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Abstract

Here, we show that if f(x) ∈ Z[x] has degree at least 2 then the
set of integers which are of the form 2k+f(m) for some integers k ≥ 0
and m is of asymptotic density 0. We also make some conjectures and
prove some results about integers not of the form |2k ±ma(m− 1)|.
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1 Introduction

This paper started by looking at positive integers not of the form ±2k ±
ma(m − 1), where a, k and m are nonnegative integers. This problem is
inspired by results from [4], where it is proved that each of the three sets

{n > 0 : n even, n 6= 2k + φ(m)},
{n > 0 : n even, n 6= 2k − φ(m)},
{n > 0 : n even, n 6= φ(m)− 2k}

is infinite. Here, φ(m) is the Euler function of m. Furthermore, it was shown
in [4] that the first of the above three sets is of positive lower density. It is
not known if either of the last two sets above is of positive lower density. It
is also not known if the intersection of the above three sets is infinite.

The constructions from [4] of even positive integers in one of the above
three sets start with positive integers n ≡ 2 (mod 4). Then, at least if k ≥ 2,
any one of the equations n = ±2k±φ(m) leads by reduction modulo 4 to the
conclusion that 2‖φ(m). Thus, m = 4, pa+1, or 2pa+1 for some odd prime
p and nonnegative integer a. When m = 4, we get positive integers of the
form 2k ± φ(4) = 2k ± 2, which are easy to avoid because there are very few
of them. Since φ(pa+1) = φ(2pa+1), it follows that we may take m = pa+1

and so look at the numbers ±2k ± pa(p− 1). These are exactly the numbers
we study in this paper without the additional information that p is prime.

For a fixed a, the numbers of the above form are particular instances of
integers of the form ±2k ± f(m), where f(X) = Xa(X − 1) is a polynomial
of degree a+ 1. Then we realized that some of our results hold for the larger
class of numbers of the form |2k +f(m)|, where f(X) ∈ Z[X] is a polynomial
of degree at least 2, so we shall formulate and prove those results in this
degree of generality.

In this paper, we formulate the following conjecture.

Conjecture 1. The set of integers

A = {n : n = |2k ±ma(m− 1)| for some integers a ≥ 1, k ≥ 0 and m}

is of asymptotic density zero.
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The rest of the paper is organized as follows. In Section 2, we prove the
analog of the Conjecture (1) above for the numbers of the form |2k + f(m)|,
where f(x) ∈ Z[x] has degree at least 2. In particular, this proves that
Conjecture 1 holds if we fix the value of the parameter a ≥ 1 and let only k
and m be variables. In Section 3, we prove Conjecture 1 conditionally under
the abc-conjecture. In Section 4, we prove some unconditional partial results
towards Conjecture 1.

2 Integers of the form |2k + f (m)|
Theorem 1. Let f(X) ∈ Z[X] be a polynomial of degree d ≥ 2. Then the
set of integers

Af = {|2k + f(m)| : k ≥ 0, m ∈ Z}
is of asymptotic density zero. In particular, the number of members n of Af
with n ≤ x is Of (x

1/d log x).

Proof. Write f(X) = a0X
d+a1X

d−1+ · · ·+ad. Let x be a large real number.
Consider the equation

a0m
d + a1m

d−1 + · · ·+ ad + 2k = n, (1)

in integers k ≥ 0 and m, where |n| ≤ x. We need to show that there are at
most O(x1/d log x) possibilities for n.

For each fixed value of k, the number of integers m with |f(m) + 2k| ≤ x
is O(x1/d) uniformly in k. Assume that |m| ≤ x2. Then equation (1) implies
that

2k ≤ |n|+ |f(m)| = O(x+ |m|d) = O(x2d)

showing that k = O(log x). Hence, there are at most O(x1/d log x) pairs of
integers |m| ≤ x2 and k ≥ 0 which can participate in an equation of the form
(1).

From now on, we assume that |m| > x2. We shall show there are only
Of (1) solutions in this case.

Multiplying both sides of equation (1) by the fixed integer

a := ddad−10

and grouping some terms, we get

md
1 + a2k = an+R(m), (2)
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where m1 = da0m+ a1 and R(X) ∈ Z[X] is some fixed polynomial of degree
at most d − 2. Thus, |R(m)| = O(|m|d−2). Write k = dq + r, where r ∈
{0, 1, . . . , d− 1} and fix also the value for r. Relation (2) leads to

d∏
i=1

(m1 − ζi2q) = O(x+ |m|d−2), (3)

where ζ1, . . . , ζd are all the roots of the polynomial Xd + a2r. Observe that
these roots are distinct. We divide the above equation (3) by md

1 and by∏k
i=1 ζi = (−1)da2r, and using the fact that |m1| � |m|, we infer that

k∏
i=1

(
ζ−1i −

2q

m1

)
= O

(
x+ |m|d−2

|m1|d

)
= O

(
x

|m|d
+

1

m2

)
. (4)

Put
δ = min{|ζ−1i − ζ−1j | : 1 ≤ i < j ≤ d}.

Since m > x2, the right side of equation (4) tends to 0 when x→∞. Thus,
2q/m1 is very close to ζ−1i for some i = 1, . . . , d. Fix this value of i. Then
2q/m1 − ζ−1i tends to 0 as x tends to infinity. Since∣∣∣∣ζ−1i − 2q

m1

∣∣∣∣ < δ

2
implies

∣∣∣∣ζ−1j − 2q

m1

∣∣∣∣ > δ

2
for all j 6= i ∈ {1, . . . , d},

we conclude that, using |m| > x2,∣∣∣∣ζ−1i − 2q

m1

∣∣∣∣ = O

(
x

|m|d
+

1

m2

)
= O

(
1

m1.5

)
. (5)

We may assume that ζ−1i − 2q/m1 6= 0 since otherwise, (2) implies that
an+R(m) = 0. This implies that n is constant in the case that R is constant,
and that |m| � x1/ degR in the case that R is not constant. But |m| > x2,
so there are at most finitely many choices. Thus, (5) implies that we may
assume

0 <

∣∣∣∣ζ−1i − 2q

m1

∣∣∣∣ = O

(
1

m1.5

)
.

However, the above inequality has only finitely many integer solutions (m1, q)
by Ridout’s version [6] of Roth’s theorem [7]. This completes the proof.
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Remark. A close analysis of the above proof shows that the statement of
Theorem 1, with x1/d log x replaced with x1/d(log x)O(1), remains true with
essentially the same proof if one replaces 2k by S-units. These are positive
integers k all whose prime factors belong to a fixed finite set of primes. We
give no further details, but alert the reader also to the paper [1] where a
similar result is proved in the case d = 2.

3 A conditional result

For a nonzero integer n we write γ(n) =
∏

p|n p for its algebraic radical. The
famous abc conjecture is the following statement.

Conjecture 2. Let ε > 0 be fixed. There exists a constant C(ε) depending
on ε such that if a, b are coprime positive integers, then

a+ b ≤ C(ε)γ(ab(a+ b))1+ε.

Our next result is conditional upon the abc conjecture.

Proposition 1. The set A is of asymptotic density zero under the abc con-
jecture.

Proof. Let x be a large positive real number and let us put A(x) = A∩ [1, x].
Let n ∈ A(x) and say n = |2k ± ma(m − 1)|. If m = 0, ±1, then n =
2k, 2k±2, and the counting function of such n ≤ x has order O(log x). Also,
unconditionally, we may assume that

n = |2k − |ma(m− 1)||, (6)

since if n = 2k + |ma(m− 1)|, then |m| � x1/2, k � log x, and a� log x, so
the number of possibilities for n is O(x1/2(log x)2).

So, we assume that |m| ≥ 2 and that (6) holds. Let d = gcd(2k,ma(m−
1)). Clearly, d = 2λ for some nonnegative integer λ. If λ > log log x, then
2blog log xc divides n. The number of such n ≤ x is at most x/2blog log xc <
x/
√

log x = o(x) as x → ∞. Assume now that λ ≤ log log x. We apply the
abc conjecture with some small ε to the relation

n

d
=

∣∣∣∣2k−λ − ∣∣∣∣ma(m− 1)

d

∣∣∣∣∣∣∣∣ ,
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getting

|m|a+1

d
≤ 2|m|a|m− 1|

d
�ε γ(n2k−λma(m− 1))1+ε

≤ (2x(|m|+ 1)2)1+ε �ε x
1+ε|m|2+2ε,

which yields
|m|a−1−2ε � x1+ε2λ � x1+ε log x.

Thus, if a ≥ 3, then taking ε = 1/10, we get

|m| � x(1+ε)/(2−2ε) log x� x11/18 log x.

Furthermore, since |m| ≥ 2, we get that 2a−1.2 � x1.1 log x, implying a �
log x. Finally, since

2k � max{x, |m|a+1} ≤ max{x, |m|3(a−1.2)} � x3.3(log x)3,

we also get that k � log x. Thus, the number of triples (a, k,m) such that
a ≥ 3 and |2k ±ma(m − 1)| ≤ x is, under the abc conjecture, of cardinality
O(x11/18(log x)3) = o(x) as x→∞.

We have left the cases a = 1, 2, but here we have the result unconditionally
by Theorem 1. This completes the proof of Proposition 1.

4 Unconditional partial results

Here, we prove some unconditional results about the setA. As in the previous
section, we may assume (unconditionally) that |m| > 1. We also shall assume
that m > 0 (so that m ≥ 2) by also dealing with the case of integers of the
form |2k − ma(m + 1)|. In fact, since there are few integers of the form
|2k − 2a(2± 1)|, we shall assume that m ≥ 3. And from Theorem 1, we shall
assume that a ≥ 3.

Lemma 1. Assume that 0 < |2k − ma(m ± 1)| ≤ x and m ≥ 3. Then
a� log x/ logm+ logm log logm.

Proof. We treat only the case of the ± sign being negative since the other
case is similar. If 2k ≤ x2, then ma ≤ ma(m − 1) ≤ 2k + x ≤ 2x2, therefore
a� log x/ logm. Assume next that 2k > x2. Then

|2−kma(m− 1)− 1| ≤ x

2k
≤ 2−k/2.
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We apply a linear form in logarithms à la Baker (see, for example, [5]) to
the left hand side of the above inequality which is nonzero because of our
hypothesis |2k −ma(m− 1)| > 0. Observe that k + 1 ≤ a. We get

|2−kma(m− 1)− 1| ≥ exp(−C(logm)2 log(k + 1)),

where C is some absolute constant. Thus,

2−k/2 ≥ exp(−C(logm)2 log(k + 1)),

yieding k � (logm)2 log(k + 1). This implies that k � (logm)2 log logm.
Since k � a logm, we get that a � logm log logm. The desired conclusion
follows.

Corollary 1. The number of integers n = |2k−ma(m±1)| ≤ x where a ≥ 3,
3 ≤ m ≤ x/(log x)2 is o(x) as x→∞.

Proof. Again we shall deal only with the case when the ± sign is negative, the
other case being similar. If ma(m−1) ≤ 3x, then the number of choices for m
is O(x1/4), the number of choices for a is O(log x), and the number of choices
for k is O(log x), so in this case the number of values of n is O(x1/4(log x)2).
If ma(m − 1) > 3x, then for each pair m, a there are at most two values of
k with |2k −ma(m ± 1)| ≤ x. Assuming m ≤ x/(log x)2, Lemma 1 implies
that a � log x log log x. Thus, there are at most O(x log log x/ log x) triples
m, a, k. This completes the proof.

So, from now on, we may assume that m ≥ x/(log x)2 and a ≥ 3.
As we have mentioned, Theorem 1 implies that for each fixed a there are

few members |2k −ma(m± 1)| ∈ A(x). The next result allows us to handle
all values of a to a large bound.

Theorem 2. For each T ≥ 3, the number of integers |2k−ma(m±1)| ∈ A(x)
with k ≥ 0, m ≥ x/(log x)2, and 3 ≤ a ≤ T is O(T 2(log T )(log x) log log T ).

Proof. For |2k −ma(m± 1)| ≤ x, we have

2k = ma(m± 1) +O(x),

with a uniform O-constant. Thus,

k log 2 = (a+ 1) logm± 1

m
+O

(
1

m2

)
,
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using x < ma−1. Dividing by a+ 1 and exponentiating, we get

2k/(a+1) = m

(
1± 1

(a+ 1)m
+O

(
1

am2

))
= m± 1

a+ 1
+O

(
1

am

)
,

and so

(a+ 1)2k/(a+1) = (a+ 1)m± 1 +O

(
1

m

)
. (7)

Write k = q(a + 1) + r for integers q, r with 0 ≤ r ≤ a. Then (7) implies
that for large x the case r = 0 does not occur, since the left side would be
an integer divisible by a + 1 and the right side for large x is an integer not
compatible with this. So we assume that r ∈ {1, . . . , a}.

We shall apply a quantitative version of the Subspace theorem due to
Evertse [2]. We take K = Q and n = 2. We let V = {∞} ∪ {p ≥ 2 prime}
be the set of all the places of Q. The corresponding valuations are, for a
rational nonzero number y, given by |y|∞ = |y| and |y|p = p−ordp(y) if p is a
prime, where ordp(y) is the exponent of p in the factorization of y. When
y = (y1, y2) and v ∈ V , we put

|y|v =

{ √
y21 + y22 if v =∞,

max{|y1|v, |y2|v} if v = p.

We put

H(y) =
∏
v∈V

|y|v.

All this can be found on page 226 of [2] for the particular case of n = 2 and
K = Q. We now take S = {2,∞}, x = (x1, x2),

l1,∞(x1, x2) = 2r/(a+1)x1 − x2, l2,∞(x) = x1, l1,2(x) = x1, l1,2(x) = x2.

We extend the infinite valuation to Q(21/(a+1)) in such a way that it is the
absolute value. It is easy to compute that one can take H = 2 and D = a+1
as upper bounds for the heights and degrees of the number fields containing
the coefficients of li,v for i = 1, 2 and v ∈ S as on the line 1 of page 228 of
[2]. We compute the double product

2∏
i=1

∏
v∈S

|li,v(x)|v

8



for x = ((a+ 1)2q, (a+ 1)m± 1). Using estimate (7), we get that the above
double product is at most

|(a+ 1)2k/(a+1) − ((a+ 1)m± 1)| × (a+ 1)2k/(a+1) × 2−q

� (a+ 1)2r/(a+1)

m
� a

m
� 1

(am)2/3
� 1

‖x‖2/3
, (8)

where ‖x‖ = max{|x1|, |x2|} and for the next-to-last inequality we used the
fact that a� logm log logm (Lemma 1), therefore certainly a� m1/5. Since
m ≥ x/(log x)2, it follows that for large x, we have

2∏
i=1

∏
v∈S

|li,v(x)|v <
1

2‖x‖1/2
. (9)

It is easy to see that for our system of forms, we have that

det(l1,v, l2,v) = ±1 for v ∈ S.

Since also 2‖x‖ ≥ H(x) because x is a vector with integer components, we
get right away that inequality (9) implies

∏
v∈S

2∏
i=1

|li,v(x)|v
|x|v

<

(∏
v∈S

|det(l1,v, l2,v)|v

)
H(x)−2−1/2,

which is inequality (1.3) on page 228 in [2] with δ = 1/2. Note that (a+ 1)2q

and (a+ 1)m± 1 are not necessarily coprime, but a+ 1 and (a+ 1)m± 1 are
coprime. Thus, H(x) ≥ H((a+ 1, 1)) = a+ 1 ≥ 3 > H, and so we are in the
situation (i) of the theorem on page 228 in [2]. That theorem then implies
that x is in a totality of at most 2508 log(4(T +1)) log log(4(T +1)) subspaces;
that is, at most O(log T log log T ) subspaces. This is for a fixed a ≤ T and
r ∈ {1, . . . , a}. Assume now a, r and a subspace is fixed. This means that
c1x1 − c2x2 = 0 holds for some fixed (c1, c2) 6= (0, 0). We may assume that
gcd(c1, c2) = 1. Thus, (a + 1)2q/((a + 1)m ± 1) = c2/c1 is fixed. This does
not mean that 2q and (a + 1)m ± 1 are fixed, but that for some integer d,
(a + 1)2q = c2d, (a + 1)m ± 1 = c1d. Further, since a + 1 is coprime to c1d
we have that d is a divisor of 2q, so that d = 2λ for some integer λ ≥ 0.

Assume that 2k − ma(m ± 1) ≥ 0, the case where it is negative being
similar. The relation

2q(a+1)+r −ma(m± 1) = n with 0 ≤ n ≤ x,

9



leads to

2r
(
c22

λ

a+ 1

)a+1

−
(
c12

λ ∓ 1

a+ 1

)a(
c12

λ ∓ 1

a+ 1
± 1

)
= n.

Multiplying both sides by (a+ 1)a+1, we get

F (2λ) = n(a+ 1)a+1, where 0 ≤ n ≤ x,

and where F (y) ∈ Z[y] is some polynomial of degree a+1. Let then n1, . . . , nt
be all the integers n that arise in this fashion corresponding to λ1 < · · · < λt.
So F (2λi) = ni(a+ 1)a+1. If t ≥ 2 and 1 ≤ i < t, then

2λt−2λi | F (2λt)−F (2λi) = (nt−ni)(a+1)a+1, so that 2λi | (nt−ni)(a+1)a+1.

Since λt > 0 and 2λt | (a + 1)m ± 1, it follows that a + 1 is odd. Thus,
for i < t, 2λi | nt − ni, so that λi = O(log x) and hence t = O(log x). This
was when a, r and the subspace were fixed. Since there are O(log T log log T )
possible subspaces whenever both a ≤ T and r ≤ a are fixed, we get a bound
of

O(T 2(log T )(log x) log log T )

on the total number of possibilities for n ∈ A(x). This finishes the proof of
the theorem.

Corollary 2. But for a set of cardinality o(x) as x → ∞, the members
|2k −ma(m± 1)| of A(x) with m, a > 0 have

a >
x1/2

log x log log x
, m > exp

(
x1/2

(log x log log x)2

)
, k >

x

(log x log log x)3
.

Proof. The inequality for a follows immediately from Theorem 1, Corollary 1,
and Theorem 2 with T = x1/2/(log x log log x). The inequality for m follows
now from Lemma 1 and the inequality for a. Note that for large x, Corollary 1
implies that

2k ≥ ma(m− 1)− x ≥ 2ma − x > ma,

so that k > a logm. Thus, the third inequality in the corollary follows from
the first two.

Proposition 2. The set of integers |2k−ma(m± 1)| ∈ A with m, a > 0 and
either m even or both a odd and k even has asymptotic density zero.
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Proof. It follows from Corollary 2 that the members of A arising from a triple
m, a, k with m even is o(x) as x→∞. (This also follows from Theorem 1.)
Thus, assume that m is odd, a is odd, and k is even. We have

|2k/2 −m(a−1)/2
√
m(m± 1)||2k/2 +m(a−1)/2

√
m(m± 1)| = O(x).

Thus, ∣∣∣∣ 2k/2

m(a−1)/2 −
√
m(m± 1)

∣∣∣∣ = O

(
x

ma−1
√
m(m− 1)

)
.

By Corollary 2 we may assume that x/
√
m(m− 1) = o(x) as x → ∞, so

that for large x we have∣∣∣∣ 2k/2

m(a−1)/2 −
√
m(m± 1)

∣∣∣∣ < 1

2(m(a−1)/2)2
.

A well-known result of Legendre tells us that 2k/2/m(a−1)/2 is a conver-
gent of

√
m(m± 1). In fact, we have

√
m(m+ 1) = [m, 2, {2m, 2}], and√

m2 −m = [m − 1, 2, {2m − 2, 2}]. Furthermore, if p/q is a convergent
of
√
m(m+ 1), then p2 − m(m + 1)q2 = ±1, ±m. The second possibility

is not convenient for us since m > x. Similarly, if p/q is a convergent of√
m(m− 1), then p2 −m(m− 1)q2 = ±1, ±(m− 1), and again the second

one is not convenient for us since it is too large. Thus, 2k/2/m(a−1)/2 = p/q is
a convergent of

√
m(m± 1) such that p2−m(m± 1)q2 = ±1. The numbers

2k/2 and m(a−1)/2 are coprime, so p = 2k/2, q = m(a−1)/2, and we are talking
about the member 1 of A, which is negligible. This completes the proof.

Remark. It is easy to see that the odd members of A have asymptotic
density 0, since if m, a, k give rise to an odd number n, we must have k = 0.
Are there infinitely many positive even numbers that are not members of
A? This question might be answerable by the methods of Luca [3]. (That
paper discusses the conjecture of Erdős that there are infinitely many integers
which are not the sum or difference of two powers.)
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