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A set of positive integers is primitive (or 1-primitive) if no member divides another. Erdős
proved in 1935 that the weighted sum

∑
1/(n logn) for n ranging over a primitive set A

is universally bounded over all choices for A. In 1988 he asked if this universal bound is
attained by the set of prime numbers. One source of difficulty in this conjecture is that∑
n−λ over a primitive set is maximized by the primes if and only if λ is at least the

critical exponent τ1≈1.14.

A set is k-primitive if no member divides any product of up to k other distinct members.
One may similarly consider the critical exponent τk for which the primes are maximal
among k-primitive sets. In recent work the authors showed that τ2 < 0.8, which directly
implies the Erdős conjecture for 2-primitive sets. In this article we study the limiting
behavior of the critical exponent, proving that τk tends to zero as k→∞.

1. Introduction

A set A ⊂ Z>1 is primitive if no member of A divides another. Erdős [5]
showed that for any primitive set A,∑

n∈A

1

n log n
<∞.

In fact, his proof bounded the sum uniformly over all primitive sets A.
Further, in 1988 he asked if the maximizer is the set of primes A=P. This
is now referred to as the Erdős conjecture for primitive sets:
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Conjecture (Erdős). For primitive A, we have∑
n∈A

1

n log n
≤
∑
p∈P

1

p log p
= 1.6366 . . . .

The current record bound is
∑

n∈A 1/(n logn)<eγ =1.781 . . . due to the
second and third authors [10]. Here γ is the Euler–Mascheroni constant.

A potential approach towards the Erdős conjecture is via integration.
Namely, we have ∑

n∈A

1

n log n
=

∫ ∞
1

(∑
n∈A

1

nλ

)
dλ,

and one might hope the integrand above is dominated by
∑

p p
−λ for all

λ>1. Note by a simple argument (see Lemma 1), if this inequality holds for
an exponent λ, then it will continue to hold for all larger exponents λ′>λ.

However, the primes are not maximal among primitive sets with respect
to logarithmic density (i.e., λ=1). Indeed, by Erdős [7] and Erdős, Sárközy,
and Szemerédi [8],

sup
primitive A

∑
n∈A
n≤x

1

n
=

(
1√
2π

+ o(1)

)
log x√

log log x
,

where the maximizer is the set of positive integers with blog logxc prime
factors (with multiplicity). By contrast, the primes satisfy∑

p≤x

1

p
= log log x+O(1).

Later, Banks and Martin [1] obtained the full characterization that

(1.1)
∑
n∈A
n≤x

n−λ ≤
∑
p≤x

p−λ,

for all primitive A, x> 1, if and only if λ≥ τ1 := 1.1403 . . ., where τ = τ1 is
the unique real solution to the equation

(1.2)
∑
p∈P

p−τ = 1 +

1−
∑
p∈P

p−2τ

1/2

.

As such we call τ1 the critical exponent for primitive sets.
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One may define a hierarchy of primitivity as follows. A 1-primitive set is
primitive, and inductively for k> 1, a (k−1)-primitive set is k-primitive if
no member divides the product of k distinct other members. That is, a set
A⊂Z>1 is k-primitive if no member of A divides any product of j distinct
other members, for any 1≤j≤k.1 Note that if (1.1) holds for all λ>τ , then
it holds for λ=τ . Thus, one may similarly consider the critical exponent τk
for which (1.1) holds for all k-primitive sets if and only if λ≥τk. Note that
τj≥τk for 1≤j≤k.

Recently, the authors [4] proved τ2≤0.7983. In particular, τ2<1, thereby
establishing the Erdős conjecture in the case of 2-primitive sets.

Theorem 1 ([4]). For λ≥0.7983, we have∑
n∈A
n≤x

n−λ ≤
∑
p≤x

p−λ

for all 2-primitive sets A and x ≥ 2. In particular, any 2-primitive set A
satisfies ∑

n∈A

1

n log n
≤
∑
p

1

p log p
.

In 1938, Erdős [6] first studied the maximal cardinality of 2-primitive sets
(i.e., λ = 0). He used Steiner triple systems, though he didn’t name them
as such. Using more elaborate combinatorial ideas, the first author together
with Győri and Sárközy [3] extended the Erdős results to all k≥2, also see
[2] and [11]. Namely, there is an absolute constant c>0 such that

(1.3)
1

8k2
x

2
k+1

(log x)2
≤ sup

k-primitive A

∑
n∈A
n≤x

1−
∑
p≤x

1 ≤ ck2 x
2
k+1

(log x)2
,

for x sufficiently large. Here the lower bound is attained by some set A′′

consisting of the primes in (x1/(k+1),x] and a size x2/(k+1)/8(k logx)2 subset
of products of k+1 primes in (1,x1/(k+1)]. In particular, the lower bound in
(1.3) implies∑
n∈A′′
n≤x

n−λ ≥
∑

x1/(k+1)<p≤x

p−λ +
1

xλ
x2/(k+1)

8(k log x)2
>

∑
x1/(k+1)<p≤x

p−λ +
∑

p≤x1/(k+1)

p−λ,

when λ<1/k and x is sufficiently large. Hence we quickly deduce τk≥1/k.

1 In [3], A is called k-primitive if no member of A divides any product of k distinct
other members. These definitions only differ when |A| ≤ k, and do not affect the critical
exponent τk, by Lemma 4 below.
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Thus combining with Theorem 1, the critical exponent for 2-primitive
sets lies in the interval

τ2 ∈ [0.5, 0.7983].

It is an open question to determine the exact value of τ2, and perhaps char-
acterize τ2 as a solution to some functional equation, as with (1.1) for τ1.

In light of this, it is natural to ask about the behavior of the decreasing
sequence τ1≥τ2≥τ3≥ . . . , in particular, whether τk tends to zero as k→∞.
The main result of this article is to answer in the affirmative. Using some
of the ideas in our previous paper [4] we prove the following quantitative
result.

Theorem 2. Let pk denote the kth prime number. For any k≥ 1 and λ≥
1.5/ logpk, we have

(1.4)
∑
n≤x
n∈A

n−λ ≤
∑
p≤x

p−λ

for all k-primitive sets A and x≥2.

Thus, for k≥1,
1

k
≤ τk ≤

1.5

log pk
.

Clearly, the upper and lower bounds differ substantially, and we offer it as
a problem to narrow this gap.

1.1. Generalizations

Upon closer inspection of the proofs in [2], [3], we observe the lower bound
for (1.3) holds under a stronger notion of k-primitivity, namely, one forbids
a member from dividing the product of k other members, not necessarily
distinct. Similarly, the upper bound in (1.3) holds even if one relaxes to only
forbid a member from dividing the least common multiple (lcm) of k other
members.

Hence, this naturally suggests the following generalizations. We say a set
A ⊂ Z>1 is “strongly k-primitive” if no member divides the product of k
other members which are not necessarily distinct. Any strongly k-primitive
set is k-primitive, but not vice versa. For example, A={4,5,6} is 2-primitive
but not strongly 2-primitive. In the other direction, we say a set A⊂Z>1 is
“lcmk-primitive” if no member divides the lcm of k other members. Here,
every k-primitive set is lcmk-primitive, but not vice versa. An example is
A={4,6,10} which is lcm2-primitive, but not 2-primitive.
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One can ask for critical exponents in the strong case and in the lcm case.

Denote the former by τ
(s)
k and the latter by τ

(lcm)
k . By the above comments,

for each k≥2 we have

1

k
≤ τ (s)k ≤ τk ≤ τ

(lcm)
k .

From these definitions, two natural questions arise:

Is there a better upper bound for τ
(s)
k than that afforded by Theorem 2?

Is there an upper bound for τ
(lcm)
k that is o(1) as k→∞?

We make progress on these two questions by proving the following two
theorems.

Theorem 3. For any k ≥ 1, τ
(lcm)
k ≤ 1.7/ logpk. In addition, τ

(lcm)
2 ≤ 1, so

the Erdős conjecture is true for lcm2-primitive sets.

For the τ
(s)
k case we prove a considerably stronger inequality.

Theorem 4. For k≥2 we have τ
(s)
k ≤(3 logk)/k.

Thus,

1

k
≤ τ (s)k ≤

3 log k

k

for all k≥2. It would be nice to so sharpen the inequalities for τk and τ
(lcm)
k .

1.2. ∞-primitive sets

Finally, we offer a natural interpretation of the result τk → 0. We say a
set A is ∞-primitive if it is k-primitive for every k ≥ 1. For example, the
set of primes forms an ∞-primitive set, as does any set of pairwise coprime
integers. However, the set {6,10} indicates that coprimality is not neccessary.

We prove that the primes are maximal among all ∞-primitive sets for
the full range of exponents λ≥0.

Corollary 1.1. For all x≥2, we have

sup
∞-primitive A

∑
n∈A
n≤x

1 ≤
∑
p≤x

1.
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Proof. We proceed by contradiction. Suppose there exist x≥2 and an ∞-
primitive set T such that ∑

n∈T
n≤x

1 >
∑
p≤x

1.

Consider the sequence an=1n≤x(1n∈T−1n∈P) and define the Dirichlet series
F (t)=

∑
nann

−t. By assumption F (0)>0 so by continuity of F there exists
t>0 sufficiently small for which F (t)>0. That is,

(1.5)
∑
n∈T
n≤x

n−t >
∑
p≤x

p−t.

Since τk→0 by Theorem 2, we have τj<t for j sufficiently large. But since
T is ∞-primitive, hence j-primitive, we see (1.5) contradicts the definition
of τj . Thus the corollary follows.

2. Preliminary lemmas

Lemma 1. Take sets A,B ⊂R>1. Suppose λ≥ 0 satisfies Iλ(x)≥ 0 for all
x>1, where

Iλ(x) :=
∑
a∈A
a≤x

a−λ −
∑
b∈B
b≤x

b−λ.

Then Iλ′(x)≥0 for all λ′≥λ, x>1.

Proof. By partial summation,

Iλ′(x) = xλ−λ
′
Iλ(x) + (λ′ − λ)

∫ x

1
uλ−λ

′−1Iλ(u) du.

Hence if Iλk(x)≥ 0 for all x> 1, it then follows Iλ′(x)≥ 0 for all λ′ ≥ λ as
claimed.
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Lemma 2. Let

λ1 = 1.2, λ2 = 0.8, and λk = 2.625
k∏
i=1

(
1− 1

pi

)
for k ≥ 3.

Then

λk >
1.45

log pk
for k ≥ 62, λk <

1.5

log pk
for k ≥ 1.

In addition, let

µ1 = 8/7 and µk = 3

k∏
i=1

(
1− 1

pi

)
for k ≥ 2.

Then

µk >
1.65

log pk
for k ≥ 47, µk <

1.7

log pk
for k ≥ 1.

Proof. One can verify the lemma for pk ≤ 2,000 by direct computation.
For larger pk we use (3.25) of Rosser and Schoenfeld [12] with the Euler–
Mascheroni constant γ=0.57721..., getting

λk ≥
2.625e−γ

log pk

(
1− 1

2 log2 pk

)
≥ 2.625e−0.57722

log pk

(
1− 1

2 log2 2,000

)
≥ 1.45

log pk
,

which gives the lower bound for λk. The lower bound for µk follows in the
same way. For the upper bound, by (3.26) of Rosser and Schoenfeld [12] we
have

λk <
2.625e−0.57721

log pk

(
1 +

1

2 log2 2,000

)
<

1.5

log pk
.

Again, the upper bound for µk follows in the same way. This completes the
proof.

Lemma 3. For 0<λ<1 and x≥41,

x1−λ
(

1− 1

log x

)
≤
∑
p≤x

log p

pλ
≤ 1.01624

1− λ
x1−λ.
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Proof. By partial summation,∑
p≤x

log p

pλ
=

∫ x

2−

dθ(u)

uλ
=
θ(x)

xλ
+ λ

∫ x

2

θ(u)

uλ+1
du,

where θ(x)=
∑

p≤x logp. The lemma follows from (3.16) and (3.32) in Rosser
and Schoenfeld

x

(
1− 1

log x

)
< θ(x) for x ≥ 41

and

θ(x) < 1.01624x for x > 0.

For a set A of integers, let P(A) denote the set of primes that divide
some member of A.

Lemma 4. Let A be an lcmk-primitive set with k≥ 2. If |P(A)| ≤ k, then
|A|≤|P(A)| and for all λ≥0,∑

n∈A
n−λ ≤

∑
p∈P(A)

p−λ.

Also, if k< |P(A)|<2k, then |A|≤|P(A)|+1.

Proof. Let vp(n) denote the exponent on p in the prime factorization of

n, so that pvp(n) ‖ n. For each p ∈ P(A) let np be the element n ∈ A with
vp(n) maximal (breaking ties arbitrarily), and let A∗={np : p∈P(A)}. Thus
|A∗|≤|P(A)|.

Suppose |P(A)| ≤ k. Then any n ∈ A \A∗ would satisfy n | lcm(A∗),
contradicting A as lcmk-primitive. Thus, A∗=A and |A|≤|P(A)|≤k. Next,
|A|≤k implies each n∈A has n - lcm(A\{n}). Thus, each n∈A has a prime
factor p with vp(n)>vp(m) for all m∈A\{n}, so the map, call it f , where
f(n)=p |n is injective on A. Hence, we conclude∑

n∈A
n−λ ≤

∑
n∈A

f(n)−λ ≤
∑

p∈P(A)

p−λ.

Also, suppose N = |P(A)|, k < N < 2k, and there exist distinct n,n′ ∈
A\A∗. Without loss of generality, the subset P ={p∈P(A) : vp(n)≥vp(n′)}
contains at least half of the primes in P(A), i.e., |P |≥dN2 e. Hence

n′ | lcm({np : p /∈ P} ∪ {n}),

which is an lcm of 1+N−dN/2e elements. Clearly, this number is at most
k, thus contradicting A as lcmk-primitive. This implies |A|≤N+1.
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3. Theorem for k-primitive sets

In this section we prove Theorem 2. Recall the numbers λk in Lemma 2. By
that lemma it suffices to prove the following theorem.

Theorem 5. Let A be a k-primitive set. For each k≥1 we have

(3.1)
∑
a∈A
a≤x

a−λk ≤
∑

p∈P(A)
p≤x

p−λk

for any x>1.

Since λ1=1.2,λ2=0.8, the theorem holds for k=1,2, so we may assume
that k≥3 and that the theorem holds for (k−1)-primitive sets.

We partition A into primes S and composites T . Note by primitivity, the
primes in S and P(T ) are disjoint. We thus may cancel the contribution of
p∈S from both sides of (3.1) and so reduce Theorem 5 to the case A= T
where every member is composite.

For a prime p, let Tp={t∈T : p | t}. We may assume that

(3.2)
∑
t∈Tp

t−λ > p−λ for all p ∈ P(T ),

since if this fails for some p, the theorem for T\Tp implies the theorem for T .
An immediate consequence is that

(3.3) |Tp| ≥ 2 for all p ∈ P(T ).

Further, it suffices to assume that P(T ) consists of an initial list of primes,
say

P(T ) = P ∩ (1, Y ] for some Y ≥ 2.

Indeed, if not, suppose q is the smallest prime outside P(T ), and let p∈P(T )
be the smallest prime with p>q. Then by (3.2),

0 < (p/q)λ

∑
t∈Tp

t−λ − p−λ
 ≤ ∑

t′∈T ′q

(t′)−λ − q−λ,

where T ′ is the (k-primitive) image of T under the automorphism of N
induced by swapping q ↔ p. Hence, the proof for T will follow from that
of T ′.

For an integer t> 1 let Q(t) denote the largest prime power factor of t,
which is possibly a prime to the first power. We first handle those t∈T with
Q(t)<tθ for an appropriate choice of θ.
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Lemma 5. Let k≥2 and let 0<θ≤1/k. Suppose T is lcmk-primitive with
Q(t)<tθ for each t∈T . Let z≥2, and let N(z) be the number of members
of T up to z. Then

N(z) ≤ z
1
k
+θ.

Proof. If t≤ z1/k, let m1(t) = t. Now suppose that t>z1/k and decompose
t = q1q2 · · ·qr into its prime powers q1 > · · · > qr. By assumption, q1 < tθ.
Consider q1 · · ·qj≤z1/k with j maximal. Then m1(t) :=q1 · · ·qj+1 lies in the

interval (z1/k,z1/k+θ]. In this way we may split t into lt≤k pairwise coprime
factors

(3.4) t = q1q2 · · · qr = m1(t) · · ·mlt(t)

with each mi(t)≤z1/k+θ.
Now observe each t∈T has some factor mi(t) which is distinct from all

other factors mj(s), s ∈ T \ {t}. Indeed, if not, then each factor of t has
mi(t)=mji(ti) for some ti∈T \{t} (not neccessarily distinct). And since the
factors mi(t) are pairwise coprime,

t = m1(t) · · ·mlt(t) | lcm[t1, . . . , tlt ],

contradicting T as lcmk-primitive.
Hence we have a one-to-one map g : T →N via g(t) =mi(t). And since

mi(t)≤z
1
k
+θ, we conclude |T |= |g(T )|≤z

1
k
+θ.

We now fix a choice for θ=θk. Let

θk =
1

pk
for k 6= 3 and θ3 =

1

8
.

Further, let νk=1/θk, so that

νk = pk for k 6= 3 and ν3 = 8.

With these choices we have

λk = 2.4
∏
j≤k

(1− θj).

Note that if Q(t)<tθk , then t must have at least νk+1 distinct prime factors.
Let P (t) denote the largest prime dividing t, so that

pνk+1 ≤ P (t) ≤ Q(t) < tθk which implies t > pνkνk+1.
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Thus, with θ=θk, ν=νk, and λ> 1
k +θ,

(3.5)
∑
t∈T

Q(t)<tθ

1

tλ
=

∫ ∞
pνν+1

λ

z1+λ
N(z) dz ≤ λ

λ− 1
k − θ

p
−ν(λ− 1

k
−θ)

ν+1 ,

by partial summation and Lemma 5.

Lemma 6. Let k ≥ 2 and let T be an lcmk-primitive set of composite
numbers. Decompose T =T ′∪T ′′, where t∈T ′′ if there exists another s∈T
with Q(t) |s; else t∈T ′. Define the map f : T→N via

f(t) =

{
Q(t) t ∈ T ′

t/Q(t) t ∈ T ′′.

Then f is one-to-one and f(T ) is an lcm(k−1)-primitive set. Further, the
members of f(T ′) are pairwise coprime proper prime powers.

Proof. First, the map f is one-to-one. Indeed, suppose f(t) = f(t′) for
some t, t′ ∈ T . If t ∈ T ′, then Q(t) - t′, in particular, f(t) = Q(t) 6= f(t′) ∈
{Q(t′), t′/Q(t′)}. Similarly, if t∈T ′′, then Q(t) | s for some s∈T \{t}. Thus
1=gcd(Q(t), t/Q(t))=gcd(Q(t), t′/Q(t′)) implies

t = Q(t) · t

Q(t)
= Q(t) · t′

Q(t′)

∣∣∣ lcm[s, t′].

Thus lcm2-primitivity of T forces t= t′. Hence f is indeed one-to-one.
Next suppose f(T ) is not lcm(k−1)-primitive. Then there exist t∈T and

t1, .., tk−1∈T \{t} such that

f(t) | lcm[f(t1), . . . , f(tk−1)].

If t∈ T ′, then f(t) =Q(t) is a prime power, so by above Q(t) | f(ti) for
some index i. Thus Q(t) | ti∈T \{t}, which contradicts t∈T ′.

Similarly, if t ∈ T ′′, then Q(t) | s for some s ∈ T \ {t}, and so
1=gcd(Q(t), t/Q(t)) gives

t = Q(t) · t

Q(t)
= Q(t)f(t)

∣∣∣ lcm[s, t1, . . . , tk−1]

contradicting T as lcmk-primitive. Hence f(T ) is indeed lcm(k−1)-primitive.
That the members of f(T ′) are pairwise coprime follows from f(T ′) being a
primitive set of prime powers. That the members of f(T ′) are proper prime
powers follows from the fact that if Q(t) is prime, then by (3.3), TQ(t) has
at least 2 elements, and so t∈T ′′.
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Let Tθ = {t∈T : Q(t)≥ tθ}. We apply Lemma 6 to T =Tθ. Thus, by the
induction hypothesis on the lcm(k−1)-primitive set f(Tθ), for λ′ :=λk−1 =
λk
1−θ we have

∑
t∈Tθ

f(t)−λ
′

=
∑
t∈T ′

Q(t)−λ
′
+
∑
t∈T ′′

(
t/Q(t)

)−λ′
=

∑
d∈f(Tθ)

d−λ
′ ≤

∑
p≤Y

p−λ
′
.

Now if Q(t) ≥ tθ, then t/Q(t) ≤ t(1−θ) so that t−λ ≤ (t/Q(t))−λ/(1−θ) =
(t/Q(t))−λ

′
. Thus by the above,

∑
t∈Tθ

t−λ =
∑
t∈T ′

t−λ +
∑
t∈T ′′

t−λ ≤
∑
t∈T ′

Q(t)−λ +
∑
t∈T ′′

(
t/Q(t)

)−λ/(1−θ)
≤
∑
t∈T ′

(
Q(t)−λ −Q(t)−λ

′)
+
∑
p≤Y

p−λ
′
.

Thus,

(3.6)
∑
t∈Tθ

t−λ −
∑
p≤Y

p−λ <
∑
p≤Y

(
(p−2λ − p−2λ′)− (p−λ − p−λ′)

)
=: S(Y ),

using that f(T ′) is a set of pairwise coprime proper prime powers and P(T )⊂
[1,Y ]. Note that from Lemma 4 we may assume that Y ≥pk.

Claim 1. The sequence S(pj) for j≥ k is decreasing, so if S(pk)< 0, then
S(Y )<0 for all Y ≥pk.

Indeed, the terms in S(Y ) are of the form h(y,z)=y−z−(y2−z2), where
y = p−λ

′
and z = p−λ. Note that h(y,z) = (y− z)(1− (y+ z)) and we have

0<y<z. Further, p−λ≤ 1
3 for p≥pk and k≥3, which follows from Lemma

2 and a short calculation. Thus, for p≥pk, the terms in S(Y ) are negative,
establishing Claim 1.

Claim 2. For k ≥ 3 we have S(pk) < 0 and for k ≥ 200 we have S(pk) <
−0.015/ logpk.

We verify this directly for 3≤ k≤ 199, so assume now that k≥ 200. Let
F (λ)=

∑
p≤pk(p−2λ−p−λ) so that S(pk)=F (λ)−F (λ′). By the mean value
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theorem, there exists some ξ∈(λ,λ′) with

F (λ)− F (λ′) = (λ− λ′)F ′(ξ) = (λ− λ′)
∑
p≤pk

(
p−ξ log p− 2p−2ξ log p

)
= −θλ′

∑
p≤pk

(
p−ξ − 2p−2ξ

)
log p

< −θλ′
∑
p≤pk

(
p−λ

′ − 2p−2λ
)

log p.

Recall that θ=θk, λ=λk, and λ′=λk−1. Using Lemma 3, we thus have

S(pk) = F (λ)− F (λ′) < −θλ′
(
p1−λ

′

k

(
1− 1

log pk

)
− 2.03248

1− 2λ
p1−2λk

)
= −λ′p−λk

(
pλ−λ

′

k

(
1− 1

log pk

)
− 2.03248

1− 2λ
p−λk

)
.

We use 1−2λ>0.587, pλ−λ
′

k >1−1/pk, and e−1.5<p−λk <e−1.45, which follows
from Lemma 2, to get

(3.7) S(pk) < −
0.015

log pk
, for k ≥ 200,

completing the proof of Claim 2.
By (3.5) and (3.6),

(3.8) Iλ =
∑
t∈T

Q(t)<tθ

t−λ+
∑
t∈T

Q(t)≥tθ

t−λ−
∑
p≤Y

p−λ <
λ

λ− 1
k − θ

p
−ν(λ− 1

k
−θ)

ν+1 +S(Y ).

Note though that if Y <pν+1, then the first term does not appear, so Claims
1 and 2 prove that Iλ < 0. So, assume that Y = pν+1 in (3.5). We check
numerically that Iλ<0 for 3≤k≤199.

It remains to show that Iλ<0 for k≥200. Note that if k≥200, then

λ− 1

k
− θ > 1.4

log pk
,

λ

λ− 1
k − θ

< 1.05,

using Lemma 3. Thus,

λ

λ− 1
k − θ

p
−ν(λ− 1

k
−θ)

ν+1 < 1.05p
−1.4pk/ log pk
pk+1 < 1.05p

−1.4pk/ log pk
k = 1.05e−1.4pk .

As a function of pk this expression is much smaller than 0.015/ logpk, in
fact, this is so for pk ≥ 5. Thus, (3.7) shows that Iλ < 0 for k ≥ 200. This
completes the proof.
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4. Theorem for lcm k-primitive sets

In this section we prove Theorem 3. The proof largely follows from the proof
for k-primitive sets in the previous section. In fact, the only difference is that
we start the induction at k=2 rather than k=3. By Lemma 2 it suffices to
prove the following theorem.

Theorem 6. Recall the numbers µk in Lemma 2. Let A be an lcmk-
primitive set. For each k≥1 we have

(4.1)
∑
a∈A
a≤x

a−µk ≤
∑

p∈P(A)
p≤x

p−µk .

for any x>1.

First note that since τ1<8/7=µ1, the theorem holds at k=1, so we may
assume that k≥2 and the theorem holds for lcm(k−1)-primitive sets.

Next note that the various reductions we made in Section 3 hold here,
as well as Lemmas 5 and 6. Here we have

θk = 1/pk for k 6= 2, θ2 = 1/8,

so that for all k≥1,

µk =
16

7

∏
j≤k

(1− θk).

Let νk = 1/θk, so that νk = pk for k 6= 2 and ν2 = 8. With these new values,
we continue to have (3.5) recorded anew as follows:

(4.2)
∑
t∈T

Q(t)<tθ

1

tµ
=

∫ ∞
pνν+1

µ

z1+µ
N(z) dz ≤ µ

µ− 1
k − θ

p
−ν(µ− 1

k
−θ)

ν+1 ,

where µ=µk, θ=θk, ν=νk.

We have the analogue of (3.6), where λ is replaced with µ=µk and λ′ is
replaced with µ′=µk−1. In addition, we continue to have Claim 1, checking
that p−µ≤ 1

3 for p≥pk.
However, Claim 2 needs to be verified. As before, we check that S(pk)<0

for 2≤k≤199. Following the argument for k≥200, we have 1−2µ>0.528,
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pµ−µ
′

k > 1− 1/pk, and e−1.7 < p−λk < e−1.65, again following from Lemma 3.
Thus,

S(pk) < −
1.65e−1.7

log pk

((
1− 1

pk

)(
1− 1

log pk

)
− 2.03248

0.528
e−1.65

)
< − 0.035

log pk
, for k ≥ 200.

This is somewhat stronger than Claim 2.

We have the analogue of (3.8):

(4.3) Iµ <
µ

µ− 1
k − θ

p
−ν(µ− 1

k
−θ)

ν+1 + S(Y ),

where the first term does not occur if Y < pν+1. Our goal is to show that
Iµ < 0. Thus, by Claims 1 and 2, we may assume that Y = pν+1. We then
check numerically that the bound in (4.3) is negative for 2≤k≤199.

To show that Iµ<0 for k≥200, note that

µ− 1

k
− θ > 1.6

log pk
,

µ

µ− 1
k − θ

< 1.05

in analogy to what we had before. Thus,

µ

µ− 1
k − θ

p
−ν(µ− 1

k
−θ)

ν+1 < 1.05e−1.6pk ,

which is again smaller than 0.015/ logpk. Hence Iµ < 0 for k ≥ 200, which
completes the proof.

5. Theorem for strongly k-primitive sets

In this section we prove Theorem 4.

As in Section 3 we may assume that A=T consists of composite numbers,
for each p ∈P(T ) we have |Tp| ≥ 2, and P(T ) consists of all of the primes

up to some point Y . Note that since τ
(s)
k ≤ τk for all k, Theorem 4 follows

from Theorem 5 when k ≤ 38. Thus, in the sequel, we assume that k ≥ 39
and that the theorem holds for k−1.
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For k≥39, let

λ = λk =
3 log k

k
, θ = θk = 1− λk

λk−1
.

A simple calculation shows that

ν = νk :=
1

θk
>

k log(k − 1)

log(k − 1)− 1
> k.

Recall that P (t) denotes the largest prime factor of t. Let

T0 = {t ∈ T : P (t) < tθ}.

We now prove a version of Lemma 5 dealing with T0.

Lemma 7. Let N0(z) denote the number of t∈T0 with t≤z. Then

N0(z) ≤ z
1
k
+θ.

Proof. Let t∈T0, t≤ z. If t≤ z1/k, let m1(t) = t. Otherwise, say the prime
factorization of t is p1p2 · · ·pr, where p1 ≥ p2 ≥ ·· · ≥ pr. Let j be minimal
with p1 · · ·pj > z1/k. Since all of these primes are at most tθ ≤ zθ, we have

m1(t) :=p1 · · ·pj≤z
1
k
+θ. Continuing in this fashion we obtain a factorization

t = p1p2 · · · pr = m1(t)m2(t) · · ·mlt(t), lt ≤ k, each mi(t) ≤ z
1
k
+θ.

We claim that each t has at least one factor mi(t) that does not appear in the
analogous factorization for any other t′∈T0. Indeed, if each mi(t) =mji(t

′
i)

for some t′i ∈ T0 \ {t} with ji ≤ lt′i , then t | t′1t′2 · · · t′lt , contradicting T0 as

strongly k-primitive. By mapping t to such a unique factor mi(t) we obtain

a one-to-one function from T0 to the integers in (1,z
1
k
+θ], so proving the

lemma.

Because of the change in the definition of N(z) we do not have (3.5).
Instead, we argue as follows. Note that every member of T0 has at least dνe
prime factors, counted with multiplicity. Thus, the least element of T0 is at
least 2ν . In addition, the second smallest member of T0 must be at least 3ν .
Indeed, if there are two members smaller than this, then P (t)< tθ implies
they are both powers of 2, and hence T0 is not primitive. More generally,
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using Lemma 4, T0 has at most j members smaller than pνkj+1 for each j≤k.
Thus,

(5.1)

∑
t∈T0

1

tλ
<
∑
j≤k

1

pνλj
+

∫ ∞
pνk+1

λ

z1+λ
N0(z) dz

<
∑
j≤k

1

pνλj
+

λ

λ− 1
k − θ

p
−ν(λ− 1

k
−θ)

k+1

by partial summation and Lemma 7.
In the next lemma we give a variant of Lemma 6 in a more general setting.

Lemma 8. Let k≥ 2 and let T be an arbitrary strongly k-primitive set of
composite numbers such that for each prime p∈P(T ), |Tp|≥2. Then the map
f : T→N given by f(t)= t/P (t) is one-to-one and f(T ) is (k−1)-primitive.

Proof. Suppose t, t′ ∈ T , t 6= t′, and f(t) = f(t′). Since |TP (t)| ≥ 2, there is
some s∈T \{t} with P (t) |s. Then

t = P (t) · t

P (t)
= P (t) · t′

P (t′)

∣∣∣ st′,
contradicting T as strongly 2-primitive. Thus, f is one-to-one.

Next, suppose that f(T ) is not strongly (k−1)-primitive, so that there
are t, t1, . . . , tk−1 in T with t /∈{t1, . . . , tk−1} and

f(t) | f(t1) · · · f(tk−1).

With P (t) | s, s 6= t as above, we have t | s · t1 · · · tk−1, contradicting T as
strongly k-primitive. Thus, f(T ) is strongly (k−1)-primitive, and the proof
is complete.

Let Tθ = T \T0 = {t ∈ T : P (t) ≥ tθ}. We apply Lemma 8 to T , and so
restricting the injection f to Tθ, we have f(Tθ) as a (k− 1)-primitive set.
Further, every t ∈ Tθ has f(t)≤ t1−θ. Thus, t−λ ≤ (t/P (t))−λ/(1−θ) and by
the induction hypothesis on the (k−1)-primitive set f(Tθ),∑

t∈Tθ

t−λ ≤
∑
t∈Tθ

(
t/P (t)

)−λ′
=

∑
d∈f(T ′θ)

d−λ
′ ≤

∑
p≤Y

p−λ
′

for λ′ :=λk−1= λk
1−θ .
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By way of (5.1), this allows us to replace (3.8) with

Iλ =
∑
t∈T

t−λ−
∑
p≤Y

p−λ <
∑
p≤pk

p−νλ+
λ

λ− 1
k − θ

p
−ν(λ− 1

k
−θ)

k+1 +
∑
p≤Y

(
p−λ

′−p−λ
)
,

with the goal as before to show that Iλ<0.
By the mean value theorem, there is some ξ∈(λ,λ′) with∑

p≤Y

(
p−λ

′ − p−λ
)

= −(λ′ − λ)
∑
p≤Y

log p

pξ
< −λ′θ

∑
p≤Y

log p

pλ′
.

Since by Lemma 4 we may assume that Y ≥ pk+1, it suffices, by Lemma 3,
for us to show that

(5.2)
∑
p≤pk

p−νλ +
λ

λ− 1
k − θ

p
−ν(λ− 1

k
−θ)

k+1 < λ′θp1−λ
′

k+1

(
1− 1

log pk+1

)
.

Now νλ>3logk, so that∑
p≤pk

p−νλ < 2−3 log k + (k − 1)3−3 log k < k−2 + k · k−3 = 2k−2.

Using k≥39 we see that ν(λ− 1
k−θ)>3logk−2 and λ/(λ− 1

k−θ)<1.23, so
that

λ

λ− 1
k − θ

p
−ν(λ− 1

k
−θ)

k+1 < 1.23p
−(3 log k−2)
k+1 < k−2.

So the left side of (5.2) is less than 3k−2. We now get a lower bound for the
right side. Using k≥39, we have λ′θ>2(logk)/k2 and pλ

′
k+1<4.4. Thus,

λ′θp1−λk+1

(
1− 1

log pk+1

)
> 0.79

2 log k

k2
pk+1/4.4

>
0.36pk+1 log k

k2
>

0.36 log2 k

k
,

using that pk+1>pk>k logk. We do indeed have 3/k2<0.36(log2 k)/k when
k≥39, so we have (5.2), and the theorem.
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