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A double minimization problem
[Buttazzo, Carlier, Laborde 17’] consider
Minimize

P(E ; Ω) + λWp(E ,F )

among sets (E ,F ):

E ⊆ Ω, F ⊆ Rd , |E ∩ F | = 0, |E | = |F | = 1.

Figure: [Peletier, Röger 09’] model lipid bilayer membranes
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Remark

• P(E ; Ω): perimeter(surface area...), attraction.
(Relative) isoperimetric sets in Ω.

• Wp(E ,F ): (Lengthp ×Mass)1/p, repulsion.

• Coefficient λ is not essential, especially for Ω = Rd .

Ω

E

P(E ; Ω) = Hd−1(Ω ∩ ∂E )
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Remark

• P(E ; Ω): perimeter(surface area...), attraction.
(Relative) isoperimetric sets in Ω.

• Wp(E ,F ): (Lengthp ×Mass)1/p, repulsion.

Wp(µ, ν) := inf
γ∈Γ(µ,ν)

(∫
Rd×Rd

|x − y |p dγ(x , y)

)1/p

.

• Coefficient λ is not essential, especially for Ω = Rd .
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Past literature

The double minimization problem:

• arbitrary d , bounded Ω, existence.

• d = 2 and Ω = R2, existence. ← Isodiametric inequality.

• d > 3 and Ω unbounded, OPEN. → AIM: Ω = Rd .

F is fixed =⇒ an isopermetric problem with an additional penalty:

• [Xia 05’] P(E ; Ω) + λW p
p (E , σΩ), bounded Ω ⊆ Rd .

→ existence, regularity.

• [Milakis 06’] P(E ; Ω) + λW 2
2 (E ,F ) for smooth bounded Ω

and any fixed F in Rd .

→ existence, regularity.
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Existence of isoperimetric problem is subtle

Perron (a colleague of Steiner) criticized Steiner symmetrization on
the Euclidean isoperimetric problem:

Theorem
Among all curves of a given
length, the circle encloses the
greatest area.

Proof.
For any curve that is not a
circle, there is a method (given
by Steiner) by which one finds a
curve that encloses greater area.
Therefore the circle has the
greatest area.

Theorem
Among all positive integers, the
integer 1 is the largest.

Proof.
For any integer that is not 1,
there is a method (“to take the
square”) by which on finds a
larger positive integer.
Therefore 1 is the largest
integer.
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Sets of finite perimeter

Definition
Let E be a Lebesgue-measurable set in Rd , for any open set
Ω ⊆ Rd , the perimeter of E in Ω, is

P(E ; Ω) := sup

{∫
E
divT (x) dx : T ∈ C 1

c (Ω;Rd),‖T‖ 6 1

}
.

Let µE be the distributional derivative of 1E , then

P(E ; Ω) = |µE | (Ω) = Var(1E ,Ω).
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Property of sets of finite perimeter

• We say En → E in Ω, if lim
n→∞

∣∣Ω ∩ (E∆En)
∣∣ = 0.

• E 7→ P(E ; Ω) is lower semi-continuous w.r.t convergence in
measure.

• A sequence of sets of finite perimeter {En} in Rd with
supn P(En) <∞ and En ⊆ BR ,
then up to subsequences, there exists a set E of finite
perimeter with

En → E , E ⊆ BR .

• De Giorgi’s structure theorem:
P(E ) = Hd−1(∂∗E ).
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Optimal Transport

• Given a compact domain Ω, Wp is a distance on Pp(Ω) and
metrizes its weak topology.

• Wp is widely used in image processing, machine learning, fluid
mechanism.

• Brenier’s theorem:
For p > 1, given µ, ν ∈ Pp(Ω) for some compact domain Ω,
and µ� L d , then there exists an optimal transport map Φ
such that

Wp(µ, ν) =

(∫
Ω

∣∣x − Φ(x)
∣∣p dµ(x)

)1/p

.

That is, γ = (1× Φ)#µ.
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Our strategy
Denote

Fm :=
{

(E ,F ) : E ,F ⊆ Rd , |E ∩ F | = 0, |E | = |F | = m
}
.

(BCL Problem):

Minimize P(E ) + λWp(E ,F ) among all (E ,F ) ∈ F1.

m

(Volume constrained Problem):

Minimize P(E ) + Wp(E ,F ) among all (E ,F ) ∈ Fm.

m

(Isoperimetric Problem): Let Wp(E ) = minF Wp(E ,F )

Minimize T (E ) := P(E ) +Wp(E )
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The direct method of Calculus of Variations

Two recipes:

• Compactness of arbitrary minimizing sequence.

• Lower semi-continuity of the functional.
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Step 1: Volume Constraint

Scaling rules:

rd = m, P(rE ) = rd−1P(E ) and Wp(rE , rF ) = r1+ d
pWp(E ,F ).

Volume constraint problem, for λ = m
1
p

+ 2
d
−1:

Minimize P(E ) + Wp(E ,F ) among all (E ,F ) ∈ Fm.

Lack of compactness in unbounded domain leads to the failure of
volume constraint.
Target: the uniform boundedness.
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Almgren’s work on minimizing clusters
Minimize

{
P(E) :

∣∣E(i)
∣∣ = mi , i = 1, 2, · · · ,N.

}
• in unbounded domains;
• do NOT expect symmetry of minimizers.

Figure: Source: [Morgan 09’]
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Loss of compactness in unbounded domains

Figure: Diverging components. Source: [Maggi 12’]
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Almgren’s seminal work
Given minimizing sequence {Ek},
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Almgren’s seminal work
Given minimizing sequence {Ek},

P(E ′k) 6 P(Ek)−
d(Ek , E ′k)

C (d)ε1/d
;
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Almgren’s seminal work
Given minimizing sequence {Ek},

P(E ′k) 6 P(Ek)−
d(Ek , E ′k)

C (d)ε1/d
;

P(E ′′k ) 6 P(E ′k) + C · d(Ek , E ′k).



Introduction Strategy and Inspiration Main theorem and Proof Future work and open problems

Almgren’s seminal work

P(E ′k) 6 P(Ek)−
d(Ek , E ′k)

C (d)ε1/d
;

P(E ′′k ) 6 P(E ′k) + C · d(Ek , E ′k).

 ε0=⇒
P(E ′′k ) 6 P(Ek)

m(E ′′k ) = m(Ek)

E ′′k ⊆ B(R(ε0))

Wasserstein term incurs additional obstacle on analysis.
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Our strategy
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Nucleation lemma

Lemma ([Almgren 76’, Maggi 12’])

For every d > 2, there exists a positive constant c(d) with the
following property: given any set E ⊆ Rd of finite perimeter with
0 < |E | <∞, and any positive number ε with ε 6 min{|E | , P(E)

2dc(d)},
there exists a finite family of points I ⊆ Rd such that:∣∣∣∣∣∣E \

⋃
x∈I

B(x , 2)

∣∣∣∣∣∣ < ε

∣∣E ∩ B(x , 1)
∣∣ > (c(d)

ε

P(E )

)d

, ∀ x ∈ I .

#I6 |E |
(
P(E )

c(d)ε

)d
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Step 2: Covering and Packing

Proposition ([Xia, Z. 20’])

Let E ⊆ Rd be a set of finite perimeter with |E | <∞ and d > 2.

For any number 0 < ε 6 min{|E | , P(E)
2dc(d)}, there exists a finite

subset I ⊆ Rd with

#I 6 |E |
(
P(E )

c(d)ε

)d

such that for some number r ∈ [2, 3], the set

U :=
⋃
x∈I

B(x , r)

satisfies ∣∣E \ U∣∣ < ε and Hd−1(E ∩ ∂U) 6 ε .
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Step 2: Covering and Packing (cont.)

Theorem ([Xia, Z. 20’])

For any m > 0, (E ,F ) ∈ Fm, and 0 < ε 6 min
{
|E | , P(E)

2dc(d)

}
,

there exists (Ẽ , F̃ ) ∈ Fm such that

P(Ẽ ) 6 P(E ) + 2ε, Wp(Ẽ , F̃ ) 6 Wp(E ,F ) +

(
2

ωd

)1/d

ε
1
p

+ 1
d ,

and (Ẽ , F̃ ) ∈ F are bounded sets inside the ball B(O,Rε) where
O = (0, · · · , 0) is the origin in Rd ,

Rε :=

(
6

(
P(E )

c(d)ε

)d

+ C0(d)

(
P(E )

c(d)ε

)d−1
)
|E |+

(
2ε

ωd

)1/d

.
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Step 2: Covering and Packing (cont.)

Figure: We use balls of fixed radius r to cover the majority of E . For
each connected part E ε

j combined with F̂ ε
j , we pack each pair (E ε

j , F̂
ε
j )

into a ball and then align these balls together inside B(O,Rε).
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What we do not gain: the uniform bound

Minimize P(E ) + Wp(E ,F ) among all (E ,F ) ∈ Fm.

Given a minimizing sequence {(En,Fn)}, we obtain an alternative

sequence {(Ẽn, F̃n)} ⊆ B(R(εn)) with

P(Ẽn) + Wp(Ẽn, F̃n) 6 P(En) + Wp(En,Fn) +O(εn).

To make {(Ẽn, F̃n)} being minimizing sequence, let εn 6 1
n .

However, unlike minimizing clusters, B(R(εn)) is NO more a
uniformly bounded domain. → Loss of compactness

#I 6 |E |
(
P(E )

c(d)ε

)d
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What we gain: a better minimizing sequence

{(Ẽn, F̃n)} is a minimizing sequence of bounded set.

(Volume constrained Problem):

Minimize P(E )+Wp(E ,F ) among all bounded sets (E ,F ) ∈ Fm.

(Isoperimetric Problem):

Minimize T (E ) := P(E ) +Wp(E )

among all bounded set E ⊆ Rd of finite perimeter with |E | = m.
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Wasserstein functional

Definition ([Xia, Z. 20’])

For any bounded Lebesgue measurable set E ⊆ Rd and p > 1, let
m := |E | and define the Wasserstein functional on E by

Wp(E ) := min
{
Wp(E , F̃ ) :

∣∣∣E ∩ F̃
∣∣∣ = 0,|E | =

∣∣∣F̃ ∣∣∣} .
We call F as the Wp-minimizer of E if Wp(E ) = Wp(E ,F ).

E

Figure: Source: [Buttazzo-Carlier-Laborde 17’]
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Property of Wasserstein functional

Lemma ([Xia, Z. 20’])

For any bounded Lebesgue measurable set E ⊆ Rd and p > 1, let
F denote a Wp-minimizer of E and Φ denote an optimal transport
map that transports E to F . Then there is a constant
C0(d) = (31/d + 2)`d such that

1. For a.e. x ∈ E ∣∣Φ(x)− x
∣∣ 6 C0(d)|E |1/d .

2.
Wp(E ) 6 C0(d)|E |

1
p

+ 1
d .

3. ∣∣∣∣F \ {y ∈ Rd : dist(y ,E ) 6 C0(d)|E |1/d
}∣∣∣∣ = 0.
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Property of Wasserstein functional (cont.)

Lemma (Lower semi-continuity of Wp, [Xia, Z. 20’])

Suppose {En} is any sequence of sets of finite perimeter in Rd with

sup
n

P(En) <∞ and En ⊆ BR

for each n and some R > 0. If En converges to E , then we have

Wp(E ) 6 lim inf
n→∞

Wp(En).
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Main theorem

Theorem ([Xia, Z. 20’])

Suppose d > 1, p > 1 with 1
p + 2

d > 1, there exists an m0 > 0 such
that for any m 6 m0, the isoperimetric problem with Wasserstein
penalty has a minimizer. Moreover, the minimizer is bounded.
(Thus regularity results can be applied.)

Observation: Take E = Br with |Br | = m.

P(Br ) ≈ rd−1 and Wp(Br ) ≈
(
rprd

)1/p
= r1+ d

p ;

m� 1⇒ r � 1;
P(Br )�Wp(Br ).
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Step 3: Uniform bound

Theorem ([Xia, Z. 20’])

Suppose p > 1, d > 1 with 1
p + 2

d > 1, there exists an m0 > 0

such that for every bounded set G ⊆ Rd of finite perimeter with
|G | 6 m0, there exists a bounded set E ⊆ Rd of finite perimeter
with

|E | = |G | , T (E ) 6 T (G ) and E ⊆ B2. (1)

Recipes of proof:

• [Figalli, Maggi, Pratelli 10’] Quantitative isoperimetric
inequality;

• Non-optimality criteria;

• Gronwall’s inequality.
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Quantitative isoperimetric inequality

Theorem ([Figalli, Maggi, Pratelli 10’])

There exists a constant C (d) such that for any set E ⊆ Rd of
finite perimeter, we have

4(E ,Br ) 6 C (d)

√
P(E )− P(Br )

P(Br )
,

where Br is a d-ball with |Br | = |E |, the Fraenkel asymmetry is
given by

4(E1,E2) := min
x∈Rd

∣∣E14(E2 + x)
∣∣

|E1|
,
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Non-optimality criteria

Lemma (Nonoptimality criteria, [Xia, Z. 20’]1 )

Suppose d > 1, p > 1 with 1
p + 2

d > 1, let G ⊆ Rd be a bounded
set of finite perimeter with |G | = m < min{1, ωd}. Suppose there
is a partition of G into two disjoint sets of finite perimeter G1 and
G2 with positive volumes such that

P(G1) + P(G2)− P(G ) 6
1

2
T (G2). (2)

Then there is an ε = ε(m, d) > 0 such that if

|G2| 6 ε|G1| ,

there exists a bounded set E ⊆ Rd such that |E | = |G | and
T (E ) < T (G ).

1Inspired by [Knüpfer and Muratov 14’]
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Non-optimality criteria (cont.)

G2

G1

Figure: If a set G can be split into a dominated part G1 and a remainder
part G2, with a small slicing surface area bounded by 1

4T (G2), then G
may not be a T -minimizer.
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Open problems

• Could 1
p + 2

d > 1 be removed? Could small volume
assumption be removed?

• Regularity of minimizers (E ,F ).

• What are the minimizers? Must the minimizer be given by a
ball?

• Jordan-Kinderlehrer-Otto Scheme:

ρτk+1 ∈ argmin F (ρ) +
d2(ρ, ρτk)

2τ
.
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Open problems

• Could 1
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• Regularity of minimizers (E ,F ).

• What are the minimizers? Must the minimizer be given by a
ball?

Attraction: P(E ); Repulsion: R(E ) =
∫
E

∫
E

1
|x−y |α dx dy

[Knüpfer and Muratov 14’]: 3 6 d 6 7, α ∈ (0, d − 1), small
m.
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Open problems

• Could 1
p + 2

d > 1 be removed? Could small volume
assumption be removed?

• Regularity of minimizers (E ,F ).

• What are the minimizers? Must the minimizer be given by a
ball?

Attraction: A(m) =
∫ ∫

ρ(x)ρ(y)|x − y |λ dx dy ;
Repulsion: R(E ) =

∫ ∫
ρ(x)ρ(y) 1

|x−y |α dx dy ;

subject to
∫
ρ(x) dx = m, 0 6 ρ 6 1.

[Frank, Lieb 20’]: λ > 0, α ∈ (0, d − 1), large m.

• Jordan-Kinderlehrer-Otto Scheme:

ρτk+1 ∈ argmin F (ρ) +
d2(ρ, ρτk)

2τ
.
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• Could 1
p + 2

d > 1 be removed? Could small volume
assumption be removed?

• Regularity of minimizers (E ,F ).

• What are the minimizers? Must the minimizer be given by a
ball?

• Jordan-Kinderlehrer-Otto Scheme:

ρτk+1 ∈ argmin F (ρ) +
d2(ρ, ρτk)

2τ
.
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