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Latin Squares
o Definition: A “Latin square” is a 𝑛 × 𝑛 array of numbers from the set 𝑆 =

{1, 2, 3, … , 𝑛} where each element appears exactly once in each row and 
column. 

o Note rearranging the rows or columns by any permutation will result in another 
Latin square. Thus one can permute any Latin square into its reduced form, 
where  the first row and column are in increasing order. 

o This can be generalized to cubes, hypercubes, in a similar fashion.

o Sudoku are 9x9 Latin squares with an added constraint. 



Basic Results:

o Any group’s multiplication table forms a Latin square (inverses guarantee this). 

However, arbitrary Latin squares give the multiplication table of a quasigroup (not a 

group, as they may not have an identity or be associative). For example, the middle 

table has 3*(4*5)=3*2=5 which is not (3*4)*5=2*5=3. 

o Consequently, there is at least one for all 𝑛, e.g. the table of ℤ/𝑛ℤ.
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However, arbitrary Latin squares give the multiplication table of a quasigroup (not a 

group, as they may not have an identity or be associative). For example, the middle 

table has 3*(4*5)=3*2=5 which is not (3*4)*5=2*5=3. 

o Consequently, there is at least one for all 𝑛, e.g. the table of ℤ/𝑛ℤ.

o The number of reduced Latin squares does not have a (simple) known closed formula, 

but some bounds are known. Up to symmetry, the number of squares is given by 

A000315: 1, 1, 1, 4, 56, 9408, 16942080, …

o Completing partial Latin squares is known to be NP-complete



Euler Squares
o Definition: An “Euler,” or “Graeco-Latin” square, is an 𝑛 × 𝑛 array of pairs from 

the set 𝑆2 = 1, 2, 3, … , 𝑛 2 where the array formed by taking the first 
component of each cell is a Latin square, as well as the second component, and 
every pair in 𝑆2 is used. This property of a pair of Latin squares is called 
orthogonality. Example: Arrange the 

sixteen face cards (ace, 
jack, queen, and king for 
each of the four suits: 
spades, hearts, diamonds, 
and clubs) such that every 
row/column has all the 
face values and suits 
(Jaques Ozanam, 1725). Stained glass art display in 

Kemeny Hall, Dartmouth Math 
department



Higher orders

o This can be extended to larger sets of Latin 

squares, where each pair is mutually 

orthogonal. The maximum size of such a set 

is given by A001438: 1, 2, 3, 4, 1, 6, 7, 8, 

then it’s unknown!

https://puzzlewocky.com/math-

fun/graeco-latin-squares/
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o This can be extended to larger sets of Latin 

squares, where each pair is mutually 

orthogonal. The maximum size of such a set 

is given by A001438: 1, 2, 3, 4, 1, 6, 7, 8, 

then it’s unknown!

o An upper bound on this maximum is n-1.

Proof: Permute so the first row of each is 1, 2, … n. 

Then the first cells of the second rows are all distinct. If 

there was a duplicate r, then the pair (r,r) would appear 

in this cell of the combined square, as well as in the rth

entry of the first row, contradicting orthogonality. 

Further, 1 can’t be in the first cell of any of the second 

rows, or else  it would occur twice in the first column of 

that square contradicting the Latin property. 

https://puzzlewocky.com/math-

fun/graeco-latin-squares/



Basic Results:

o Impossible for n=2. There are only two Latin squares with n=2, and they don’t work. 

o Existence for all odd values of 𝑛: i \ j 0 1 2 3 4 5 6

0 0,0 1,2 2,4 3,6 4,1 5,3 6,5

1 1,1 2,3 3,5 4,0 5,2 6,4 0,6

2 2,2 3,4 4,6 5,1 6,3 0,5 1,0

3 3,3 4,5 5,0 6,2 0,4 1,6 2,1

4 4,4 5,6 6,1 0,3 1,5 2,0 3,2

5 5,5 6,0 0,2 1,4 2,6 3,1 4,3

6 6,6 0,1 1,3 2,5 3,0 4,2 5,4

𝐸𝑖,𝑗 = 𝑖 + 𝑗, 𝑖 + 2𝑗 mod 𝑛

Each component forms a Latin 

square, as subsequent columns are 

shifted by 1 in the first, and 2 in the 

second (and 𝑛 is odd). They are 
orthogonal, as we can solve E𝑖,j =

(𝑎, 𝑏) mod 𝑛 with j = 𝑏 − 𝑎, 𝑖 = 2𝑎 − 𝑏.



Basic Results:

o Impossible for n=2. There are only two Latin squares with n=2, and they don’t work. 

o Existence for all odd values of 𝑛: 

o Euler had a construction for 𝑛 = 4𝑘, but couldn’t crack 𝑛 = 6. And if Euler can’t do it, 

there’s a good chance it’s impossible. This led to the 1779 conjecture that there are 

no Euler squares when 𝑛 = 4𝑘 + 2 for some natural number 𝑘. 
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History Time!

o In 1901, Gaston Tarry manually checked all Latin squares with n=6 and confirmed 

there were no solutions. They even published a proof of the conjecture…

Tarry



History Time!

o In 1901, Gaston Tarry manually checked all Latin squares with n=6 and confirmed 

there were no solutions. They even published a proof of the conjecture…

o But decades later, in 1959, Raj Bose found a 22x22 counterexample, dubbed an 

“Euler Spoiler.” Soon soon after they found a 10x10 example, with the help of some 

other mathematicians and early computers, ultimately finding a construction for every 

single n=4k+2! 

Tarry Bose

The Conjecture couldn’t have 

been more wrong! 6 is the ONLY

number, other than 2, that doesn’t 

have an Euler square.  



Applications
o Tournament design:  each day (row), players are matched to compete in 

locations (column) according to an Euler square. All pairs are tested against 
each other. 

o Design of experiments – blocking to control for confounding variables. For 
example, each day (row) you might test some of each batch (column) according 
to a Latin square to account for the two effects. Additional variables are taken 
into account with higher order squares. 



Applications
o Tournament design:  each day (row), players are matched to compete in 

locations (column) according to an Euler square. All pairs are tested against 
each other. 

o Design of experiments – blocking to control for confounding variables. For 
example, each day (row) you might test some of each batch (column) according 
to a Latin square to account for the two effects. Additional variables are taken 
into account with higher order squares. 

o Some things I didn’t dive into the details on:
o Euler squares are in bijection with finite projective planes.
o One can efficiently sample multidimensional distributions, for example in 

Monte Carlo simulations, according to a Latin Hypercube. 

o And the fun ones…



Magic Squares!

o Definition: A “magic square” is an 𝑛 × 𝑛 array of the numbers 1, 2, 3, … , 𝑛2 where 

every row and every column sums to the same number. 

o One can use an Euler square to construct a magic square as follows: Take the two 

alphabets 0, 1, 2, …𝑛 − 1, then replace the cell label (𝑎, 𝑏) with 𝑎 + 𝑏𝑛. 

0 15 30 45 11 26 41

8 23 38 4 19 34 42

16 31 46 12 27 35 1

24 39 5 20 28 43 9

32 47 13 21 36 2 17

40 6 14 29 44 10 25

48 7 22 37 3 18 33

i \ j 0 1 2 3 4 5 6

0 0,0 1,2 2,4 3,6 4,1 5,3 6,5

1 1,1 2,3 3,5 4,0 5,2 6,4 0,6

2 2,2 3,4 4,6 5,1 6,3 0,5 1,0

3 3,3 4,5 5,0 6,2 0,4 1,6 2,1

4 4,4 5,6 6,1 0,3 1,5 2,0 3,2

5 5,5 6,0 0,2 1,4 2,6 3,1 4,3

6 6,6 0,1 1,3 2,5 3,0 4,2 5,4



Magic Squares!

o Definition: A “magic square” is an 𝑛 × 𝑛 array of the numbers 1, 2, 3, … , 𝑛2 where 

every row and every column sums to the same number. 

o One can use an Euler square to construct a magic square as follows: Take the two 

alphabets 0, 1, 2, …𝑛 − 1, then replace the cell label (𝑎, 𝑏) with 𝑎 + 𝑏𝑛. 

o This is the base-𝑛 representation of the 

numbers from 0 to 𝑛2 − 1, so includes all of 

them uniquely. Since this is a Latin square in 

𝑎 and also in 𝑏, each row or column has the 

same set of values, so summing them gives 

the same result!

0 15 30 45 11 26 41

8 23 38 4 19 34 42

16 31 46 12 27 35 1

24 39 5 20 28 43 9

32 47 13 21 36 2 17

40 6 14 29 44 10 25

48 7 22 37 3 18 33



With n-2 MOLS of size 𝑞 × 𝑞, we can use n letters from the set {0,1, 2, …, q} to encode 

𝑞2 symbols and correct up to 
𝑛−1

2
errors!

First make a 𝑞 × 𝑞 table symbols. To encode the symbol in location (𝑖, 𝑗), use the codeword 

𝑖, 𝑗, 𝐿𝑖,𝑗
1 , 𝐿𝑖,𝑗

1 , … , 𝐿𝑖,𝑗
𝑛−3 , 𝐿𝑖,𝑗

𝑛−2

Error Correcting Codes
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Error Correcting Codes

A F K P U

B G L Q V

C H M R W

D I N S X

E J O T Y

𝐿1 𝐿2 𝐿3 𝐿4

For example, L is in position (0,2), so the codeword is (0,2,4,5,2,1).
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A F K P U

B G L Q V

C H M R W
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For example, L is in position (0,2), so the codeword is (0,2,4,5,2,1).

Suppose we only got the information (-,-,4,-,-,1). This means the encoded value 

corresponds to a 4 in 𝐿1 and a 1 in 𝐿4. Because the pair are orthogonal, (4,1) occurs 

exactly once, in position (0,2), so that must be the location of the secret!



With n-2 MOLS of size 𝑞 × 𝑞, we can use n letters from the set {0,1, 2, …, q} to encode 

𝑞2 symbols and correct up to 
𝑛−1

2
errors!

First make a 𝑞 × 𝑞 table symbols. To encode the symbol in location (𝑖, 𝑗), use the codeword 

𝑖, 𝑗, 𝐿𝑖,𝑗
1 , 𝐿𝑖,𝑗

1 , … , 𝐿𝑖,𝑗
𝑛−3 , 𝐿𝑖,𝑗

𝑛−2

Note that just two pieces of information are sufficient to determine 𝑖, 𝑗 . This is clear if those 

correct values are 𝑖 and j themselves. If you know 𝑖, or 𝑗, and any 𝐿𝑖,𝑗
𝑘 , then the fact that 𝐿𝑘 is a 

Latin square allows you to determine the the other value. If you know 𝐿𝑖,𝑗
𝑘 and 𝐿𝑖,𝑗

ℓ , then 

orthogonality guarantees that the pair (𝐿𝑖,𝑗
𝑘 , 𝐿𝑖,𝑗

ℓ ) appears in the combined square, and it only 

appears in position (𝑖, 𝑗). 

Because of this, any two codewords overlap in no more than two positions, or else they would

share two pieces of information and therefore encode the same 𝑖, 𝑗 and thus be identical. 

Error Correcting Codes

Therefore the hamming distance between any two codewords is n-1, so if the received 

word has less than 
𝑛−1

2
errors, it must be a corrupted version of the closer of the two 

code words! When q is a power of a prime, this achieves a theoretical upper bound! 



CREDITS: Diese Präsentationsvorlage wurde von 
Slidesgo erstellt, inklusive Icons von Flaticon, 

Infografiken & Bilder von Freepik

Thanks!

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
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