The existence of minimizers for an isoperimetric problem with Wasserstein penalty term in unbounded domains

Qinglan Xia, ${ }^{1}$ Bohan Zhou. ${ }^{2}$
DARTMOUTH
${ }^{1}$ UC Davis ${ }^{2}$ Dartmouth College

Abstract

We provide a partial answer to an open problem considered by [BCL18]: double-minimization problem in an (possibly) unbounded domain Ω
$\min \left\{P(E ; \Omega)+\lambda W_{p}(E, F): E \subseteq \Omega, F \subseteq \mathbb{R}^{d},|E \cap F|=0,|E|=|F|=1\right\}$,
for minimizing energy in a model of bi-layer membranes (LPR14).
We first provide a method for existence results in unbounded domain in any
dimension, under a restriction of parameters,
We highlight a shape functional induced by the Wasserstein distance and provide useful properties.

Preliminary

Background

(1) A Lebesgue measurable set E is a set of finite perimeter if $P(E ; \Omega)=\sup \left\{\Omega_{\Omega} \chi_{E}(x)\right.$ div $\phi(x) \mathrm{d} x: \phi \in C_{c}^{1}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right),\|\phi\|_{\infty} \leqslant 1$ Minimizing the perimeter under a volume constraint in an unbounded domain Ω eads to the classical Euclidean isoperimetric problem. The first term $P(E ; \Omega)$ is thus an attractive term.
(2) Given two Lebesgue measures of equal mass μ, ν, the p-Wasserstein distance ($p \geqslant 1$) between μ and ν is given by

$$
W_{p}(\mu, \nu)=\inf _{\gamma \in \Gamma(\mu, \nu)}\left(\mathbb{R}_{\mathbb{R}^{d}+\mathbb{R}^{\mathbb{d}} \mid}|x-y|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p},
$$

where $\Gamma(\mu, \nu)$ is the collection of transport plans whose marginals are μ, ν. One can generalize it to define the distance between two Lebesgue measurable sets E, F of equal volume:

$$
W_{p}(E, F)=W_{p}\left(\mathcal { L } ^ { d } \left\llcornerE, \mathcal{L}^{d}\llcorner F)\right.\right.
$$

We can well-define the Wasserstein shape functional on any bounded Lebesgue measurable set E of volume m :

$$
\mathcal{W}_{p}(E):=\min \left\{W_{p}(E, \bar{F}):(E, \bar{F}) \in \mathcal{F}_{m}\right\} .
$$

among the class \mathcal{F}_{m} of disjoint pairs (E, F) of equal volum
$\mathcal{F}_{m}:=\left\{(E, F): E, F \subseteq \mathbb{R}^{d},|E \cap F|=0,|E|=|F|=m\right\}$

$$
\text { Fixing the bounded set } E \text {, we can regard the minimizer } F \text { being the }
$$ optimal coating.

Minimizing $\mathcal{L}_{p}(E)$ favors splitting the set E but not necessarily disperse the mass into vanishing components diverging infinitely apart. In the meanwhile, it favors extending perimeter so that lowering the averaged transport distance from E
(weak) repulsive term.

Some Classical Problems
Here is some literature to deal with an isoperimetric problem in unbounded domain with volume constraints.

- Euclidean isoperimetric problem: symmetrization principles
- Sessile liquid drops problem: symmetrization principles.
- Minimizing clusters problems: cover-pack first at the cost of loss of volume, second fix volume.
- Gamow liquid drops problems: comparison criterion

Our results

Strategy of Proof

(1) Equivalent formulation in a volume parameter m. We apply scaling arguments to obtain an equivalent formulation (2) in terms of a volume parameter m, instead of original weight parameter

$$
\text { Minimize } \quad P(E)+W_{p}(E, F) \quad \text { among all }(E, F) \in \mathcal{F}_{m} .
$$

(2) Existence of a minimizing sequence of bounded sets. We prove that there exists a minimizing sequence of bounded sets to the problem (2), inspired by [Alm76]. Here we use the so-called Nucleation Lemma in [Mag12]. Now, by using the known result for $\mathcal{W}_{p}(E)$ on any bounded set E, we express the double minimizing problem (2) into a shape problem

$$
\begin{equation*}
\text { Minimize } \quad T(E)=P(E)+\mathcal{W}_{p}(E) \quad \text { among all bounded } E \text { with }|E|=m \tag{3}
\end{equation*}
$$

(3) Existence of a minimizing sequence of uniformly bounded sets for small volume. When m is small and $\frac{1}{p}+\frac{2}{d}>1$, we are able to find a minimizing sequence of uniformly bounded sets to the problem (3), through a non-optimality criterion, inspired by [KM14].

Step 1: Scaling Arguments

Noting

Step 2: Covering and Packing
For any $m>0,(E, F) \in \mathcal{F}_{m}$, and $0<\varepsilon \leqslant \min \left\{|E|, \frac{P(E)}{2 d c(d)}\right\}$, there exists $(\bar{E}, \bar{F}) \in \mathcal{F}_{m}$ such that

$$
P(\widetilde{E}) \leqslant P(E)+2 \varepsilon, \quad W_{p}(\bar{E}, \widetilde{F}) \leqslant W_{p}(E, F)+\left(\frac{2}{\omega_{d}}\right)^{1 / d} \varepsilon^{\frac{1}{p}+\frac{1}{d}},
$$

and $(\widetilde{E}, \widetilde{F}) \in \mathcal{F}$ are bounded sets inside the ball $B\left(O, R_{\varepsilon}\right)$ where $R_{\varepsilon}:=\left(6\left(\frac{P(E)}{c(d) \varepsilon}\right)^{d}+C_{0}(d)\left(\frac{P(E)}{c(d)}\right)^{d-1}\right)|E|+\left(\frac{2 \varepsilon}{\omega_{d}}\right)^{1 / d}$.

Step 3: Comparison
Suppose $p \geqslant 1, d \geqslant 1$ with $\frac{1}{2}+\frac{2}{d}>1$, there exists an $m_{0}>0$ such that for every bounded set $G \subseteq \mathbb{R}^{d}$ of finite perimeter with $|G| \leqslant m_{0}$, there exists a bounded set $E \subseteq \mathbb{R}^{d}$ of finite perimeter with
$|E|=|G|, \quad T(E) \leqslant T(G)$ and $E \subseteq B_{2}$

Recent Developments

Remarks

- $\frac{1}{p}+\frac{2}{d}>1$ comes from the comparison criterion.

However, we realized that small λ (weak repulsive effect) corresponds to either (small m and $\frac{1}{p}+\frac{2}{d}>1$) or (large m and $\frac{1}{p}+\frac{2}{d}<1$.
Two groups [NTV21 [CTG21] extend our results to the full range of
General
Pre meor may deal with sets other than bounded sets. erties of \mathcal{W}_{p} has its own interest [XZ20, NTV21, CTG21]:
$\mathcal{W}_{p}(E) \leqslant C(d)|E|^{\frac{1}{p}+\frac{1}{2}} ;$
$\mathcal{W}_{p}(E)$ is lower semi-continuity in the sets of finite perimeter $\mathcal{W}_{p}^{p}(E)$ is super-additive with equality when sets are far enough $\left|\mathcal{W}_{p}^{p}(E)-\mathcal{W}_{p}^{p}\left(E^{\prime}\right)\right| \leqslant C \max \left\{|E|^{p},\left|E^{p}\right|^{\prime}\right\}^{p}\left|E \Delta E^{\prime}\right|$

Recent results

(1) Existence results
[NTV21] follows the original ideas in [Alm76] via the nucleation lemma of $\mathcal{\mathcal { W } _ { p } ^ { p }}$.
of concentration-compactness arguments. Because the位 ealized iniziers mrovey they a-minimizer of to erimeter. They avoid the use of Almgren nucleation lemma
(2) Characterization results:

CT21 follows a Fuglede-type argument. They use the regularity theory for Λ-minimizers of the perimeter together with a Taylor expansion of the energy al

References

Alm76| E.J. Almgren. Jr. Existence and regularity
riational problems with constraints, Mem. Amer. Math. Soc., 1976.
Variational probeems with constraints, Mem. Amer. Math. Soc
BCL18] G. Buttazzo, G. Carlier, M. Laborde. On the Wasseste

,
KM14] H. Kniuper, C.B. Muratov. On an isoperimetric
The general case, Comm. Pure. Appl. Math, 2014.
embranes, J. Fixed Point Theory Appl., 2014
Mag12] F. Maggi. Sets of Finite Perimeter and geometric Variational
Geometric Measure Theory, Cambridge Studies in Advannced Mathematics, 2012
NTV21] M. Novack, I. Topaloglu, R. Venkatraman. Least Wasserstein distance between disjoint
apes with perimeter regularization, $A r X i v, 2021$.
penaly term in unbounded domains, Advances in Calculus of Variations, 2020 .
Secent Developments in Geometric Measure Theory and its Applicatio A conference on the occasion of Bob Hardt's retirement.
March 17th-20th, 2022. Rice University.

