|M1 ⊥ q2 for some q2 and where
q|M1 ⊗R k ∼= q′1. But then q2 ⊗R k ∼= q′2 by Witt cancellation for fields. �

Definition 1.4. Let a, b ∈ R. Define the standard quadratic forms [a] = (R, x 7→
ax2) and [a, b] = (R2, (x, y) 7→ ax2 + xy + by2). Then [a] is semiregular if and only
if a ∈ R× and [a, b] is regular if and only if 1− 4ab ∈ R×. Note: if 2 /∈ R× then [a]
is never regular.

Let a ∈ R. Define the standard symmetric bilinear form<a>= (R, (x, y) 7→ axy).
Then <a> is regular if and only if a ∈ R×.

For every symmetric n × n matrix T over R, there is an associated symmetric
bilinear form (Rn, (v, w) 7→ vtTw).

Fact 1.5. Every (semi)regular quadratic form (M, q) over R has a decomposition
of the form

(M, q) ∼=

{
[a1, b1] ⊥ . . . ⊥ [ar, br] if the rank is even
[a1, b1] ⊥ . . . ⊥ [ar, br] ⊥ [a] if the rank is odd

for elements ai, bi ∈ R such that 1 − 4aibi ∈ R× and a ∈ R×. If 2 ∈ R×, then any
regular quadratic form (M, q) over R has an orthonormal basis

(M, q) ∼= [a1] ⊥ . . . ⊥ [ar]

for ai ∈ R×.

Proof. This follows directly from the corresponding statement over the residue field
k lifted to R via Fact 1.3. �

Definition 1.6. A quadratic form (M, q) is primitive if the ideal generated by the
values q(M) is the unit ideal; every regular quadratic form is primitive. A symmetric
bilinear form (M, b) is primitive if the quadratic form q(x) = b(x, x) is primitive; if
2 ∈ R× then every regular symmetric bilinear form is primitive.

Fact 1.7. Every regular bilinear form (M, b) over R has a decomposition of the form

(M, q) ∼=


<c1>⊥ . . . ⊥<cr> if (M, b) is primitive(
a1 1
1 b1

)
⊥ . . . ⊥

(
ar 1
1 br

)
if (M, b) is not primitive

for elements ci ∈ R× and ai, bi ∈ m. If 2 ∈ R×, then any regular quadratic form
(M, q) over R has an orthonormal basis

(M, q) ∼=<a1>⊥ . . . ⊥<ar>
for ai ∈ R×.

Proof. This follows directly from the corresponding statement over the residue field
k lifted to R via Fact 1.3. �

2. Witt cancellation and decomposition

Fact 2.1 (Baeza [1, I Cor. 4.3]). A local ring R has the Witt cancellation prop-
erty: for regular quadratic forms (M1, q1), (M2, q2), and (M, q), we have (M1, q1) ⊥
(M, q) ∼= (M2, q2) ⊥ (M, q) implies (M1, q1) ∼= (M2, q2).

Remark 2.2. A local ring R (with 2 /∈ R×) does not necessarily have the Witt
cancellation property for regular bilinear forms.
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Fact 2.3. Every metabolic quadratic form over a local ring R is isomorphic to H⊥r,
where H = [0, 0] is the hyperbolic quadratic plane. In particular, if 2 ∈ R×, then
the same holds for metabolic symmetric bilinear forms. In general, if 2 /∈ R×, then
there may be many kinds of isomorphism classes of metabolic symmetric bilinear
forms, for example

(
a 1
1 0

)
, for any a ∈ R.

Fact 2.4 (Baeza [1, I, Thm. 3.5, III Cor. 4.3], Knebusch [5, §3, Prop. 3]). A local
ring R has:

• the Witt decomposition property for regular quadratic forms: any regular
quadratic form (M, q) has a decomposition (M, q) ∼= (M0, q0) ⊥ H⊥n, where
(M0, q0) is anisotropic whose isometry class is uniquely determined by that
of (M, q),
• (if 2 ∈ R×) the Witt decomposition property for regular symmetric bilinear

forms,
• (if 2 /∈ R×) the weak Witt decomposition property for regular symmetric bi-

linear forms: any regular symmetric bilinear form (M, b) has a decomposition
(M, b) ∼= (M0, b0) ⊥ N , where (M0, q0) is anisotropic and N is metabolic,
neither of whose isometry class is necessarily uniquely determined by that of
(M, b).

Fact 2.5 (O’Meara [8, IX 93:14]). A complete DVR R has the hyperbolic cancel-
lation property: for nondegenerate quadratic forms (M1, q1) and (M2, q2), if H ⊥
(M1, q1) ∼= H(M2, q2), then (M1, q1) ∼= (M2, q2).

3. (Grothendieck–)Witt rings

Recall the Grothendieck–Witt ring GW (R) (resp. GWq(R)) of isometry classes of
regular symmetric bilinear (resp. quadratic) forms and the Witt ring W (R) (resp.
Wq(R)) of isometry classes of regular symmetric bilinear (resp. quadratic) forms
modulo hyperbolic forms. Every metabolic bilinear form over an affine scheme is
split and is stably hyperbolic, hence GW (R) (resp. GWq(R)) is isomorphic to the
Grothendieck ring of isometry classes of regular symmetric bilinear (resp. regular
quadratic) forms with respect to orthogonal sum and tensor product. The abelian
group GWq(R) is, via tensor product, a GW (R)-algebra. Note that GW (R) and
W (R) are rings with unit <1>, while if 2 /∈ R× then GWq(R) and Wq(R) are rings
without unit. If 2 ∈ R×, then we can identify GW (R) and GWq(R) as well as W (R)
and Wq(R).

Fact 3.1. Let R be a ring with the Witt decomposition property for regular quadratic
(resp. symmetric bilinear) forms. Assume furthermore that every metabolic form is
hyperbolic. Then classifying isometry classes of quadratic (resp. symmetric bilinear)
forms is equivalent to computing the associated (Grothendieck–)Witt group.

In particular, this holds for regular quadratic forms over a local ring R and for
regular symmetric bilinear forms over a local ring with 2 ∈ R×.

Definition 3.2. Let R be a DVR and π a uniformizer. There exists a unique
homomorphism ∂π : W (K)→W (k) satisfying

∂π
(
<uπn>

)
=

{
<u> n odd
0 n even
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Fact 3.3. Let R be a DVR and π a uniformizer. Assume 2 ∈ R×. Then purity
holds for the Witt group of symmetric bilinear forms, i.e. the natural sequence

0→W (R)→W (K) ∂π−→W (k)→ 0

is exact.

This raises a general open problem:

Fact 3.4 (Ojanguren–Panin [7]). Let R be a regular local ring containing a field of
characteristic 6= 2. Then W (R)→W (K) is injective.

We have one more result due to Knebusch:

Fact 3.5. Let R be a DVR. Then Wq(R) → Wq(K) and GWq(R) → GWq(K) are
injective.

Corollary 3.6. Let R be a DVR with 2 6= 0. Then the natural maps (taking polar
bilinear forms) Wq(R)→W (R) and GWq(R)→ GW (R) are injective.

Finally, for a few “non-stable” results (i.e. results about quadratic forms, not
(Grothendieck–)Witt classes).

Fact 3.7 (Baeza [1, V Lemma 1.4]). Let R be a complete local ring. If (M, q) is
a regular quadratic form such that (M, q)⊗R k is isotropic then (M, q) is isotropic.
Moreover, the canonical reduction maps GWq(R) → GWq(k) and Wq(R) → Wq(k)
are isomorphisms.

Fact 3.8 (Parimala–Sridharan [11, Lemma 1.1]). Let R be a complete local ring with
2 invertible. If (M, q) is a regular quadratic form such that (M, q)⊗R k is isotropic
then (M, q) has a hyperbolic summand.

Fact 3.9 (Panin [9], Panin–Pimenov [10]). Let R be a (semi)local regular integral
domain containing a field such that all residue fields of R are infinite of characteristic
6= 2. If (M, q)⊗R K is isotropic then (M, q) is isotropic.

4. Language of lattices

We often study a quadratic (or symmetric bilinear) form over R by going to
the generic point, i.e. tensoring by the quotient field K. The language of lattices
takes the opposite perspective. Fix a (non-degenerate) quadratic (or symmetric
bilinear) form (V, b) over K and consider lattices inside V , i.e. projective R-modules
M ⊂ V such that M ⊗R K = V (“M spans V ”). Restricting the form b to a
lattice often yields a “form over R”. The problem is that, in general, b|M has values
in some arbitrary R-submodule of K, not necessarily in R. The value R-module
a = b(M) ⊂ K is often called the scale of the lattice. It is a fractional ideal of R,
i.e. a rank 1 projective R-module a ⊂ K.

Since here we do not use the language of lattices, we will instead speak of a-valued
quadratic forms over R. Such a form consists of a triple (M, q, a), where M is a
projective R-module, a is a projective R-module of rank 1 (which we will often think
of as a fractional ideal, i.e. together with an inclusion a ⊂ K), and q : M → a is
a map satisfying the usual axioms. We also speak of a-valued symmetric bilinear
forms (M, b, a) over R. We will always assume that a is actually the R-submodule
generated by the values of the form (i.e. the form has scale a).

Given an R-lattice M inside a symmetric bilinear form (V, b) over K, as well as
a fractional ideal a ⊂ K, define the a-dual lattice

M#a = {x ∈ V : b(x,M) ∈ a}.
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Definition 4.1. A lattice M inside a nondegenerate symmetric bilinear form (V, b)
over K is called a-modular if M = M#a. An R-modular lattice (i.e. satisfying
M = M#) is called unimodular.

The point is: “unimodular” as a lattice means “regular” as a bilinear form over
R. To read more about modular lattices, see O’Meara [8, VIII §82G]. N.B. O’Meara
uses “regular lattice” to mean what we call here “lattice inside a nondegenerate
bilinear form.” For a study of (uni)modular lattices over Dedekind domains, see
Fröhlich [4], Bushnell [2], [3], and Wagner [12] (in characteristic 2).

Fact 4.2. Let (V, b) be a nondegenerate bilinear form over K. There’s an equivalence
between the category of unimodular lattices inside (V, b) and the category of regular
symmetric bilinear forms (M, b) over R together with an K-module isomorphism
M ⊗R K → V .

But what does a-modularity mean for a general a? There is a canonical R-
module homomorphism M#a → HomR(M, a) given by x 7→ y 7→ b(x, y). If (V, b) is
nondegenerate over K, then this is actually an R-module isomorphism.

An a-valued symmetric bilinear form is called regular if the natural R-module
homomorphism M → HomR(M, a) is an isomorphism. An a-valued quadratic form
is called regular if its associated a-valued symmetric polar bilinear form is. In view
of the above statements, we have an analogous statement.

Fact 4.3. Let (V, b) be a nondegenerate bilinear form over K. There’s an equiv-
alence between the category of a-modular lattices inside (V, b) and the category of
regular a-valued symmetric bilinear forms (M, b) over R together with an K-module
isomorphism M ⊗R K → V .

Another important way that regular a-valued forms behave like regular bilinear
forms (cf. Fact 1.2).

Fact 4.4. Let (M, q, a) be an a-valued quadratic (resp. symmetric bilinear) form
over R and N ⊂M an R-submodule. Suppose that a is the entire module of values.
If (N, q|N , a) is a regular a-valued quadratic (resp. symmetric bilinear) form, then
there’s a decomposition (M, q, a) ∼= (N, q|N , a) ⊥ (N⊥, q|N⊥ , a′), where a′ is the
module of values of q|N⊥.

5. Jordan splittings

Definition 5.1. A Jordan splitting of an a-valued symmetric bilinear form (M, b, a)
is a decomposition:

(M, b, a) = (M0, b0, a0) ⊥ . . . ⊥ (Mr, br, ar)

where the value modules establish a filtration

a = a0 % · · · % ar

and such that (Mi, bi, ai) is a regular ai-valued symmetric bilinear form for each
0 ≤ i ≤ r.

Fact 5.2 (O’Meara [8, IX Thm. 91:9]). The numbers r, rankR(M0), . . . , rankR(Mr)
and the value modules a0 % · · · % ar are invariants of any Jordan splitting of a
nondegenerate a-valued symmetric bilinear form.

Fact 5.3 (O’Meara [8, IX §91C]). Every nondegenerate a-valued symmetric bilinear
form over a DVR has a Jordan splitting.



6 ASHER AUEL

6. Cohomological invariants

Discriminant. A symmetric bilinear form (M, b) of rank n has an associated
(signed) discriminant form, it’s the natural form

∧nM ⊗
∧nM → R given by

v1 ∧ · · · ∧ vn ⊗ w1 ∧ · · · ∧ wn 7→ (−1)n(n−1)/2 det(b(vi, wj))i,j .

If we can choose an R-module isomorphism
∧nM ∼= R, then we can view the

discriminant form as some rank 1 form <d>: R⊗R→ R, and the class d = d(b) ∈
R/R×2 is well-defined. We shall also refer to this class as the discriminant. Over a
local ring, every rank 1 module is free, so we can always do this.

A symmetric bilinear form (M, b) is unimodular if and only if it’s discriminant is
a unit, i.e. d(b) ∈ R×/R×2.

An a-valued symmetric bilinear form (M, b, a) of even rank n = 2m also has a
signed discriminant form, it’s the natural form(∧nM ⊗ a∨⊗m

)
⊗
(∧nM ⊗ a∨⊗m

)
→ R

given by the similar equation

(v1 ∧ · · · ∧ vn ⊗ f1 ⊗ · · · ⊗ fm)⊗ (w1 ∧ · · · ∧ wn ⊗ g1 ⊗ · · · ⊗ gm)

7→ (−1)n(n−1)/2f1 ⊗ · · · ⊗ fm ⊗ g1 ⊗ · · · ⊗ gm
(
det(b(vi, wj))i,j

)
,

considering det(b(vi, wj))i,j ∈ a⊗n. The same recipe gives a class d ∈ R/R×2.
An a-valued symmetric bilinear form (M, b, a) is a-modular if and only if it’s

discriminant is a unit, i.e. d(b) ∈ R×/R×2.

Fact 6.1. Let R be a local ring. Then there’s a canonical isomorphism R×/R×2 ∼=
H1

fppf(R,µ2).

Proof. The Kummer sequence

1→ µ2 → Gm
2−→ Gm → 1

is an exact sequence of sheaves of groups in the fppf-topology on SpecR. Since
R is local, we have Hfppf(SpecR,Gm) ∼= Pic(R) = 0. The long exact sequence in
cohomology applied to the Kummer sequence then gives the result. �

Therefore, given a regular symmetric bilinear form (M, b) of any rank or a regular
a-valued symmetric bilinear form (M, b, a), the discriminant gives a class d(b) ∈
H1

fppf(R,µ2).

Arf invariant. A quadratic form (M, q) of rank n over R has an associated Clifford
algebra C(q) = T (M)/〈v ⊗ v − q(v) : v ∈M〉. If q is regular then{

C(q) if n even
C0(q) if n odd

is an Azumaya R-algebra, while{
C0(q) if n even
C(q) if n odd

is an Azumaya algebra over its center, which is an étale quadratic extension S/R.

Fact 6.2. Let R be a local ring. Then there’s a canonical bijection between the set
of R-isomorphism classes of étale quadratic R-algebras and H1

ét(R,Z/2Z). Also, the
canonical map H1

ét(R,Z/2Z)→ H1
fppf(R,Z/2Z) is an isomorphism.
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The R-isomorphism class of S/R gives an element of a(q) ∈ H1
fppf(R,Z/2Z) called

the Arf invariant.
An a-valued quadratic form (M, q, a) of rank n over R, while it does not have a

Clifford algebra, has an even Clifford algebra C0(q) = T (M ⊗M ⊗ a∨)/(I1 + I2)
where we have ideals

I1 = 〈v ⊗ v ⊗ f − f(q(v)) : v ∈M,f ∈ a∨〉
and

I2 = 〈u⊗ v ⊗ f ⊗ v ⊗ w ⊗ g − u⊗ w ⊗ f(q(v))g : u, v, w ∈M,f, g ∈ a∨〉.
If (M, q, a) is a regular a-valued quadratic form of even rank, then C0(q) is an
Azumaya algebra over its center, which is an étale quadratic extension S/R, the
class of which defines the Arf invariant a(q) ∈ H1

fppf(R,Z/2Z) for such forms.
So given a regular quadratic form (M, q) of any rank or a regular a-valued qua-

dratic form (M, q, a) of even rank, we have two classes: the discriminant of the polar
bilinear form d(bq) ∈ H1

fppf(R,µ2) and the Arf invariant a(q) ∈ H1
fppf(X,Z/2Z).

Fact 6.3. The natural homomorphism Z/2Z → µ2 of sheaves of abelian groups
on the fppf topology on R gives rise to a group homomorphism H1

fppf(X,Z/2Z) →
H1

fppf(X,µ2) taking a(q) to d(bq).

Clifford invariant. If (M, q) is a regular quadratic form over R then the class
c(q) ∈ 2Br(R) of C(q) (or C0(q) depending on the parity of the rank), is called the
Clifford invariant.

If (M, q, a) is a regular a-valued quadratic form of odd rank then the class c(q) ∈
2Br(R) of C0(q) defines a Clifford invariant.

If (M, q, a) is a regular a-valued quadratic form of even rank, there is no canonical
way to define a Clifford invariant in this way. What exists is an invariant c̃(q) ∈
2Br(S) which is the Brauer class of C0(q) over its center S/R. There is also a
secondary invariant, defined for regular a-valued quadratic forms (M, q, a) of even
rank such that a(q) = 0. In this case S ∼= R × R, which induces a decomposition
C0(q) ∼= C+

0 (q) × C−0 (q), and the class c(q) ∈ 2Br(R) of C+
0 (q) is a well-defined

invariant of the isometry class of (M, q, a).

Fact 6.4. Let R be a local ring. Then H2
fppf(R,µ2) ∼= 2Br(R).

We can thus consider the Clifford invariant (when it’s defined), as an element
c(q) ∈ H2

fppf(X,µ2). The Clifford invariant (when it’s defined) of a bilinear form is
taken to be the Clifford invariant of the quadratic form b(x, x).

Fact 6.5. Let R be a henselian local ring. Then the canonical reduction map
Br(R)→ Br(k) is an isomorphism. In particular, if R is a DVR with finite residue
field, then Br(R) = 0.

7. Classification of forms over a DVR

Fact 7.1. Regular a-valued symmetric bilinear forms over a p-adic ring with 2 ∈ R×
are classified up to isometry by their rank and discriminant.

As a consequence, when 2 ∈ R×, we can classify nondegenerate symmetric bilinear
forms over p-adic rings by means of Jordan splittings.

Fact 7.2 (O’Meara [8, IX Thm. 92:2]). Let R be a p-adic ring. Let a nondegenerate
a-valued symmetric bilinear form (M, b, a) have Jordan splitting (M0, b0, a0) ⊥ . . . ⊥
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(Mr, br, ar). Then the isometry class of b is uniquely determined by the list of ranks
rankR(M0), . . . , rankR(Mr), and discriminants d(b0), . . . , d(br).

When 2 /∈ R×, the classification of nondegenerate symmetric bilinear forms due
to O’Meara [8, IX Thm. 93:28] does not seem to be of cohomological invariant type!
I’m sure the classification of nondegenerate a-valued quadratic forms is much more
clean.
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