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Abstract: A set of integers greater than 1 is primitive if no element divides another. Erdős
proved in 1935 that the sum of 1/(n logn) for n running over a primitive set A is universally
bounded over all choices for A. In 1988 he asked if this universal bound is attained by the
set of prime numbers. We answer the Erdős question in the affirmative for 2-primitive sets.
Here a set is 2-primitive if no element divides the product of 2 other elements.
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1 Introduction and Statement of results

A set of integers greater than 1 is called primitive if no element divides any other. Erdős [4] showed that
there is a constant K such that for any primitive set A,

f (A) := ∑
n∈A

1
n logn

≤ K.

Further, in 1988 he asked if f (A) is maximized by the primes A = P. This is now referred to as the Erdős
conjecture for primitive sets:

For A primitive, we have f (A)≤ f (P) = ∑
p∈P

1
p log p

=: C = 1.636616 · · · ,

where P is the set of prime numbers. By a simple argument, the Erdős conjecture is equivalent to the
assertion that f (A) ≤ f (P(A)) for any primitive set A, where P(A) denotes the set of primes dividing
some member of A.

Recently, the second and third authors [9] proved that
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Theorem 1. For any primitive set A,

f (A)< eγ = 1.781072 · · ·

where γ = 0.5772 · · · is the Euler-Mascheroni constant. Further, if A does not contain a multiple of 8,
then

f (A)≤ f (P(A))+2.37×10−7.

One can strengthen the notion of primitivity as follows. We say that a set A of integers greater than 1
with |A| ≥ k+1 is k-primitive if no element divides the product of k distinct other elements. Note that
k-primitive implies j-primitive for all k ≥ j ≥ 1.

In 1938, Erdős [6] first studied the maximal cardinality of 2-primitive sets in an interval. The first
author together with Győri and Sárközy [3] extended it to all k and it was subsequently improved in [2]
and [10]. While the full conjecture remains out of reach, we prove the Erdős conjecture for 2-primitive
sets (and hence k-primitive for all k ≥ 2).

Theorem 2. For any 2-primitive set A,

f (A)≤ f (P(A)).

An immediate consequence is the following

Corollary 1. If A is a primitive set with f (A)> f (P(A)), then there exist three elements a,b,c ∈ A with
a | bc.

On the other hand, the primes are not optimal among primitive sets with respect to logarithmic density.
Indeed, Erdős, Sárközy, and Szemerédi [8] obtained the best possible upper bound

∑
n∈A
n≤x

1
n
≤
( 1√

2π
+o(1)

) logx√
log logx

for any primitive set A, while Erdős [7] showed that

∑
n∈A′
n≤x

1
n
≥
( 1√

2π
+o(1)

) logx√
log logx

where A′ is the set of positive integers a≤ x with Ω(a) = [log logx]. (Here, Ω(a) is the number of prime
factors of a, counted with multiplicity.) By contrast, the primes satisfy

∑
p≤x

1
p
= log logx+O(1).

Nevertheless, one may wonder if the primes still maximize the logarithmic density among 2-primitive
sets. Indeed, we prove this to be the case.
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ERDŐS 2-PRIMITIVE SET CONJECTURE

Proposition 1. For all x≥ 2 and any 2-primitive set A,

∑
n∈A
n≤x

1
n
≤ ∑

p∈P(A)
p≤x

1
p

We use this to deduce Theorem 2.

Proof of Theorem 2 given Proposition 1. By Proposition 1, we have F(x)≥ 0 for all x≥ 2, where

F(x) := ∑
p∈P(A)

p≤x

1
p
−∑

n∈A
n≤x

1
n

Then by partial summation,

∑
p∈P(A)

p≤x

1
p log p

−∑
n∈A
n≤x

1
n logn

=
F(x)
logx

+
∫ x

2−

F(u)
u log2 u

du≥ 0.

Hence taking x→ ∞ gives f (P(A))≥ f (A) as desired.

In light of Proposition 1, it is natural to ask if there exists an exponent λ < 1 for which

∑
n∈A
n≤x

1
nλ
≤ ∑

p∈P(A)
p≤x

1
pλ

(1.1)

holds for all 2-primitive A, x≥ 2. Banks and Martin [1] settled the question in the setting of 1-primitive
sets, proving (1.1) holds for all primitive A if and only if

λ ≥ τ1 := 1.1403659 · · · ,

where t = τ1 is the unique real solution to the equation

∑
P

p−t = 1+
(

1−∑
P

p−2t
)1/2

.

The fact that τ1 is markedly larger than 1 gives some indication as to why the full Erdős conjecture
remains open.

In the setting of 2-primitive sets, we extend the range of valid exponents λ .

Theorem 3. For any λ ≥ 0.7983, x≥ 2, and any 2-primitive set A,

∑
n∈A
n≤x

1
nλ
≤ ∑

p∈P(A)
p≤x

1
pλ

(1.2)
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We remark it suffices to verify Theorem 3 with λ = 0.7983. Indeed, suppose that Fλ (x)≥ 0 for all
x≥ 2, where

Ft(x) = ∑
p∈P(A)

p≤x

p−t −∑
n∈A
n≤x

n−t .

Then, by partial summation, for any t > λ ,

Ft(x) = xλ−tFλ (x)+(t−λ )
∫ x

2
uλ−t−1Fλ (u) du≥ 0.

Hence we may define the critical exponent τ2 for 2-primitive sets, as the infimum over all λ for which
(1.2) holds. Thus, Theorem 3 implies that τ2 ≤ 0.7983.

We also note that Theorem 3 with λ = 1 gives us Proposition 1. However, Theorem 3 does not
hold for every positive value of λ . Indeed, in [6], Erdős showed that there is a 2-primitive set A in
[1,x] of cardinality π(x)− π(x1/3)+ cx2/3/(logx)2. It consists of primes in (x1/3,x] and a subset of
{p1 p2 p3 : pi are primes ≤ x1/3} where the triples {p1, p2, p3} form a Steiner triple system. Thus, by the
prime number theorem,

∑
n∈A

1
nλ
≥ ∑

x1/3<p≤x

1
pλ

+
cx2/3

(logx)2
1
xλ

> ∑
p≤x

1
pλ

when λ < 0.5 and x is sufficiently large. Hence the above argument and Theorem 3 together imply that
the critical exponent lies in the interval

0.5≤ τ2 ≤ 0.7983. (1.3)

In a sequel paper, we shall address the question of critical exponents for k-primitive sets, with k ≥ 3.

2 Combinatorial Lemmas

Before proving Theorem 3, we need lemmas in counting the maximal number of elements in a k-primitive
set.

We first recall the following famous result due to Erdős and Szekeres [5], whose proof we provide for
completeness.

Lemma 1 (Erdős–Szekeres). A sequence of (r− 1)(s− 1)+ 1 real numbers has either a monotonic
nondecreasing subsequence of length r or a monotonic nonincreasing subsequence of length s.

Proof. Say the sequence is a1,a2, . . . ,an, where n = (r−1)(s−1)+1. For each ai consider the ordered
pair (bi,ci), where bi is the length of the longest nondecreasing subsequence ending at ai and ci is the
length of the longest nonincreasing subsequence ending at ai. Then no two pairs (bi,ci) and (b j,c j) can
be equal, so for at least one choice of i we have bi ≥ r or ci ≥ s.

We next bound the size of a k-primitive set based on the number of prime factors used to generate its
elements.
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Lemma 2. For k ≥ 2, suppose A is a k-primitive set and T ⊂ A with |P(T )|= n. If n≤ k, then |T | ≤ n.
If n = k+1, then |T | ≤ n+1. Further, for k = 2, n = 4 we have |T | ≤ 19.

Proof. We may assume that |T | ≥ n. Let P(T ) = {q1, . . . ,qn} and write each t = ∏i qei
i ∈ T as an

exponent vector~v = (e1, . . . ,en). Define the notation~v≥ 0 if ei ≥ 0 for all i, and define~v≤ ~w if ~w−~v≥ 0.
Take~v1 with maximal entry e1 among T . Then take~v2 with maximal e2 among the remaining vectors,
and similarly define~v3, . . . ,~vn. Thus, the chosen vectors are distinct.

Case n ≤ k: If |T | ≥ n+1 then T has some vector~v 6=~vi for all i. But then~v ≤~v1 + · · ·+~vn. This
implies that T , and hence A, is not n-primitive, and since n ≤ k, it implies that A is not k-primitive, a
contradiction. Hence we cannot have |T | ≥ n+1 when n≤ k.

Case n = k+1: If |T | ≥ n+2 then T has vectors ~w1 6= ~w2 with ~w j /∈ {~v1, . . .~vn} for j = 1,2. Write
~w j = ( f ( j)

1 , . . . , f ( j)
n ). By the pigeonhole principle, we may assume

f (1)i ≤ f (2)i

for at least n/2 values of i, say i = 1, . . . ,dn/2e. Thus, we deduce

~w1 ≤ ~w2 +~vdn/2e+1 + · · ·+~vn

contradicting T as k-primitive, since 1+ bn/2c= 1+ b(k+1)/2c ≤ k.
Now say k = 2, n = 4. Suppose there are 20 members in T with corresponding vectors

~wi := (ei,1,ei,2,ei,3,ei4) for 1≤ i≤ 20.

Since A is 2-primitive, so is T . Without loss of generality, say ~w18 has maximal first coordinate, ~w19 6= ~w18
has maximal second coordinate among the remaining 19 vectors, and ~w20 has maximal third coordinate
among the remaining 18 vectors with ~w20 6= ~w18,~w19. Arrange the remaining 17 vectors in ascending
order of their first coordinate (i.e., e1,1 ≤ e2,1 ≤ ...≤ e17,1). By Lemma 1, there is a monotonic sequence
of length 5 among the ei,2’s. Without loss of generality, say e1,2, e2,2, e3,2, e4,2, e5,2 form such a sequence.

Case 1: e1,2 ≤ e2,2 ≤ e3,2 ≤ e4,2 ≤ e5,2. Consider the numbers ei,3 for i = 1, . . . ,5. By Lemma 1, there
is a monotonic sequence of length 3 among the ei,3’s, without loss of generality, say it is e1,3,e2,3,e3,3.
If e1,3 ≤ e2,3 ≤ e3,3, this forces e2,4 > e1,4 + e3,4 for otherwise ~w2 ≤ ~w1 + ~w3, contradicting T being
2-primitive. But this implies that ~w1 ≤ ~w2 which contradicts T being primitive. Hence, we must have
e1,3 ≥ e2,3 ≥ e3,3. Again, this forces e2,4 > e1,4 + e3,4, which in turn implies that ~w1 ≤ ~w2 +~w20, again a
contradiction.

Case 2: e1,2 ≥ e2,2 ≥ e3,2 ≥ e4,2 ≥ e5,2. By Lemma 1, there is a monotonic sequence of length 3
among the ei,3’s, without loss of generality, say it is e1,3,e2,3,e3,3. If e1,3 ≤ e2,3 ≤ e3,3, then again this
forces e2,4 > e1,4 + e3,4. But then ~w1 ≤ ~w2 +~w19. Hence, we must have e1,3 ≥ e2,3 ≥ e3,3. This forces
e2,4 > e1,4 + e3,4. But then ~w3 ≤ ~w2 +~w18, again a contradiction.

Therefore, there can be at most 19 members in T .

Remark 2.1. It is not clear if the number “19" in Lemma 2 is optimal. We will not need it here, but by
similar methods one can prove that if T is a 2-primitive set of positive integers with |P(T )|= n≥ 3, then
|T | ≤ 92n−3

.
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3 Proof of Theorem 3

Let A⊂ (1,x] be a 2-primitive set. Let 0.79≤ λ < 1 be a parameter to be defined later. First, we partition
A into primes S and composites T . Note S and P(T ) are disjoint since A is primitive. For a prime p,
define

Tp := {t ∈ T : p | t}.

If some prime p ∈ P(T ) satisfies

∑
t∈Tp

1
tλ
≤ 1

pλ
, (3.1)

then we replace the members of Tp with the prime p (i.e., redefine A = (T\Tp)∪{p}). This would make
∑Tp t−λ at least as big while keeping A 2-primitive. Repeat the process with each prime p ∈ P(T ) until
no such prime satisfies (3.1). If T = /0 after doing this, then A = S consists of primes so Proposition 1
follows. Otherwise T 6= /0, so we may assume

∑
t∈Tp

1
tλ

>
1
pλ

for all p ∈ P(T ). (3.2)

Consider the set

D := {t/p : t ∈ T, p | t} (3.3)

We record some useful properties of T and D.

Lemma 3. Let T be a 2-primitive set for which (3.2) holds and let D be as in (3.3).

(i) For each p ∈ P(T ), Tp has at least 3 elements.

(ii) The map sending ordered pairs (t, p) with t ∈ T and p | t to t/p ∈ D is injective.

(iii) Each t ∈ T has at least 3 prime factors (counted with multiplicity).

(iv) D is a primitive set of composite numbers.

Proof. (i) For p ∈ P(T ), (3.2) implies that

∑
t∈Tp

1
(t/p)λ

> 1 > 2−0.79 +3−0.79,

Thus (i) follows, since t/p ∈ Z>1 for all t ∈ Tp.
(ii) If not, then t1/p1 = t2/p2 for some t1, t2, p1 | t1, and p2 | t2. If t1 6= t2, by (i) there exists

some p1k ∈ Tp1 other than t1, t2. But then t1 = (t1/p1)p1 = (t2/p2)p1 | t2(p1k), which contradicts T as
2-primitive. Hence t1 = t2, which forces p1 = p2.

(iii) If not, say t = pq. Since Tp,Tq each have at least 3 elements, there are some pm and qn other than
t ∈ T . But then, t = pq | (pm)(qn) which contradicts T as 2-primitive. (This argument holds whether or
not p 6= q.)
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(iv) If not, then (t/p) | (t1/p1) for some t, t1 ∈ T , p | t, p1 | t1, and t/p 6= t1/p1. If p1 = p, then t | t1
which contradicts T as primitive. And if p1 6= p, then there is some pl ∈ Tp other than t and t1. This
implies t | t1 · pl, and since t 6= t1 (otherwise p = p1), we have a contradiction to T being 2-primitive.
Thus D is primitive, and also composite by (iii).

For Theorem 3, we must show

∑
t∈T

1
tλ
− ∑

p∈P(T )

1
pλ

< 0. (3.4)

Suppose P(T ) consists of primes q1 < q2 < · · ·< qr. Let 2 = p1 < p2 < · · ·< pr be the first r primes in
P. We are going to modify the set T by the following process. First, if each qi = pi, we let T stand as it is.
Otherwise, let i be the smallest index such that qi > pi. Then q j = p j for all j < i and we have pi - t for
all t ∈ T . Then replace each t ∈ Tqi with pi/qi · t. This keeps T as 2-primitive, and by (3.2),

0 < ∑
t∈Tqi

1
tλ
− 1

qλ
i

<
qλ

i

pλ
i

(
∑

t∈Tqi

1
tλ
− 1

qλ
i

)
= ∑

t∈Tqi

1
(pi/qi · t)λ

− 1
pλ

i
.

So replacing each t ∈ Tqi with pi/qi · t preserves (3.2). We repeat this process for each i with qi > pi and
in the end we have P(T ) = {p1, p2, . . . , pr}. By showing (3.4) for this T it would follow that (3.2) fails
for some pi, and this contradiction would prove the theorem.

We have reduced Theorem 3 to the following.

Theorem 3.1. Suppose λ ≥ 0.7983 and T is a 2-primitive set of composite numbers satisfying (3.2) with
P(T ) = P∩ (1,Y ] for some Y . Then

∑
t∈T

1
tλ
− ∑

p≤Y

1
pλ

< 0. (3.5)

Our goal now is to prove Theorem 3.1. For a parameter 0 < θ < 1 to be chosen later, we define λ as

λ = τ(1−θ), where τ = 1.140366. (3.6)

First consider those t ∈ T with greatest prime factor P(t) ≥ tθ . Then t1−θ ≥ t/P(t) and so t−λ ≤
(t/P(t))−λ/(1−θ) = (t/P(t))−τ . Hence

∑
t∈T

P(t)≥tθ

t−λ ≤ ∑
t∈T

P(t)≥tθ

( t
P(t)

)−τ

≤ ∑
p≤Y

p−τ (3.7)

by (1.1), since {t/P(t) : t ∈ T} ⊂ D is primitive by part (iii) of Lemma 3.

For a positive integer t, we consider the following unique factorization

t = m(t)M(t)

into positive integers m(t)≤M(t) with ratio M(t)/m(t) minimal. Let

M(T ) = {m(t) : t ∈ T}∪{M(t) : t ∈ T}.

We need two lemmas.
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Lemma 4. For any 2-primitive set T , consider the graph on the integers with edges {t,m(t)} and
{t,M(t)} for t ∈ T , where if m(t) = M(t), there is just one edge containing t. This graph contains a
matching from T into M(T ).

Proof. Let t ∈ T . If m(t) /∈ {m(t ′),M(t ′)} for all other t ′ ∈ T , then we can match t with m(t). So assume
m(t) ∈ {m(t ′),M(t ′)} for some other t ′ ∈ T . Then M(t) /∈ {m(t ′′),M(t ′′)} for all t ′′ ∈ T with t ′′ 6= t, t ′,
since otherwise t | t ′t ′′, contradicting T being 2-primitive.

If m(t)< M(t), then 2-primitive implies M(t) /∈ {m(t ′),M(t ′)} so we can match t with M(t).
Otherwise m(t) = M(t), which means t = m(t)2. Then t ′ 6= t forces m(t ′)< M(t ′), so we make define

m′ = t ′/m(t) (that is m′ is the singleton in {m(t ′),M(t ′)}\{m(t)}). We would like to match t ′ with m′

instead of m(t), freeing up m(t) to be matched with t. So suppose this is blocked by some t ′′ different from
t ′ (and necessarily different from t) with m′ ∈ {m(t ′′),M(t ′′)}. But then t ′ | tt ′′, a violation of 2-primitivity.
Thus, the matching can be completed.

Lemma 5. Suppose 0 < θ < 1/3 and that T is 2-primitive with P(t) < tθ for each t ∈ T . Let N(z) =
|T ∩ [2,z]|. Then, with q running over primes in the interval I := [z(1+θ)/4,z(1+θ)/2), we have

N(z)< z(1+θ)/2−∑
q∈I

⌊z(1+θ)/2

q

⌋
Proof. By Lemma 4, it suffices to bound |M(T ∩ [2,z])|. We first show that M(T ∩ [2,z])⊂ [1,z(1+θ)/2).
Let t ∈ T with t ≤ z. Say t = q1q2...qr where the primes qi are written in nondecreasing order. Let
d = q1q2...qi be maximal with d ≤ t(1−θ)/2. Then d′ = dqi+1 satisfies t(1−θ)/2 < d′ < t(1+θ)/2. Also,
d′′ = t/d′ satisfies the same double inequality. Thus,

t(1−θ)/2 < m(t)≤M(t)< t(1+θ)/2 ≤ z(1+θ)/2.

We further note that the members m of M(T ∩ [2,z]) satisfy P(m)< zθ , since m divides some member
of T ∩ [2,z] and every t in that set has P(t) < zθ . In particular, m is not divisible by any prime q ≥ zθ .
Note that if θ < 1/3, then θ < (1+θ)/4. So, m is not divisible by any prime in the interval I. Since no
integer below z(1+θ)/2 is divisible by 2 primes from I, the lemma follows.

Set
T p = {t ∈ T : P(t) = p},

so that T p ⊂ Tp. We have the following variant of Lemma 5.

Lemma 6. For any 2-primitive set T and prime p, let Np(z) denote the number of members t of T p with
t ≤ z. With q running over the primes in Ip := (max{p,z1/4},z1/2), we have

Np(z)≤ z1/2− ∑
q∈Ip

⌊z1/2

q

⌋
.

Proof. Note that if T is 2-primitive, so too is T p/p = {t/p : t ∈ T p}. Thus, we may apply Lemma 4 to
obtain a matching from T p/p into M(T p/p). The prime factors of each element t/p ∈ T p/p are at most
p, so following the proof of Lemma 5, we have m(t/p),M(t/p) ∈ [t1/2/p, t1/2). The lemma then follows
in the same way as Lemma 5.
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Lemma 7. For x≥ 2 we have

∑
x1/2<q<x

qprime

⌊ x
q

⌋
≥
(

log2− 1.25
logx

− 2.5
(logx)2

)
x.

Proof. First suppose that x≥ 2862. We have the sum is at least

∑
x1/2<q<x

x
q
−π(x).

From [11, (3.7)], we have that π(x)< 1.25x/ logx and from [11, (3.17)] that

∑
q<x

1
q
> log logx+B− 1

2(logx)2 ,

where B is the Mertens constant. Further, from [11, (3.18)],

∑
q≤x1/2

1
q
< log logx1/2 +B+

1
2(logx1/2)2 = log logx− log2+B+

2
(logx)2 .

This proves the lemma in the range x≥ 2862 and direct calculation shows that it holds in the wider range
x≥ 2.

We shall find it useful to use the following asymptotically weaker estimates in small cases. The proof
follows by checking values of x≤ 3213 after which Lemma 7 is stronger.

Corollary 2. For x≥ 185, we have ∑q∈(x1/2,x]bx/qc> 0.5x. For x≥ 67, we have ∑q∈(x1/2,x]bx/qc> 0.45x.

Let

θ = 0.3, λ = 0.7982562, ν = 1/θ = 10/3. (3.8)

For each prime p, let

Sp = ∑
t∈T

P(t)=p<tθ

1
tλ
.

With (3.7) it will suffice to prove Theorem 3.1 if we show under its hypotheses that for each Y ≥ 2,

∑
p≤Y

Sp ≤ ∑
p≤Y

(
1
pλ
− 1

pτ

)
. (3.9)
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3.1 Small primes, Y ≤ 37

We are going to estimate Sp for various small primes p. Take t ∈ T with P(t)< tθ . If t ≤ qν for a prime
q, then P(t)< (qν)θ = q. If q = 3, we see there can be at most one such t; that is, T can contain at most
one power of 2. The values of t ≤ 5ν are supported on {2,3}, so by Lemma 2 with k = n = 2 we see that
there are at most 2 such members of T . Similarly, Lemma 2 with k = 2, n = 3 shows that T has at most 4
members below 7ν , and with k = 2,n = 4, T has at most 19 members below 11ν . Since members t of T
with P(t)< tθ have at least dνe= 4 prime factors (counted with multiplicity), we have

S2 ≤
1

24λ
< 0.1093463,

S2 +S3 < 0.1093463+
2−1
3νλ

< 0.1631052,

S2 +S3 +S5 < 0.1631052+
4−2
5νλ

< 0.1907220,

S2 +S3 +S5 +S7 < 0.1907220+
19−4

7νλ
< 0.2753295. (3.10)

Computing ∑p≤Y (1/pλ −1/pτ) directly for Y = 2,3,5,7 gives lower bounds

0.121399, 0.251741, 0.368904, 0.471733,

respectively. Thus we observe ∑p≤Y Sp < ∑p≤Y (1/pλ − 1/pτ), so by (3.9), Theorem 3.1 holds when
Y = 2,3,5,7, respectively.

Now consider 11≤ p≤ 37. By partial summation, we have the equality

Sp =
∫

∞

pν

λ

z1+λ
Np(z)dz, (3.11)

noting that the integral converges, since Np(z)≤ z(1+θ)/2 by Lemma 5.
We use Lemmas 6 and 7 to get the upper estimates for Np(z):

Np(z)≤
⌊√

z
⌋
− ∑

max(p,z1/4)<q≤√z

⌊√z
q

⌋
, (3.12)

Np(z)≤
√

z
(

1− log2+
2.5

logz
+

10
(logz)2

)
, when p≤ z1/4. (3.13)

We split the integral in (3.11) at p4. In the first range when z < p4, we bound the contribution to (3.11)
by splitting up into intervals [m2,(m+1)2] and using (3.12), which gives

S′p :=
∫ p4

pν

λ

z1+λ
Np(z)dz ≤ ∑

m0<m<p2

∫ (m+1)2

m2

λ

z1+λ
Np(z)dz +

∫ (m0+1)2

pν

λ

z1+λ
Np(z)dz

≤ ∑
m0<m<p2

( 1
m2λ
− 1

(m+1)2λ

)(
m− ∑

p<q≤m

⌊m
q

⌋)
+
( 1

pνλ
− 1

(m0 +1)2λ

)(
m0− ∑

p<q≤pν/2

⌊m0

q

⌋)
(3.14)
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where m0 = bpν/2c.
For the second range when z≥ p4, we use (3.13) when z≥ 32132 and for smaller values of z we use

Corollary 2. That is,

S′′p :=
∫

∞

p4

λ

z1+λ
Np(z)dz ≤

∫
∞

32132

λ

zλ+1/2

(
1− log2+

2.5
logz

+
10

(logz)2

)
dz

+ 0.5
∫ 32132

max(p4,1852)

λ

z1/2+λ
dz + 0.55

∫ max(p4,1852)

p4

λ

z1/2+λ
dz.

Denote the integrals

f (y) :=
∫

∞

y

λ

zλ+1/2 dz

g(y) :=
∫

∞

y

λ

zλ+1/2

(
1− log2+

2.5
logz

+
10

(logz)2

)
dz.

So we obtain

S′′p ≤ (1− log2) f (32132)+g(32132)

+ 0.5[ f (max(p4,1852))− f (32132)] + 0.55[ f (p4)− f (max(p4,1852))]

= (0.5− log2) f (32132)+g(32132) − 0.05 f (max(p4,1852)) + 0.55 f (p4). (3.15)

Using the estimates in (3.14), (3.15), we bound Sp = S′p +S′′p by the following.

p Sp ≤ ∑q≤p Sq ≤ ∑q≤p(q−λ −q−τ)≥

11 0.13259 0.40792 0.55427

13 0.11241 0.52033 0.62966

17 0.08382 0.60415 0.69432

19 0.07601 0.68016 0.75484

23 0.06194 0.74210 0.80868

29 0.04757 0.78967 0.85521

31 0.04501 0.83468 0.89978

37 0.03680 0.87148 0.93950

Note that the first entry in the third column is found by adding S11 to the estimate in (3.10). Since the
entries in the fourth column exceed the entries in the third column, (3.9) implies Theorem 3.1 for Y ≤ 37.
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3.2 Large primes, Y ≥ 41

Now assume that Y ≥ 41. We have via partial summation that

∑
t∈T

P(t)<tθ

1
tλ

= ∑
p≤7

Sp + ∑
11≤p≤23

∫ 29ν

pν

λ

z1+λ
Np(z)dz+

∫
∞

29ν

λ

z1+λ
N(z)dz.

(As before, the last integral converges.) From (3.10) the Sp terms contribute at most 0.27533. Using
Lemmas 5, 6, and 7, and Corollary 2, we similarly obtain

∑
t∈T

P(t)<tθ

1
tλ

< 0.27533+0.08455+0.06576+0.03756+0.02953+0.01487+0.45614 = 0.96374,

where the second to the sixth terms correspond to the five finite integrals, and the last term is our estimate
for the tail integral. We also note that

∑
p≤Y

( 1
pλ
− 1

pτ

)
≥ ∑

p≤41

( 1
pλ
− 1

pτ

)
> 0.97661.

Since this estimate exceeds the prior one, this gives Theorem 3.1 with λ = 0.7982562.
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