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Problem

We provide an exact and efficient method
to solve Multimarginal Optimal Transport
(MMOT) under a family of cost functions:
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for the space X = X; x---x X,,, and prescribed
marginal probability measures (yu;)",. The set
of transport plans I'(u1, - , tm) is defined by
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summed pairwise cost functions
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where c;;(z;, ;) = hij(z; —x;) for some strictly

convex function h;;.

Preliminary: Duality Theory
The dual problem to (1) is given by

sup Z/X fil@i)dps, (2)
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where > " fi(z;) < c(xy,- 0, xm).
|Kel84| provided a general duality theorem:
there exists a c-conjugate solution to (2) under

mild assumption.

Current Methods

|IBCC+15|: Entropy-regularized MMOT on pri-
mal variables.

IHRCK21|: Entropy-regularized MMOT with
structure on dual variables.

|ABA22|: Solving exact MMOT with structure
via ellipsoid algorithm with oracle.

INX22|: LP-based method to approximate
MMOT with controllable level of sub-optimality.
In general, entropy-regularized based methods
may suffer from numerical instability and blur-
ring issues. LP based methods may not be prac-
tical in solving large-scale problems.

References
|ABA21| Altschuler and Boix-Adsera. Polynomial-time

algorithms for multimarginal optimal transport prob-
lems with structure, Math. Program., 2022.

IBCC+15| Benamou,
Peyré.
transportation problems, SIAM J. Sci. Comput., 2015.
|[HRCKZ21| Haasler, Singh, Zhang, Karlsson and Chen.
Multi-marginal optimal transport and probabilistic
graphical models, IEEE Trans. Inform. Theory, 2021.
|JL20| Jacobs and Léger.
transport: the back-and-forth method, Numerische
Mathematik, 2020.

INX22| Neufeld and Xiang.

Carlier, Cuturi, Nenna and

Iterative Bregman projections for regularized

A fast approach to optimal

Numerical method for

feasible and approximately optimal solutions of multi-

marginal optimal transport beyond discrete measures,
ArXw, 2022.

|ZP22| — and Parno. Exact and Efficient Multi-marginal
Optimal Transport with Pairwise Cost. ArXiv, 2022.

DARTMOUTH

Equivalent Theorem and Strategy

Step 1: For summed pairwise costs, we may present it into a graph with possible cycle.

Step 2: We proved an equivalent theorem: for any MMOT that has a graphical representation with
possible cycles, there exists an equivalent MMOT that has a tree representation. The dual solution
of tree-MMOT induces a dual solution of graph-MMOT.

Step 3: Inspired by [JL22|’s back-and-forth method on 2-marginal OT, we maximize (2) by gradient
ascent on (m — 1) dual variables in H'. and c-transform on the root dual variable.

Step 2: Get a tree (Right) from a graph (Left) iteratively Step 3: Updating a downstream node

Gradient-ascent on Rooted Tree

Define I (fi, .-, frots frits oo fm) € I(f1, .0y froa, (2_izr Ji)s fr41,- -5 fm). The updates are:
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are recursively defined by f; =

The net potential f/ at edge (i, NT(i¢)) we introduced,
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the downsteam node of node 1.

N~ (i) are the collections of upsteam nodes of node ¢ and N7 (i) are

Numerical Results

Convalutional Wasserstein Barycenters in POT
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Left plot: sharp Wasserstein barycenter via our method. Right plot: blurred
Wasserstein barycenter via entropy-regularized based method in POT package,
regularization parameter is 0.004. Both 4-marginals are given at four corners.
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