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Abstract. A sequence sj,83,...,8, of positive integers is said to be mul-
tiplicatively dependent if there are integers ry,72,... ,7n, not all zero, such
that s7tsh?---sTr = 1; and otherwise we say the sequence is multiplicatively
independent. If one is presented with a sequence of random integers uniformly
distributed in the interval [1,#], how far into the sequence would you expect to
go before it becomes multiplicatively dependent? We show that the answer is
about exp(v/2log & log Iog ) terms. We also show that the same estimate holds
for a similar problem, namely how far into the sequence should you expect to
go before a non-empty subsequence has product a square? This latter problem

has applications to the analysis of many integer factorization problems.

1. Introduction

In many integer factorization algorithms one is presented with a stream of
pseudo-random integers in an interval. The intermediate goal of the algorithm
is to pick out a non-empty subsequence with product a square. With such
a subsequence, and depending on exactly which factorization algorithm one
employs, there is a method to construct two squares, A%, B?, whose difference
is a multiple of N, the number being factored. And from two such squares,
one then has a reasonable chance at factorization via the ged computation
(A~ B, N). For more details and references consult, the survey articles [6}, [7].

Though most practical factorization algorithms have only heuristic anal-
yses, it seems reasonable to at least try to give a rigorous analysis of the
expected stopping time of the above procedure when the stream of integers
is assumed to be random with uniform distribution in an initial interval. To
be precise, let @ be a large integer, and let 8 = s3,52,... ,8; be a sequence
of length = with terms in {1,2,... ,z}. Since § either contains the term 1 or
it contains two identical terms, it is clear that some non-empty subsequence
of & has product a square. Let Dy(8) be the least integer D such that some
non-empty subsequence of 51, 5g,... ,sp has product a square. If the terms
s, of S are independent, uniformly distributed random integers in [1,z], what
can be said of the statistic D3(8)?
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A sequence of positive integers is said to be multiplicatively independent if
the sequence of their logarithms is linearly independent over the rationals. So
for a sequence & = 8y, 89, ... , 8, of integers in [1, 2], we may also consider the
statistic D(8), which is the least D such that sq, s2,...,sp is multiplicatively
dependent (that is, not multiplicatively independent). As above, any sequence
containing 1 or containing two identical terms is multiplicatively dependent, so

D{8) always exists. The sequence $1, $2,... ,4p is multiplicatively dependent
if and only if there are rationals ry,7g,... ,7p, not all of them 0, such that
s1's5? -+ 877 = 1. By taking this equation to an appropriate power, we may

assume that these exponents are integers with ged 1. We conclude that not all
of the exponents are even, and that the product of those 8; with odd exponents
is a square. We have proved that for any integer sequence § of length z with
terms in [1,%],

(1) Dy(S) < D(S).

We shall say a sequence $1,352,... ,8p I8 square dependent if a non-empty sub-
sequence has product a square. We have shown that multiplicative dependence
implies square dependence.

The following theorem was announced in (8.

Theorem 1. Let € be an arbitrary but fized positive number. If the terms of
a sequence S of length = are independent random integets chosen uniformly in
(1,2}, then the probability that both D(S) and Dy(S) are in the interval

(e (V2 )/ IogaToglogs) oxp (/2 + e)loglog og )

tends to 1 as © — oo.

We shall let
L=L{z) =exp (1/10ga: log log x) .

Thus, Theorem 1 says that the normal values of D(S) and Dy(S) are LVZ+o(1)
as £ — oco. We shall not only prove Theorem 1, but also prove that the same
estimate holds for the expected values of D(S) and Dy(8).

In light of (1), to prove Theorem 1 it will suffice to show that the proba-
bitity that D(S) < LYZ* tends to 1 as # — oo and that the probability that
Dy(S) > LY27¢ also tends to 1 as & — co. We respectively call these two
assertions the “upper bound” problem and the “lower bound” problem. The
proof of the upper bound is known in principle, going back at least to unpub-
lished letters of R. Schroeppel from 1977. In addition, published proofs of the
upper bound are essentially in [2] and [7). Since none of these sources does
exactly what is claimed here, we present this upper bound proof, yet again,
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for completeness. The lower bound has been implicitly conjectured in many
heuristic factorization analyses but a proof has never been given. This turns
out to be a fairly hard problem and is the heart of this paper.

Qur main theorem is not directly applicable to the analysis of existing
factorization algorithms, but the method of its proof is. In particular from
the proof it can be shown that various rigorously analyzed algorithms actually
run in the time advertised as the running time upper bound. One example is
the factorization algorithm in [6]. This algorithm, which on input of a com-
posite mimber 7, is expected to find a nontrivial factorization of n in at most
L{n)1+°(1) bit operations. With the method of this paper, it can be shown
that this algorithm is actually expected to require L{n)*+°(1) bit operations
when 7 is an odd composite that is not a power. (For even composites and
powers, the running time is less.) Similar assertions can be made about various
rigorous discrete logarithm algorithms, such as by Lovorn-Bender and Pomer-
ance. And also for the ERH conditional algorithm of Hafner and McCurley {5]
for computing invariants of the class group of an imaginary quadratic number
field.

2, The upper bound problem

Tn this section we prove that if § is a random sequence of integers from {1, 2|
of length at most LY2+¢ then with probability tending to 1 as & — oo, the
sequence & is multiplicatively dependent. We use the concept of a smooth
number. Say a natural number is y-smooth if it has no prime factor exceeding
y. Let w(y) denote the number of primes up to y. It is easy to see that any
sequence of natural numbers containing 7(y) + I texms that are y-smooth must
be multiplicatively dependent.

Let 4(z,y) denote the number of y-smooth integers up to z. Our principal
tool in both the upper and lower bound problems is the following result.

Theovem 2.1. For real numbers z, y with & > y > 2, let u = u(z,y) =
logz/logy. We have

P(z,y) = w/ult el

uniformly as u — co, u < log 2/ loglog z.

This result is due to de Bruijn (1] and Canfield, Erdés and Pomerance [3].
We are especially interested in this result when y = L® for some fixed & > 0.
In this case we have

P(z, L*) = z/LH )+ a5 5 — o0,

Further, if a is chosen bounded away from 0 and co, then the functions o,(1)
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tend to 0 uniformly in & as £ — 0.

If S is a random sequence of {LY2+¢] integers drawn from {1,2], then it
follows from Theorem 2.1 with y = LYZ/ %, that with probability — 1 as & —» oo,
& contains at least y terms that are y-smooth. Since y > n(y) + 1 it follows
that with probability — 1 as # — oo that & is multiplicatively dependent.
"This concludes our proof of the upper bound.

We now consider an upper bound for the expected value of D(S). We wish
to show that

ZD(‘S) < $3:L\[2-+0(1)

as ¢ — o0, where the sum is over the z” integer sequences S of length 3 with
terms in [1,#]. To this end it will suffice to show that for each fixed £ > ¢ and
all sufficiently large = depending on the choice of ¢,

> D(S) <

D{8)>LV7+e

Since D(S) < « for each &, it will suffice to show that the probability that
D(S) > LY** is < 27! for all large @ Let y = LV¥2 and let 7 = [LY?+¢),
Note that every sequence S in the above sum must have fewer than y terms that
are y-smooth among its first 2z terms. Let & = ¢{z, y)/z, the probability that
a random integer in [1, z] is y-smooth. By Theorem 2.1, we have o = y—1+0(2)
as & — co. Thus, the probability that a sequence 8 of length & and with fewer
than g terms that are y-smooth among the first z terms is

> (fefu-ar=a-ar 3 (1) (%)

0<i<y 0<i<ly

_ 1 azr \*
<er Z 'E(l—a)

0gi<y
< eg“z(az)yel/(l_“} < e < gl

for large z. So the expected value of D(S8)} is < LYZtol) for 4 — oo,

3. The lower bound problem

In this section we shall show that a random sequence of integers in [1, %] of
length at most LVY%=¢ i3 alnost surely not square dependent. We begin our
proof with the following observation.

Proposition 3.1. Let Ay, Ag,... , A be subsets of {1,2,... ,z}. Consider

a random integer sequence dravm from [L,z] of length at most 1. The prob-
ability that if conleins k distinct terms my,ma,... ,my with my € Ay, my €




MULTIPLICATIVE INDEPENDENCE FOR RANDOM INTEGERS 707
Az, ..,y € Ay is at most

lkm—k#ﬂl#ﬂz - F AR

We note that the numbers ms,. ..,y in the proposition, though they are
distinct terms in the sequence, need not be distinet integers.

Proposition 3.2, Consider a random integer sequence drawn from (1,2} of
length at most L*5. The probebility it has o term divisible by the square of a
prime p > L or two terms each divisible by a prime p > L? is O(1//log ).

Proof. We apply Proposition 3.1 first with £ =1 and A1 the set of multiples
of p2 in [1,z], and next with k = 2 and A; = Ap = the set of multiples of p in
[1,z]. We get that the probability in the proposition is at most

s nE)

2
pnre P p> L3
where p runs over primes. But >0 ., 1/p® ~ 1/(ylogy) as y — oo, so the
proposition follows from the definition of L.

Say a positive integer m has the prime factorization pypy ... p;, Where p; >
.2 p. For k= 1,...,1, let pp(m) = py, that is, pp(m) is the kth largest
prime factor of m. For k > 1, let pr(m) =L .

Proposition 3.3. For any fized positive infeger k, the number of L®-smooth
integers m < @ such that pp(m) < L3 g5 g/ p1-Stexll),

Proof. Let B denote the set of integers composed of at most k& — 1 primes in
the interval (L1/3,L3). Thus an integer counted in the proposition is of the
form bn, where b € B8 and n is L'/®-smooth. Thus, the number of such integers

up to z is exactly

> (e /b, ).

beB
Note that each b € B is at most L3%~1), so that from Theorem 2.1,
W(z/b, L) = zf (LIS Torall))

where the functions oy (1) tend to 0 as z - co uniformly for each b € B. But
k-1

1<y b1y S 1 < 1.

el pe(Lif3,L3]




708 CARL POMERANCE
The proposition thus follows,

Proposition 3.4. For any fized positive integer k, we have uniformly for
a € {1/3,3], and n a positive integer < L3, that the number of L*-smooth
integers m < =z, for which m is a multiple of n and pg(m) < L®, is at most
/{(nfM (2e)tor(1)), )

Proof. Similarly as in the proof of Proposition 3.3, let B denote the set of
integers b composed of at most k — 1 primes in (L%, L3). Then an integer
counted in the proposition is of the form bin, where [ is L®-smooth. Thus the
number of such integers up to z is at most

> (w/(bn), L*).

vel

Since 3.1/b < 1 as in the above proof, the proposition thus follows from
Theorem 2.1.

Proposition 3.5, For any fized posilive integer k, the number of L*-smooth
integers m < & with px(m)?|m is < /LY a5 5 0.

Proof. This result is essentially known when & = 1, but we shall nevertheless
give the complete proof. For i = 1,2,...,[(5/8)log L], let (i) denote the
interval (e~1L1/3, ' LY/3] and let N(4) denote the number of L3-smooth inte-
gers m < z with pp(m)?|m and pr(m) € I(5). Let a; = 1/3 +i/log L, so that
I{#) = (L°+1, L%]. i m is counted in N (i), then m is L*-smooth, pz(m) < L%
and there is a prime p € I(i) with p?|m. Thus, by Proposition 3.4,

N{E) < Z m/'(p2L1/(Za¢}+ok(1)) _ m/Lai+1f(20‘)+°k(1)_
pEI(i)

The expression a + 1/(2a) is minimized when e is v2/2, with minimum value
V2, so we have for each i that

N() < zfLY*o ),

Since there are only O(log L) values of ¢, and since by Proposition 3.3, the
integers m with px{m) < L*/? are negligible, we have the result.

We now prove the lower bound estimate. Let £ > 0 be arbitrary, but fixed,
We wish to show that it is unlikely that a random integer sequence of length
[Lﬁ‘s] drawn from {1,%] is square dependent. Suppose such a sequence is
square dependent. From Proposition 3.2, we may assume that each number
involved in the square dependency is L3-smooth. Let & be an arbitrary fixed
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positive integer. From Proposition 3.3, we may assume that each number m in-
volved in the square dependency has py(mm) > L*/3. Of the numbers involved in
the square dependency, let mq be one with px(mo) maximal. Let p; = p;{mo)
forj =1,2,... ,k. By Proposition 3.5, we may assume that p1 > p2 > -+ > pr.
Since there is a square dependency, there are distinct terms my,mg,... ,mg
in the sequence (and distinct from mg) with py -+ pxlmy -+ - my. We thus have
an ordered factorization py---px = n1 -7y (where some of the factors may
be 1) such that nyjma,... ,nx|mg. We shall also let ng = p1---p, 80 that
ngjmq. Note that for a given choice of py - - px, there are Ok (1) factorizations
[R5

For a given choice of primes py > -+ > px and an ordered factorization
ny - ng of p1 -+ - Pr, we count the number of (k+-1)-tuples mo, 71, ... , 7 with
each m; being L3-smooth, each pr(m;) < pg, and each nlm;. In particular,
let 7(4) = (L*-1, L%] be as in the proof of Proposition 3.5, and let N(i) be the
number of ordered (k- 1)-tuples mg, ™y, ... ,my corresponding to some choice
of py > -+ > p and ny,- -+ ,ng with px € I{é). We have from Proposition 3.4
that

. @ T
N(i) < Z E (RDLII(EQ;)+ok(1) o nkL]-/(?ﬂf)'i”ok(l))

Py >r>Pp MOSPLTFR
pREI(i) n1ng=ng

k1 okl
- Z (p1 -+ pr ) LA+ or(D) T TRer D/ (Zanter (1)

PL> > PE
Py €I(D)

For any fixed positive number &, the expression ka + (k +1)/(2a) is minimized

when a = /(k -+ 1)/(2k} and the minimum value is +/2k({k + 1). Thus, sum-

ming for all values of 1, we have that the number of possible {k + 1)-tuples
g, M1y .. Wik is

mk'fl
P L —
T /2D er(l)

Since our sequence has {L\/E“E] terms, the probability it has such a (k+1)-
tuple as just described is, by Proposition 3.1, at most

L(k+1)(\/5—5)—\/2k(k+1)+ok(1).
Choose k so large that 1/2k/(k + 1) > v/2 — &. For such a value of k we have
(k+1)(V2 — &) — V2E(E+1) = (k +1) (\/2“— & — 2k /(b 1)) <0,

s0 the probability that the sequence will contain such a (k + 1)-tuple tends to
0 as £ — oo. This completes our proof of the lower bound and of Theorem 1.
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It is to be remarked that the lower bound trivially implies that the expected
value of Dy(S) is > LY2+o{1) a5 7 — co. Combined with our upper bound on
the expected value of (8} from the last section, we have that both D{&) and
D2(S) have expected value LYZ+H() as 2 — oo,

Remark, One might ask if it is possible to do better than Theorem 1. In that
theorem, the stopping time is almost surely placed in an interval (A(z), B(z)),
where log A{z) ~ log B(z) as z — oo0. Is there a genuine threshold function
T(x), such that almost surely D(8) and D,(8) are in ((1—&)T(z), (1+&)T(x))
as  — oo, for any fixed ¢ > 07 I conjecture yes, but I am unsure of what
function to suggest for T(z). I hope to return to this problem in a future

paper.
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