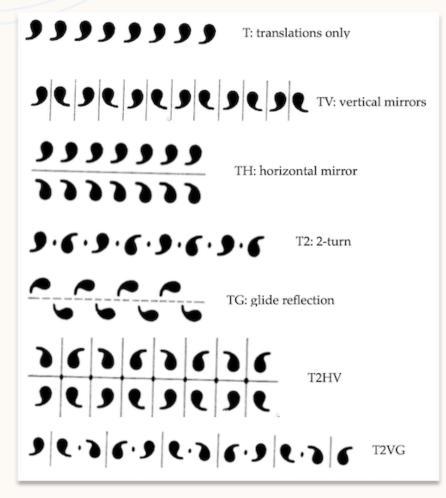
MATHEMATICAL ART

Brian Mintz Grad Student Seminar, Spring 2023

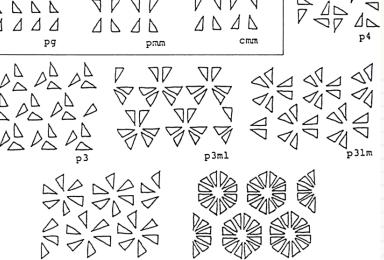

WHAT IS MATHEMATICAL ART? OR, WHY SHOULD I CARE?

Few people get to see the creative side of mathematics. We can share the beauty of patterns and structure in math through traditional art media.

It's also great outreach, an easy answer to "I'm not a math person," or "why would anyone study math?"

This talk will explore some of the myriad ways math has been used in art, and hopefully encourage more people to make and talk about mathematical art!

SYMMETRY GROUPS



The **symmetry group** of a set of points F in \mathbb{R}^n is the group of isometries of \mathbb{R}^n mapping F onto itself.

This is generated by translations, rotations, reflections, and glide reflections.

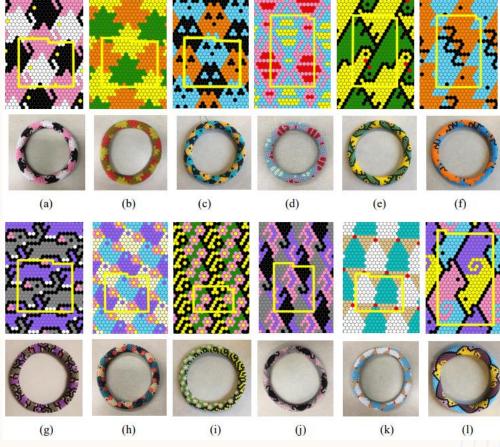
Dim	Name	Size
1	Frieze	7
2	Wallpaper	17
3	Crystal / space	230

the woven	subset of wallpaper gro	pups
△ △ △ △ pl		
	D D D D D D D D D D D D D D D D D D D	bwd \[\begin{align*} A \ A \ A \ A \ A \ A \ A \ A \ A \ A \
Da		
Δ Δ	^P D DD	77 ~1

FRIEZE PATTERNS

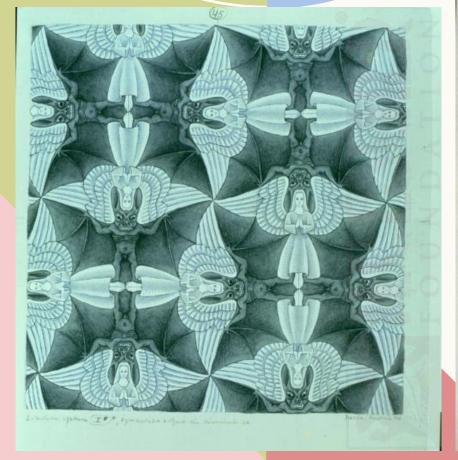
Table 1: Percentages of artifacts found in each frieze symmetry class

Artifacts	pmm2	pm11	pma2	p112	p1m1	p111	p1a1
European Folk Costumes	37	32	12	5	3	9	2
Lao Textiles	48	20	0	2	19	11	0
Han Textiles	21	23	19	7	3	19	7
Miao Textiles	47	13	26	6	1	4	2
Starkweather Pueblo Pottery	4	13	9	59	2	13	0
Begho Pipes	72	10	4	8	4	2	1
Peranakan Porcelain	1	68	1	10	0	18	1
Pirgí Friezes	41	19	8	11	9	4	9
Ming Porcelain	6	42	8	13	1	18	13
Saudi Arabia Mosques	23	46	1	2	7	17	3
Tonga Handbags	21	42	4	2	2	30	2
Averages from 11 previous studies	29	30	8	11	5	13	4

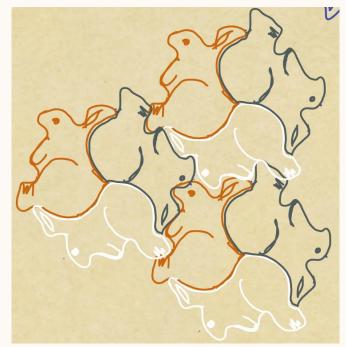

Eve

Torrence

WALLPAPER SYMMETRIES IN BEADING



Ellie Baker and Susan Goldstine



TILINGS

Jiayi Chen, Lucy Knight

KNITTING

MAKING MATHEMATICS WITH **NEEDLEWORK** EDITED BY SARAH-MARIE BELCASTRO CAROLYN YACKEL

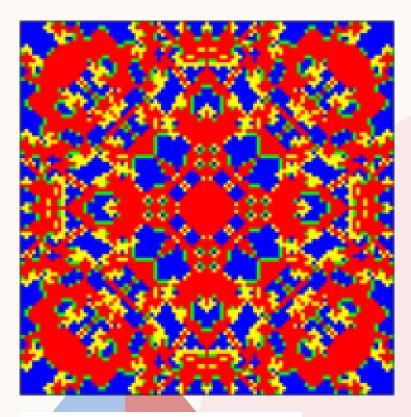
Austin Green

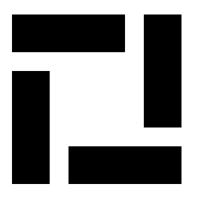
CROCHET

Gabriele Meyer

"Blue," by Daina Taimina (Cornell University, Ithaca, NY)

Daina Taimina

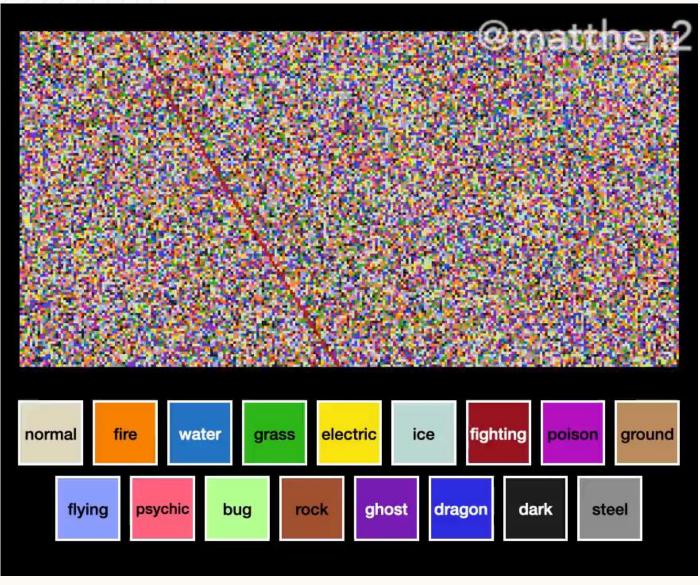




Shiying dong

ALGORITHMIC ART

Spatial Games


Christoph Hauert

van Dommelen, van Kreveld, and Urhausen

Table 1: Different systems for figures with a simple procedural definition. The dimension refers to the typical dimension for the image.

System	Example	Result	Dim.	Properties	
Parametrized curve	Lissajoux	curve	2	continuous	
	Pendulum	curve	2	continuous	
	Spirograph	curve	2	continuous	
	Guilloché	curve	2	continuous	
	Spirolateral	curve	2	continuous, piecewise-linear	
Cellular automata	Game of Life	grid	2	discrete-time	
	Sierpiński triangle	grid	2	1D automaton with history	
Grammar-based	L-system	shape (object)	2, 3	parallel replacement	
	Shape grammar	shape (object)	2, 3	serial or parallel replacement	
	Koch snowflake	shape	2	parallel replacement, fractal	
Coupled equation	Hénon map	strange attractor	2	chaotic, discrete-time, quadratic	
system	Lorenz system	strange attractor	3	chaotic, continuous, quadratic	
	Mandelbrot, Julia set	colored plane	2	fractal, iterated function, complex plane	
	Spiroplot	point plot, trace	2	discrete-time, linear, multi-point state	

Mathematical Art Living RPS, Peter Ganunis

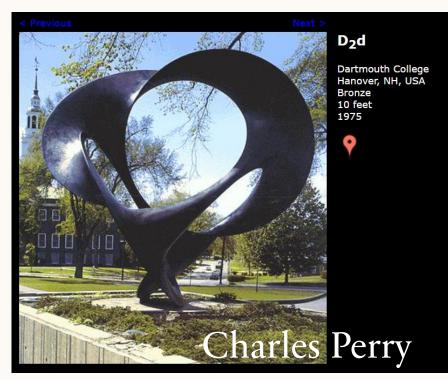
Pokemon spatial game, Matt Henderson

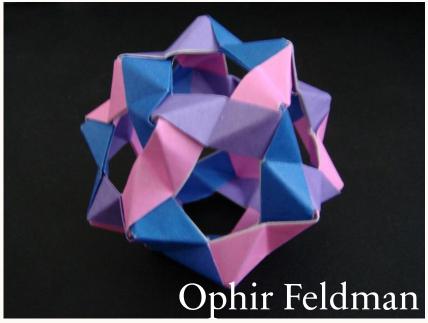
KUMIHIMO

- A Japanese method of braiding.
- Kongō Gumi: 16 strands, 2 colors.
- Joshua Holden counted all symmetric patterns with de Bruijn's generalization of the Pólya enumeration theorem.

Friendship-Bracelets.net	
1 2	
16 3	
15 4	10121416
	9 11 13 15
	2468
	1 3 5 7
14 5	
13	9 11 13 15 10 12 14 16
13	2 4 6 8 9 11 13 15
	3 5 7 2 4 6 8 9
	12(14(16)1 (3 (5) 7 (2)
12 7	
11 / 8	
10 9	

Spots	1	2	3	4
#	1	8	21	72
Spots	5	6	7	8
#	147	280	375	257
Total	1161			


SCULPTURE


Henry Segerman

George Hart

PUZZLES

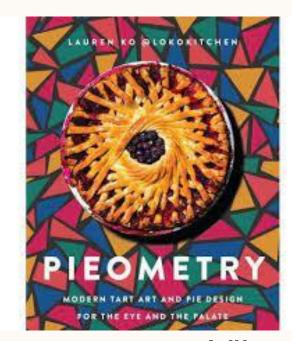
Hanayama

Disc

Mobius

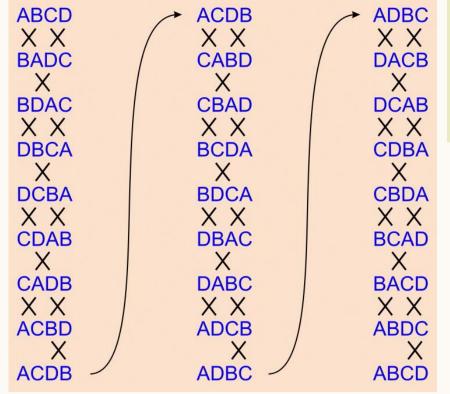
Henry Segerman

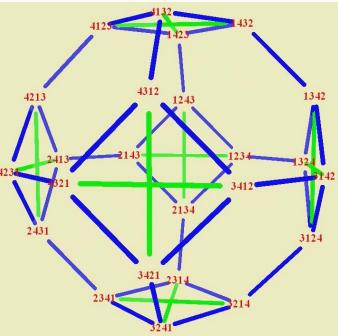
COOKING

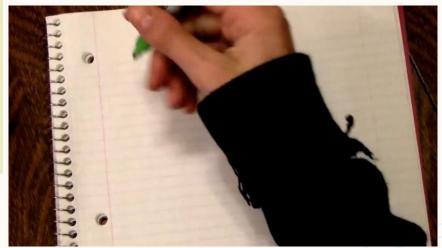

Joy Hsiao

Wafer paper (top left), gum paste (bottom left), dark and white chocolates

Lizzie Buchanan, Beth-Anne Castellano, Brian Mintz, and Alex Wilson.

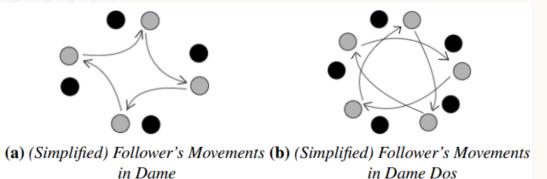

Artic Circle theorem Pie


Cookie Shapes! Vihart



MUSIC

Change Ringing


Sound Braid, Victoria Hart

DANCE

Christine von Renesse

Figure 2: Dame and Dame Dos

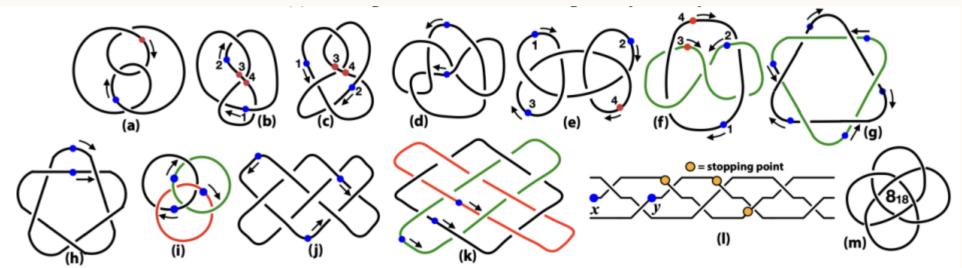
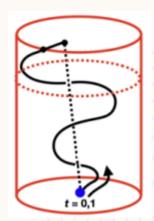



Figure 9: Variety of links and knots and their danceability.

Maypole Karl Schaffer

POETRY

When the cube and the added things
Result in a certain number, find $[x^3 + ax = b]$ Two numbers whose difference is this one. [u - v = b]

You should always use these two numbers
Provided their product is equal
Precisely the cube of a third of the thing. $[uv = (a/3)^3]$

Then make it a general rule to subtract the Cube-roots from each other, in order To obtain the main thing as your answer.

 $[x = \sqrt[3]{u} - \sqrt[3]{v}]$

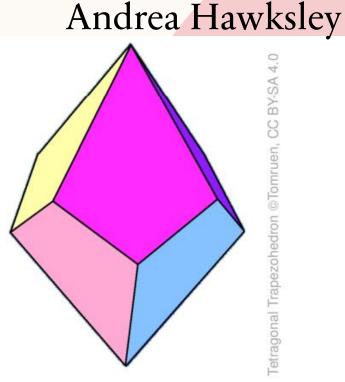
Legato Gelato

Susan Gerofsky

Adepts pasted sateen
The palest pastel petals —
To please those senators asleep to treason

to podiums of the senate, stapled plates to pleats whose elapsed duties suited them too well

They tended dented sacred cedars
Dropping a peremptory crusty curtsy
Sirens applied rinses
Ochres thicken
Bruise earth's rubies
Silver livers sliver
She poises her burden
Serves and severs verses,
As the lifter of fares


that scared cadres had chopped with chesty scythe to entrap a curt parent to resins kitchen chores and buries busier hearts the risen siren of burned posies stayed steady fears and filters safer trifles.

WHY MATH ART? IT'S FUN!

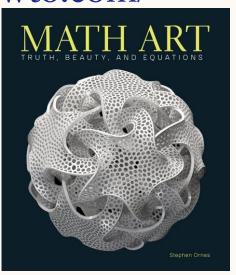
Makoto Nakamura

Figure 3: The otterhedron (left) is made from 8 stuffed otters arranged like a tetragonal trapezohedron (right).

MATH CAN BE ADDED TO ANYTHING, WHAT COULD YOU MAKE?

THANK YOU!

This presentation is available on my website if you'd like to follow up with any of these:



I'm also happy to chat more!

A FEW REFERENCES

- Journal of Mathematics and the Arts
- http://www.toroidalsnark.net/mathknit.html
- http://woollythoughts.com/
- https://www.artofmathematics.org/
- https://mathcraft.wonderhowto.com/

AND MUCH MORE...

https://www.mathed.page/geometry-labs/symmetry-labs.html

https://www.researchgate.net/figure/The-17-wallpaper-groups-with-their-simple-patterns-all-drawings-of-paper-are-by-the_fig1_228781255

https://archive.bridgesmathart.org/2021/bridges2021-253.pdf

https://nrich.maths.org/1341

https://www.maa.org/sites/default/files/images/upload_library/4/vol1/architecture/Math/seven.html

http://faculty.smcm.edu/sgoldstine/gallery/CBS.html https://archive.bridgesmathart.org/2021/bridges2021-1.pdf

https://mcescher.com/gallery/symmetry/ https://canvas.dartmouth.edu/courses/56422/pages/esc her-gallery https://www.americanscientist.org/article/adventures-in-mathematical-knitting

http://gallery.bridgesmathart.org/exhibitions/2020-joint-mathematics-meetings/gabriele_meyer
http://www.ams.org/publicoutreach/math-imagery/taimina
http://www.ams.org/publicoutreach/feature-column/fc-2018-05

http://faculty.smcm.edu/sgoldstine/torus7.html

http://wiki.evoludo.org/index.php?title=EvoLudo https://archive.bridgesmathart.org/2020/bridges2020-353.pdf https://commons.wikimedia.org/wiki/Category:Animations_ of_the_Game_of_Life

https://twitter.com/juanbuis/status/1600155605112496129 https://twitter.com/matthen2/status/1543226572592783362 https://archive.bridgesmathart.org/2022/bridges2022-327.pdf

https://www.shapeways.com/product/VULEQP5GU/interlocking-mobius-ladders?optionId=42989409&li=shopshttps://www.georgehart.com/sculpture/frabjous.htmlhttps://www.maa.org/programs/faculty-and-departments/curriculum-department-guidelines-recommendations/innovative-teaching-exchange/oragamigeometry-classroom

https://www.youtube.com/watch?v=Cp3q6NduvOU

https://japanobjects.com/features/temari
https://temaritwins.com/wpcontent/uploads/2018/12/Karens12puzzlingshapessmall.png
https://www.flickr.com/photos/barbarabsuess/51368969625/i
n/album-72157719697510000/
https://www.reddit.com/r/temari/comments/o4kup4/temari_
2_259_cm_circumference/
https://mymodernmet.com/temari-balls-geometric-patterns/

http://gallery.bridgesmathart.org/exhibitions/2021-bridgesconference/joy-Hsiao https://www.youtube.com/watch?v=_n1126GoxbU

https://www.youtube.com/watch?v=VB6a4nI0BPA https://www.youtube.com/watch?v=3lyDCUKsWZs

https://archive.bridgesmathart.org/2021/bridges2021-79.pdf https://www.familyhandyman.com/article/what-is-a-maypoleand-why-do-people-dance-around-it/ https://archive.bridgesmathart.org/2020/bridges2020-513.pdf

http://www.ams.org/programs/students/math-poetry https://archive.bridgesmathart.org/2020/bridges2020-273.pdf https://archive.bridgesmathart.org/2022/bridges2022-79.pdf

https://archive.bridgesmathart.org/2022/bridges2022-359.pdf http://gallery.bridgesmathart.org/exhibitions/2014-bridgesconference/makoto-nakamura