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Abstract. A set of integers greater than 1 is primitive if no element divides another. Erdős
proved in 1935 that the sum of 1/(n log n) for n running over a primitive set A is universally
bounded over all choices for A. In 1988 he asked if this universal bound is attained by the
set of prime numbers. We answer the Erdős question in the affirmative for 2-primitive sets.
Here a set is 2-primitive if no element divides the product of 2 other elements.

1. Introduction and Statement of results

A set of integers greater than 1 is called primitive if no element divides any other. Erdős
[4] showed that there is a constant K such that for any primitive set A,

f(A) :=
∑
n∈A

1

n log n
≤ K.

Further, in 1988 he asked if K can be taken as the sum of 1/(p log p), with p running over
the primes. This is now referred to as the Erdős conjecture for primitive sets:

For A primitive, we have f(A) ≤ f(P) =
∑
p∈P

1

p log p
=: C = 1.636616 · · · ,

where P is the set of prime numbers. By a simple argument, the Erdős conjecture is equivalent
to the assertion that f(A) ≤ f(P(A)) for any primitive set A, where P(A) denotes the set
of primes dividing some member of A.

Recently, the second and third authors [9] proved that

Theorem 1. For any primitive set A,

f(A) < eγ = 1.781072 · · ·

where γ = 0.5772 · · · is the Euler-Mascheroni constant. Further, if 2 6∈ A then

f(A) ≤ f(P(A)) + 2.37× 10−7.

One can strengthen the notion of primitivity as follows. We say that a set A of integers
greater than 1 with |A| ≥ k+ 1 is k-primitive if no element divides the product of k distinct
other elements. Note that k-primitive implies j-primitive for all k ≥ j ≥ 1.
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In 1938, Erdős [6] first studied the maximal cardinality of 2-primitive sets in an interval.
The first author together with Győri and Sárközy [3] extended it to all k and it was subse-
quently improved in [2] and [10]. While the full conjecture remains out of reach, we prove
the Erdős conjecture for 2-primitive sets (and hence k-primitive for all k ≥ 2).

Theorem 2. For any 2-primitive set A,

f(A) ≤ f(P(A)).

An immediate consequence is the following

Corollary 1. If A is a primitive set with f(A) > f(P(A)), then there exist three elements
a, b, c ∈ A with a | bc.

On the other hand, the primes are not optimal among primitive sets with respect to
logarithmic density. Indeed, Erdős, Sárközy and Szemerédi [8] obtained the best possible
upper bound ∑

n∈A
n≤x

1

n
≤
( 1√

2π
+ o(1)

) log x√
log log x

for any primitive set A, while Erdős [7] showed that∑
n∈A′
n≤x

1

n
≥
( 1√

2π
+ o(1)

) log x√
log log x

where A′ is the set of positive integers a ≤ x with Ω(a) = [log log x]. (Here, Ω(a) is the
number of prime factors of a, counted with multiplicity.) By contrast, the primes satisfy∑

p≤x

1

p
= log log x+O(1).

Nevertheless, one may wonder if the primes still maximize the logarithmic density among
2-primitive sets. Indeed, we prove this to be the case.

Proposition 1. For all x ≥ 2 and any 2-primitive set A,∑
n∈A
n≤x

1

n
≤
∑

p∈P(A)
p≤x

1

p

We use this to deduce Theorem 2.

Proof of Theorem 2 given Proposition 1. For any 2-primitive set A, we have

F (x) :=
∑

p∈P(A)
p≤x

1

p
−
∑
n∈A
n≤x

1

a
≥ 0

for all x ≥ 2 by Proposition 1. Then by partial summation,∑
p∈P(A)
p≤x

1

p log p
−
∑
n∈A
n≤x

1

n log n
=
F (x)

log x
+

∫ x

2−

F (u)

u log2 u
du ≥ 0.

Hence taking x→∞ gives f(P(A)) ≥ f(A) as desired. �
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In light of Proposition 1, it is natural to ask if there exists an exponent λ < 1 for which

(1.1)
∑
n∈A
n≤x

1

nλ
≤
∑

p∈P(A)
p≤x

1

pλ

holds for all 2-primitive A, x ≥ 2. Banks and Martin [1] settled the question in the setting
of 1-primitive sets, proving (1.1) holds for all primitive A if and only if

λ ≥ τ1 := 1.1403659 · · · ,
where t = τ1 is the unique real solution to the equation∑

P

p−t = 1 +
(

1−
∑
P

p−2t
)1/2

.

The fact that τ1 is markedly larger than 1 gives some indication as to why the full Erdős
conjecture remains open.

In the setting of 2-primitive sets, we extend the range of valid exponents λ.

Theorem 3. For any λ ≥ 0.7983, x ≥ 2, and any 2-primitive set A,

(1.2)
∑
n∈A
n≤x

1

nλ
≤
∑

p∈P(A)
p≤x

1

pλ

We remark it suffices to verify Theorem 3 with λ = 0.7983. Indeed, suppose that Fλ(x) ≥ 0
for all x ≥ 2, where

Ft(x) =
∑

p∈P(A)
p≤x

p−t −
∑
n∈A
n≤x

n−t.

Then, by partial summation, for any t > λ,

Ft(x) = xλ−tFλ(x) + (t− λ)

∫ x

2

uλ−t−1Fλ(u) du ≥ 0.

Hence we may define the critical exponent τ2 for 2-primitive sets, as the infimum over all
λ for which (1.2) holds.

We also note that Theorem 3 with λ = 1 gives us Proposition 1. However, Theorem 3 does
not hold for every positive value of λ. Indeed, in [6], Erdős showed that there is a 2-primitive
set A in [1, x] of cardinality π(x)− π(x1/3) + cx2/3/(log x)2. It consists of primes in (x1/3, x]
and a subset of {p1p2p3 : pi are primes ≤ x1/3} where the triples {p1, p2, p3} form a Steiner
triple system. Thus, by the prime number theorem,∑

a∈A

1

aλ
≥

∑
x1/3<p≤x

1

pλ
+

cx2/3

(log x)2
1

xλ
>
∑
p≤x

1

pλ

when λ < 0.5 and x is sufficiently large. Hence the above argument and Theorem 3 together
imply that the critical exponent lies in the interval

0.5 ≤ τ2 ≤ 0.7983.(1.3)

In a sequel paper, we shall address the question of critical exponents for k-primitive sets,
with k ≥ 3.
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2. Combinatorial Lemmas

Before proving Theorem 3, we need lemmas in counting the maximal number of elements
in a k-primitive set.

We first recall the following famous result due to Erdős and Szekeres [5], whose proof we
provide for completeness.

Lemma 1 (Erdős–Szekeres). A sequence of (r − 1)(s − 1) + 1 real numbers has either a
monotonic nondecreasing subsequence of length r or a monotonic nonincreasing subsequence
of length s.

Proof. Say the sequence is a1, a2, . . . , an, where n = (r−1)(s−1)+1. For each ai consider the
ordered pair (bi, ci), where bi is the length of the longest nondecreasing subsequence ending
at ai and ci is the length of the longest nonincreasing subsequence ending at ai. Then no
two pairs (bi, ci) and (bj, cj) can be equal, so for at least one choice of i we have bi ≥ r or
ci ≥ s. �

We next bound the size of a k-primitive set based on the number of prime factors used to
generate its elements.

Lemma 2. For k ≥ 2, suppose A is a k-primitive set and T ⊂ A with |P(T )| = n. If n ≤ k,
then |T | ≤ n. If n = k + 1, then |T | ≤ k + 2. Further, for k = 2, n = 4 we have |T | ≤ 19.

Proof. Let P(T ) = {q1, . . . , qn} and write each t =
∏

i q
ei
i ∈ T as an exponent vector ~v =

(e1, . . . , en). Define the notation ~v ≥ 0 if ei ≥ 0 for all i, and define ~v ≤ ~w if ~w − ~v ≥ 0.
Suppose that |T | ≥ n. Let ~v1 be such that e1 is maximal. Then let ~v2 be such that e2
is maximal among the remaining vectors, and similarly define ~v3, . . . , ~vn. Thus, the chosen
vectors are distinct.

Case n ≤ k: If |T | ≥ n+1 then T has some vector ~v 6= ~vi for all i. But then ~v ≤ ~v1+· · ·+~vn.
This implies that T , and hence A, is not n-primitive, and since n ≤ k, it implies that A is
not k-primitive, a contradiction. Hence we cannot have |T | ≥ k + 1 when n ≤ k.

Case n = k + 1: If |T | ≥ n + 2 then T has vectors ~w1 6= ~w2 with ~wj /∈ {~v1, . . . ~vn} for

j = 1, 2. Write ~wj = (f
(j)
1 , . . . , f

(j)
n ). By the pigeonhole principle, we may assume

f
(1)
i ≤ f

(2)
i

for at least n/2 values of i, say i = 1, . . . , dn/2e. Thus we deduce

~w1 ≤ ~w2 + ~vdn/2e+1 + · · ·+ ~vn

contradicting T as k-primitive, since 1 + bn/2c = 1 + b(k + 1)/2c ≤ k.
Now say k = 2, n = 4. Suppose there are 20 members in T with corresponding vectors

~wi := (ei,1, ei,2, ei,3, ei4) for 1 ≤ i ≤ 20.

Since A is 2-primitive, so is T . Without loss of generality, say ~w18 has maximal first co-
ordinate, ~w19 6= ~w18 has maximal second coordinate among the remaining 19 vectors, and
~w20 6= ~w18, ~w19 has maximal third coordinate among the remaining 18 vectors. Arrange the
remaining 17 vectors in ascending order of their first coordinate (i.e., e1,1 ≤ e2,1 ≤ ... ≤ e17,1).
By Lemma 1, there is a monotonic sequence of length 5 among the ei,2’s. Without loss of
generality, say e1,2, e2,2, e3,2, e4,2, e5,2 form such a sequence.
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Case 1: e1,2 ≤ e2,2 ≤ e3,2 ≤ e4,2 ≤ e5,2. Consider the numbers ei,3 for i = 1, . . . , 5.
By Lemma 1, there is a monotonic sequence of length 3 among the ei,3’s, without loss of
generality, say it is e1,3, e2,3, e3,3. If e1,3 ≤ e2,3 ≤ e3,3, this forces e2,4 > e1,4 +e3,4 for otherwise
~w2 ≤ ~w1 + ~w3, contradicting T being 2-primitive. But this implies that ~w1 ≤ ~w2 which
contradicts T being primitive. Hence, we must have e1,3 ≥ e2,3 ≥ e3,3. Again, this forces
e2,4 > e1,4 + e3,4, which in turn implies that ~w1 ≤ ~w2 + ~w20, again a contradiction.

Case 2: e1,2 ≥ e2,2 ≥ e3,2 ≥ e4,2 ≥ e5,2. By Lemma 1, there is a monotonic sequence of
length 3 among the ei,3’s, without loss of generality, say it is e1,3, e2,3, e3,3. If e1,3 ≤ e2,3 ≤ e3,3,
then again this forces e2,4 > e1,4 + e3,4. But then ~w1 ≤ ~w2 + ~w19. Hence, we must have
e1,3 ≥ e2,3 ≥ e3,3. This forces e2,4 > e1,4+e3,4. But then ~w3 ≤ ~w2+ ~w18, again a contradiction.

Therefore, there can be at most 19 members in T . �

Remark 2.1. We will not need it here, but by similar methods one can prove that if T is a
2-primitive set of positive integers with |P(T )| = n ≥ 3, then |T | ≤ 92n−3

.

3. Proof of Theorem 3

Let A ⊂ (1, x] be a 2-primitive set. Let 0.79 ≤ λ < 1 be a parameter to be defined later.
First, we partition A into primes S and composites T . Note S and P(T ) are disjoint since
A is primitive. For a prime p, define

Tp := {t ∈ T : p | t}
If some prime p ∈ P(T ) satisfies

(3.1)
∑
t∈Tp

1

tλ
≤ 1

pλ
,

then we replace the members of Tp with the prime p (i.e., redefine A = (T\Tp) ∪ {p}). This
would make

∑
Tp
t−λ at least as big while keeping A 2-primitive. Repeat the process with

each prime p ∈ P(T ) until no such prime satisfies (3.1). If T = ∅ after doing this, then
A = S consists of primes so Proposition 1 follows. Otherwise T 6= ∅, so we may assume

(3.2)
∑
t∈Tp

1

tλ
>

1

pλ
for all p ∈ P(T ).

Consider the set

D := {t/p : t ∈ T, p | t}(3.3)

We record some useful properties of T and D.

Lemma 3. Let T be a 2-primitive set for which (3.2) holds and let D be as in (3.3).

(i) For each p ∈ P(T ), Tp has at least 3 elements.
(ii) The map sending ordered pairs (t, p) with t ∈ T and p | t to t/p ∈ D is injective.

(iii) Each t ∈ T has at least 3 prime factors.
(iv) D is a primitive set of composite numbers.

Proof. (i) Note that (3.2) implies that the members of T are composite. In fact, for p ∈ P(T ),
(3.2) implies that ∑

t∈P(T )

1

(t/p)λ
> 1 > 2−0.79 + 3−0.79,
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so (i) holds.
(ii) If not, then t1/p1 = t2/p2 for some t1, t2, p1 | t1, and p2 | t2. If t1 6= t2, by (i) there

exists some p1k ∈ Tp1 other than t1, t2. But then t1 = (t1/p1)p1 = (t2/p2)p1 | t2(p1k), which
contradicts T as 2-primitive. Hence t1 = t2, which forces p1 = p2.

(iii) If not, say t = pq. Since Tp, Tq each have at least 3 elements, there are some pm and
qn other than t ∈ T . But then, t = pq | (pm)(qn) which contradicts T as 2-primitive.

(iv) If not, then (t/p) | (t1/p1) for some t, t1 ∈ T , p | t, p1 | t1, and t/p 6= t1/p1. If p1 = p,
then t | t1 which contradicts T as primitive. And if p1 6= p, then there is some pl ∈ Tp
other than t and t1. This implies t | t1 · pl, and since t 6= t1 (otherwise p = p1), we have a
contradiction to T being 2-primitive. Thus D is primitive, and also composite by (iii). �

For Theorem 3, we must show

(3.4)
∑
t∈T

1

tλ
−
∑

p∈P(T )

1

pλ
< 0.

Suppose P(T ) consists of primes q1 < q2 < · · · < qr. Let 2 = p1 < p2 < · · · < pr be the
first r primes in P. We are going to modify the set T by the following process. First, if each
qi = pi, we let T stand as it is. Otherwise, let i be the smallest index such that qi > pi.
Then qj = pj for all j < i and we have pi - t for all t ∈ T . Then replace each t ∈ Tqi with
pi/qi · t. This keeps T as 2-primitive, and by (3.2),

0 <
∑
t∈Tqi

1

tλ
− 1

qλi
<

qλi
pλi

(∑
t∈Tqi

1

tλ
− 1

qλi

)
=
∑
t∈Tqi

1

(pi/qi · t)λ
− 1

pλi
.

So replacing each t ∈ Tqi with pi/qi · t preserves (3.2). We repeat this process for each i with
qi > pi and in the end we have P(T ) = {p1, p2, . . . , pr}. By showing (3.4) for this T it would
follow that (3.2) fails for some pi, and this contradiction would prove the theorem.

As just noted, we may assume that P(T ) consists of the primes up to some Y , i.e.,
P(T ) = P ∩ (1, Y ], so (3.4) becomes

(3.5)
∑
t∈T

1

tλ
−
∑
p≤Y

1

pλ
< 0.

For a parameter 0 < θ < 1 to be chosen later, we define λ as

λ = τ(1− θ), where τ = 1.140366.(3.6)

First consider those t ∈ T with greatest prime factor P (t) ≥ tθ. Then t1−θ ≥ t/P (t) and
so t−λ ≤ (t/P (t))−λ/(1−θ) = (t/P (t))−τ . Hence

(3.7)
∑
t∈T

P (t)≥tθ

t−λ ≤
∑
t∈T

P (t)≥tθ

( t

P (t)

)−τ
≤
∑
p≤Y

p−τ

by (1.1), since {t/P (t) : t ∈ T} ⊂ D is primitive by part (iii) of Lemma 3.

For a positive integer t, we consider the following unique factorization

t = m(t)M(t)
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into positive integers m(t) ≤M(t) whose ratio M(t)/m(t) is minimal. Let

M(T ) = {m(t) : t ∈ T} ∪ {M(t) : t ∈ T}.
We need two lemmas.

Lemma 4. For any 2-primitive set T , consider the graph on the integers with edges {t,m(t)}
and {t,M(t)} for t ∈ T , where if m(t) = M(t), there is just one edge containing t. This
graph contains a matching from T intoM(T ).

Proof. Let t ∈ T . If m(t) /∈ {m(t′),M(t′)} for all other t′ ∈ T , we can match t with m(t).
So assume m(t) ∈ {m(t′),M(t′)} for some other t′ ∈ T . Then M(t) /∈ {m(t′′),M(t′′)} for all
t′′ ∈ T with t′′ 6= t, t′, since otherwise t | t′t′′, contradicting T being 2-primitive.

If m(t) < M(t), we can match t with M(t). Otherwise, we have t = m(t)2, and then
m(t′) < M(t′). Let m′ = t′/m(t). We would like to match t′ with m′ instead of m(t).
Suppose this is blocked by some t′′ different from t′ (and necessarily different from t) with
m′ ∈ {m(t′′),M(t′′)}. But then t′ | tt′′, a violation of 2-primitivity. Thus, the matching can
be completed. �

Lemma 5. Suppose 0 < θ < 1/3 and that T is 2-primitive with P (t) < tθ for each t ∈ T . Let
N(z) = |T ∩ [2, z]|. Then, with q running over primes in the interval I := [z(1+θ)/4, z(1+θ)/2),
we have

N(z) < z(1+θ)/2 −
∑
q∈I

⌊z(1+θ)/2
q

⌋
Proof. By Lemma 4, it suffices to bound |M(T ∩ [2, z])|. We first show thatM(T ∩ [2, z]) ⊂
[1, z(1+θ)/2). Let t ∈ T with t ≤ z. Say t = q1q2...qr where the primes qi are written in
nondecreasing order. Let d = q1q2...qi be maximal with d ≤ t(1−θ)/2. Then d′ = dqi+1

satisfies t(1−θ)/2 < d′ < t(1+θ)/2. Also, d′′ = t/d′ satisfies the same double inequality. Thus,

t(1−θ)/2 < m(t) ≤M(t) < t(1+θ)/2 ≤ z(1+θ)/2.

We further note that the members m of M(T ∩ [2, z]) satisfy P (m) < zθ, since m divides
some member of T ∩ [2, z] and every t in that set has P (t) < zθ. In particular, m is not
divisible by any prime q ≥ zθ. Note that if θ < 1/3, then θ < (1+θ)/4. So, m is not divisible
by any prime in the interval I. Since no integer below z(1+θ)/2 is divisible by 2 primes from
I, the lemma follows. �

Set
T p = {t ∈ T : P (t) = p},

so that T p ⊂ Tp. We have the following variant of Lemma 5.

Lemma 6. For any 2-primitive set T and prime p, let Np(z) denote the number of members
t of T p with t ≤ z. With q running over the primes in Ip := (max{p, z1/4}, z1/2), we have

Np(z) ≤ z1/2 −
∑
q∈Ip

⌊z1/2
q

⌋
.

Proof. Note that if T is 2-primitive, so too is T p/p = {t/p : t ∈ T p}. Thus, we may apply
Lemma 4 to obtain a matching from T p/p intoM(T p/p). The prime factors of each element
t/p ∈ T p/p are at most p, so following the proof of Lemma 5, we have m(t/p),M(t/p) ∈
[t1/2/p, t1/2). The lemma then follows in the same way as Lemma 5. �
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Lemma 7. For x ≥ 2 we have∑
x1/2<q<x
q prime

⌊x
q

⌋
≥
(

log 2− 1.25

log x
− 2.5

(log x)2

)
x.

Proof. First suppose that x ≥ 2862. We have the sum at most∑
x1/2<q<x

x

q
− π(x).

From [11, (3.7)], we have that π(x) < 1.25x/ log x and from [11, (3.18)] that∑
q<x

1

q
> log log x+B − 1

2(log x)2
,

where B is the Mertens constant. Further, from [11, (3.17)],∑
q≤x1/2

1

q
< log log x1/2 +B − 1

2(log x1/2)2
= log log x− log 2 +B − 2

(log x)2
.

This proves the lemma in the range x ≥ 2862 and direct calculation shows that it holds in
the wider range x ≥ 2. �

We shall find it useful to use the following asymptotically weaker estimates in small cases.
The proof follows by checking values of x ≤ 3213 after which Lemma 7 is stronger.

Corollary 2. For x ≥ 185, we have
∑

q∈(x1/2,x]bx/qc > 0.5x. For x ≥ 67, we have∑
q∈(x1/2,x]bx/qc > 0.45x.

Let

θ = 0.3, λ = 0.798257.

Set ν = 1/θ = 10/3. For each prime p, let

Sp =
∑
t∈T

P (t)=p<tθ

1

tλ
.

We are going to estimate Sp for various small primes p. If t ∈ T , P (t) < tθ, then t ≤ pν

implies that P (t) < (pν)θ = p. So, by Lemma 2, T has at most one member below 3ν , at
most 2 members below 5ν , at most 4 members below 7ν , and at most 19 members below 11ν .
Since members t of T with P (t) < tθ have at least dνe = 4 prime factors, we have

S2 ≤
1

24λ
< 0.109347,

S2 + S3 < 0.109347 +
2− 1

3νλ
< 0.163106,

S2 + S3 + S5 < 0.163106 +
4− 2

5νλ
< 0.190722,

S2 + S3 + S5 + S7 < 0.190722 +
19− 4

7νλ
< 0.275330.(3.8)
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Computing
∑

p≤Y (1/pλ − 1/pτ ) directly for Y = 2, 3, 5, 7 gives lower bounds

0.121399, 0.251741, 0.368904, 0.471733,

respectively. Thus
∑

p≤Y Sp <
∑

p≤Y (1/pλ−1/pτ ), so by (3.7) we see Theorem 4 holds when
Y = 2, 3, 5, 7, respectively.

We now consider primes p with 11 ≤ p ≤ 37. By partial summation,

(3.9) Sp =

∫ ∞
pν

λ

z1+λ
Np(z) dz.

We use Lemmas 6 and 7 to get the upper estimates for Np(z):

Np(z) ≤
⌊
z1/2

⌋
−

∑
p<q≤z1/2

⌊z1/2
q

⌋
, when p > z1/4,

Np(z) ≤ z1/2
(

1− log 2 +
2.5

log z
+

10

(log z)2

)
, when p ≤ z1/4.(3.10)

In the first range, we bound the contribution to Sp by summing over intervals [m2, (m+ 1)2]
getting ∫ p4

pν

λ

z1+λ
Np(z) dz ≤

( 1

pνλ
− 1

dpν/2e2λ
)(
bpν/2c −

∑
p<q≤pν/2

⌊bpν/2c
q

⌋)
+

∑
bpν/2c<m<p2

( 1

m2λ
− 1

(m+ 1)2λ

)(
m−

∑
p<q≤m

⌊m
q

⌋)
.

For the second range, when z ≥ p4, we numerically integrate (3.9) with (3.10) substituted
in for Np(z) when z ≥ 32132, and for smaller values of z we use Corollary 2 to bound the
estimate. Using these estimates and numerical integration we calculate the following.

p Sp
∑

q≤p Sq
∑

q≤p(q
−λ − q−τ )

11 0.13259 0.40792 0.55427

13 0.11241 0.52033 0.62966

17 0.08382 0.60415 0.69432

19 0.07601 0.68016 0.75484

23 0.06194 0.74210 0.80868

29 0.04757 0.78967 0.85521

31 0.04501 0.83468 0.89978

37 0.03680 0.87148 0.93950

Note that the entries in the second and third columns are upper bounds and the entries in
the fourth column are lower bounds. The first entry in the third column is found by adding
S11 to the estimate in (3.8). Since the entries in the fourth column exceed the entries in the
third column, we have the theorem for Y ≤ 37.
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Now assume that Y ≥ 41. We have via partial summation that∑
t∈T

P (t)<tθ

1

tλ
=
∑
p≤7

Sp +
∑

11≤p≤23

∫ 29ν

pν

λ

z1+λ
Np(z) dz +

∫ ∞
29ν

λ

z1+λ
N(z) dz.

From (3.8) the Sp terms contribute at most 0.27533. Using Lemmas 5, 6, and 7, and Corollary
7, we obtain∑

t∈T
P (t)<tθ

1

tλ

< 0.27533 + 0.08455 + 0.06576 + 0.03756 + 0.02953 + 0.01487 + 0.45614 = 0.96374.

We also note that ∑
p≤41

( 1

pλ
− 1

pτ

)
> 0.97661.

Since this estimate exceeds the prior one, this gives the theorem with λ = 0.798257.
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