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forms, Publ, Math, Soc, Japan 11, Princeton University Press,

"Round" numbers are defined in Hardy and Wright [ 47, p. 358 as
Princeton 1971, integers with an abnormally large number of prime factors. Of course,
this is not a precise mathematical definition. One reason is that there
10 I, M, Vinogradov, The method of trigonometrical sums in tne are two natural ways of counting the number of prime factors of an inte-
. : 1tiplici a wi . ;
Theory of numbers, London, Interscience, 1947, ger: with multiplicity and without. We write
Q(n) = Y1, wm) o= 71
a
p°in pin
where p denotes a prime and a denotes a positive integer.

The normal behavior of Q{(n) and w(n) are the same. A famous

- result of Hardy and Ramanujan is that for each € > 0 the set of
V. Kumar Murty 1t of d d j ['3] is th
School of Mathematics n  for which
Tata Institute of Fundamental Research
Homi Bhabha Road 1/2 +
Bombay 400 005 |2(n) - loglog n| > (loglog n)/?7¢

or

lu(n) - loglog n| > (loglog n) 1/2+e

has asymptotic density 0. However, the maximal orders are different.

Trivially we have

log n
2(n) < Tog 2

and from the prime number theorem we have

*Supported in part by a National Science Foundation grant.
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~{n) < ~(log n) + O tog n —)
exp (v1loglog n)

log n log n
m + (1 + o(1)) ———2F—

(loglog n)2

(of course, the expansion can be taken further). These upper bounds

are the true maximal orders for (n) and wi{n).

To study, then, the distribution of round numbers, one should look

at the functions

N(x,y) =

J=1

n<x, 2 (n) =y

1,
n<x, w(n) =y

“(x,y)

Il

where y denotes a natural number that is considerably bigger than

loglog x.

There is much known about these functions when vy is of the order

The situation for N(x,y) for

is now very good due to a recent result of Nicolas who obtains
an asymptotic formula for N(x,y)

of magnitude of 1loglog x or smaller.
all vy

for each integer y > (2+¢)loglog x.
We will describe these results below.

The situation for =({x,y) for large <y is much poorer. This is
partly due to the fact that numbers round in the Q{(n)

ally divisible by a large power of 2,

sense are usu-
while numbers round in the w(n)
sense are divisible by many different primes.

Thus the study of N(x,y)
for large vy

almost reduces to a study of the multiples of large powers

of 2, while the situation with w(x,y) is not so simple. It is my

goal in this paper to establish new upper and lower bound inequalities

for 7w(x,y) for large vy that begin to pin down this function.

Before stating the principal results,
known about w(x,y) and N(x,y). For

Landau [ 6] proved in 1900 that

let us first review what is

y a fixed positive integer,
x {(loglog x) Y1
W(Xry) ~ N(le) ~ 'log—x : TL—)-'—— as X > o

The same result was obtained by Erdds [ 1] for those y with

y - loglog x = 0(Yloglog x)
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i 7 d
Asymptotic formulae for a wider range were obtained by Sathe [10] an

gelberg [11]. Let

1 p z _ 1.z )

(1.1) F(z) = Ti+z) g\l + p-—l)(l p)
1 " _z, -1 1.z '

i) = Ty 10T TR

i at
where the products are over all primes. Note that G(z) has poles
the primes, but F(z) 1is defined everywhere. The Sathe-Selberg re-
sults are that for any B > 0 we have uniformly for X 2 3 and
1<y < B loglog x

v-1

% (loglog x) Y=Ly 1 +0¢ b ))
(1.2) 7(x,¥) = {55 % ° (y-1)! loglog x

and that for any < > 0, we have uniformly for x > 3 and

1 <y < (2 - ¢}Yloglog X,

-1
x . (loglog x)Y (———X:l——)(llko( Y )
N(x,y) = log x (y-1)! loglog x (loglog x)
i ic formula for N(x,y) for
Selberg went on to give an asymptotic

(2 +e¢)loglog x <y < B loglog x , stating that the two results could

i 7
be blended together for y ® 2 loglog x. Nicolas's new result [ 71
is valid for (2 +€)loglog x < y < log x/log 2:

b 3x
Cx X i)
NOy) = =5 log ;§<l + 0(log” —3))
2
where b < 0 and
1 1
C = = T (l + p_T_—P‘2)) .

p>2

i t of
Very little is known about T7(x,y) if y/loglog x > <. Par
the basic landscape 1is the Hardy-Ramanujan [ 3] inequality: there

are absolute constants cl, c2 with

. -1
(loglog x-+cz)y
(1.3) T(x,¥) £ ¢y Yog x y-1) ¢ !

. . . -
This inequality can be proved by induction and without the prime nu

i i i i - there
ber theorem. A very nice feature of (1.3) is 1its universality t
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are essentially no restrictions placed on x and Y.

To complement (1.3) with a lower bound we have an argument of
Erdés and Nicolas [ 21. Let N{(t) denote the product of the first ¢t
primes. Then evidently « (pN(y-1)) =y for any prime P F o N(y-1).

Thus we have

X

(1.4) “(x,v) "(W_—l—)) -y +1
It is perhaps surprising that (1.3) and (l1.4) , by some mea-
sures, are close together for some ranges of the variable y. For ex-

ample, in [ 2] it is shown that if 0 < c < 1 1is fixed, then

) Cxey) = xiTereld)

2 as x > @
y>c log x/loglog x

The proof uses (l.4) and an inequality slightly weaker than (1.3).
Similar results, sometimes for generalizations of m(x,y) that count
restricted kinds of prime factors are obtained in [ 9].

In Kolesnik and Straus [5 ] an "asymptotic formula" is given for
m(x,y) valid for vy < (log x)3/5“E unconditionally and for
y < (1/2 -€)log x/loglog x assuming the Riemann Hypothesis. The func-
tion they prove asymptotic to m(x,y) is a sum of many terms, the
number of terms depends on the choice of x and y , and the terms are
not all of the same sign. It is not clear which, if any of the terms,
gives the main contribution. The only thing guaranteed in the theorem
is that for the stated range the error term is o{r(x,y)). Thus with
this result it is impossible to tell which of (1.3) and (1.4) is

nearer to the truth at y = [/log x] , say.

Recently, Nicolas and Tenenbaum [8] discovered the elegant inequalitY

x(log x +k -l)k_l
(k-1)!

It <

n<x

valid for all x > 1 and all integers k > 2. The function Tk(n) is
defined as the number of ordered k-tuples ayre..a

" of positive inte~

gers with a -3, = N Thus Tz(n) is the usual divisor function.

1"
The proof of the Nicolas-Tenenbaum inequality can be seen easily by an
induction argument. The interest here is that it is easy to show that

kw(n) < rk(n) , so that

A

k-1
(1.5) Tix,y) < kY ) Tk(n) x(log x +k ~-1)
n<x kY (k-1) !
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for any integer k Z 5. oOne can then choose k s0O as to minimize the
right side of (1.5}, obtaining an upper bound for T (x,y) that is
superior to (1.3) for vy > (loglog x)l+E.

The principal results of this paper are also inequalities for

7({x,y). Let
L = L(x,y) = loglog x - logy - loglog y

We show that uniformly for x 2 3 and integers y with

2 log X
(1.6) {loglog Xx) 2 Y I I 1og1og X
we have
> log L 1,1
(1.7) Tx,y) = gy exply(log L+ =23 =+ o(pn)

We also show that uniformly for x > 3 and y with

_ c log x 1 1

(1.8) y = [loglog X] ’ 3 el loglog x '
we have
(1.9) fix,y) = =(1-o)¥ explo(y)} .

Y

Y
Also, for

y > log x _ log x
- 1loglog x (loglog x)2

we have
(1.10) m(x,y) < explo(y)l .

The methods for proving (1.7) could be stretched for smaller
values of y than given by (1L.6) , but the proof gets messier as Yy
gets smaller. Using an idea of Nicolas to introduce a factor 1/log X,

one can prove by these methods that

m(x,¥) expl{y(log L + l—O%—L + o(%))}

. S
y!log x

for integers Yy with




s
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, l+¢ log x
{loglo < v < —. =09 X
glog x) =Y 203 loglog x

for any fixed = > 0. The implied constant depends on the choice of
- S ~ S 2
€. Note that for y > (loglog x)° , the factor 1/log x may be absorbed

into the error factor expf{O{y/L)}.

To see the quality of the new inequalities (1.7), (1.9), and
(1.10), some comparisons are now made with (1.3), (1.4), and (1.5).
c .
For y = [(loglog x) 1, ¢ > 2 fixed, (1.3) and (1.4) give {(using

log2x = loglog x, etc.)

5? exply(-log,x + O(1))} <  7(x,¥)
< X exply(log,x + O(——L—ﬂ)}
- y! 3 loq2X !
(1.5) gives
(c-1)1log,x
Tix,y) < o % - 3 L)y
vl o2 g exply (log,x Tog,% O(log R
2
and (1.7) gives
(c-1)log.x +1log,x
Tix,y) = X exply(l - 3 4 )
Y y! exply ( 0g4¥ logzx * O(logzx))f
For v = [(log x)], 0 < c < 1 fixed, (1.3) and (1.4) give
X
7T exp{y(-log3x +0(1))} < 7m(x,y)
< X 1
< T exp{y(log3x + O(logzx))} ,
(1.5) gives
T(x,y) < = exply(log,x + log(l- iigéi
' ST B g c) + O(log X))} ’
2
and (1.7) gives
X
T(x,y)}) = §T exp{y(log3x + log(l-c) + O(Iaé—z))}
2

For y = [c log x/loglog x] , 0 < c <1 fixed, (1.3) and (1.4)
give
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xl_c expiO(y)} < T7(x,¥) ¢ <€ expiy (2 logyx + oy

ot

(1.5) gives

l1-c¢

n{x,y) < X exp{y(logBX + O(log4x))} ,

and (1.7) and (1.9) give

1-c

T (x,y) = X expfy(log3x + 0(1)) >

Finally at vy = [log x/loglcyg x] , (1.3) and (1.4) give
explOo(y)) < ~(x,y) < exp{Oly 1og3x)} ,
(1.5y gives
m{x,y) < exp{O(y log4x)} ,
and (1.10) gives

m(x,y) < explo(y)}

One question which can be partially answered here is the issue of
the range of y for which (1.2) is valid. This equation has been
proved only when y < B loglog x where B is an arbitrary but fixed
constant. However, the right side continues to make sense for larger
values of y and one might wonder how close an approximation it gives
for large y. From (1.7) there is a constant ¢, > 0 such that (1.2)
ig false for all y 2 exp(co/TEETEE—E). It is probable that a refine-
ment of the proof of (1.7) would show (1.2) 1is false for all
y > exp(e/Ioglog x) for any fixed ¢ > 0, but we do not undertake

this project here.

§2. The basic ideas.

Underlying our results in the subsequent sections are some essen-
tially simple combinatorial methods. 1In this section these basic ideas

are described.

e ST N AT
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In sections 3 and 4, instead of directly estimating

, . T(x
we lnstead estimate the function e

S

It is trivial
ivial to pass from an upper bound for s(x,y) to one for 71( }
T (x,y

via the inequality

(2.1) T(x,y) < Xs(X,y)

We can also use lower bounds for s(x,vy):

Proposition 2.1 If x 1is ici
L1, f suffici i i
o ently large and y > 0 1is an integer,
(x,y) > 1 X
84 - 3y log x S(3 log x ' y-1) .
Proof. We have for x

sufficiently large

Ty = oy ] 7 1
mex pa<x/m
w(m)=y-1 (p,m)=1
1
z v l (m(x/m) - (y-1))
m<x
w(m)=y-1
1
2 Z T(xX
2y m<x/3 logx /m
w{m)=y-1

X X
2 3y Togx 3 Tog =’ ¥ »

which establishes the proposition.
An upper bound for
inequality

s(x,y) 1is evidently obtained from the

(2.2) s(x,y) < | aZ p ¥ y1 o,

pU<x

and f i i imi
rom this an estimate similar to the Hardy-Ramanujan inequality

1.3 i i
( ) can be derived. There is waste in the inequality (2.2) from

several sources (6]
- n such sou ha sgqua ree
e rce 1s t t the uare-f

terms

—-_————-———--—--------—-___—_—___—-—-_—-—_________"-"'--I....F-————————*f
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formed by using the multinomial theorem to expand the right side of
W‘(I'l) =Y.

occurs this way, but many larger values of n

(2.2) are reciprocals of integers n with Every n with

n < X and «(n) =Y
also occur.

This source of error can be ameliorated by partitioning the inter-
val (1,x]. If w{n) = vy, then the number of pahn with

pa > <W/Y is at most vy/w.

n < x and

Thus, for any choice of w > 1 we have

S(le) i z l_l‘_( z p—a)l (_y':lT)—|( E p—a)y_l
O<icy/w T “/y:pa/x ! pa<xw/y

and choosing w optimally gives an estimate that is much better than

(2.2).
Continuing with this idea, we partition (1, %]

It turns out that the interval which gives
l/y]

into many intervals

and obtain finer estimates.

the principal contribution is ({y,x Note that

) p & = 1loglog x - log y - loglog y + o(l)

y<paixl/y
which explains why it is convenient to state the result (1.7) in

terms of the function L.

A lower bound for s(x,y) can be obtained by examining the expres-
sion
;% « 1 p Y.
yPepext/Y

Using the multinomial theorem to expand the power we find "good" terms
is square-free, w(n) =y, n <X and "bad" terms c/n

is at most 1/2. Since these

1/n where n
where w(n) <Yy
bad numbers n are divisible by the square of a large prime (at least

y2 y, the sum of their reciprocals can be shown to be negligible provided

and the coefficient ¢

-1
) p
y2epzxt/Y

This sum is about L - log 2 and is bounded

This partially explains
why the upper bound in (1.6) (1.7).
Using only this idea, a much better lower bound estimate than (1.4)

We get a slightly better result by also considering

is bounded away from O.
away from 0 if y < (1/2 - €)log x/loglog X.
is needed in the proof of

can be proved.
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contributions from higher intervals.

It is interesting to note that the lower bound estimates we ob-

tain in (1.7 and (1.9) are also valid for the smaller function
o 2
“O(X,y) = i wo{n)
nix,u. (n)=y

oncerning the lower bound in (l1.6) , the methods of this paper
are valid for smaller values of y , say down to 2 loglog x , but the
situation gets more complicated. It may, in fact, be possible to
extend (1.2) somewhat, so it seems reasonable to leave the estimates

for smaller values of y to that line of attack.

Our results are not very good when y 1is larger than
log x/loglog x. It is possible that the methods of [ 2], Theoreml are
applicable here.

An outline of the remaining sections is as follows. In section 3

we establish the lower bound in (1.7) using the attack outlined above.

In section 4 we obtain the corresponding upper bound. In section 5
we prove the lower bound in (1.9) by a different method: we directly
count integers n < x with w«(n) =y, rather than work with the sum
of their reciprocals. In section 6 we establish the upper bounds in
both (1.9) and (1.10) , again by directly counting the relevant

integers.

§3. A lower bound.

In this section we establish a result that is a little stronger

than the lower bound implicit in (1.7).
Theorem 3.1. There is an absolute constant Xg such that for all
X > X and integers y with

0

< log x
- 3 loglog x

’

loglog x(logloglog x)2 <y

we have uniformly

X log L 1
T(x,y) > STTog % exp{y(log L + =+ O(L))}
where L = loglog x - log y - loglog y.
Proof. Let L' =1L + 20 and let k = [log L'] - 2. Let
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1 i-1 i,
1, = (v2, k%% /Yy I, = (x287 /Y y2eTYy eor 1 =0,. .. k-1
Let
Anl l
S (U,V) = ) =
- n
n<u,w(n)=v
p‘n=>p&Ii
Then 1if U_qUge-eUy g < x and v_y + Vo +,.LF Vi1 T Y we have
k-1
(3.1) s(x,y) > 'H si(ui,vi)
i=-1
We apply inequality (3.1) with
u_y < X2e , u, = x2e ’ , for 1 =10,...,k-1
(3.2)
vy o= v=k[y/L'] , vy o= [y/L'] , for i =20,...,k=-1.
Note that if n, is the product of v, primes in Ii , then
necessarily n < us for i =-1,0,...,k-1. To see this, first note
that for i = -1, we have
-1 y-k{y/L"] -1, '
n < (X2e /y) < y2e T-k/L+R/Y) oy
-1 - - - -1
since for x > XO r Y 2 L', For 1 =20,...,k-1, we have
i, [y/L'] i
n < (x2e 8% x2e / = u,
i - - i
Next note that
u_luo...uk_l < x and V_y + Vo +...7F Vel Y -

The second statement is obvious. For the first, we have

Xze‘l +2(e5-1) /(e-1) L

IA

and



184

-1 -2

v 265/ (e~ < 2e7t 4 2e7%e-1Th < 1

by cur choice cf k. It is thus valid to apply the inequality (3.1)
with the choices of ugs Ve given in (3.2).
Consider the expression
15 1)V
vl D
E i
1T p Ii

Multiplying this out, we have a sum of reciprocals of integers n, < uy
where each prime in ny is in Ii and Q(ni) = vy If o is sqguare-
free (so that w‘(ni) = vy ), the coefficient of l/ni is 1. For the (3.4)
non~square-~free ni's , the coefficient is at most 1/2. Therefore that
part of the sum consisting of the non-square-free ni's is majorized by

Lo i, 1 5 1Y%

2 = 20 (v, =2) 1 ¢ P

pEIi p i pEIi
_ 1 <1 Vi? 1
= v _2),( ) 5) O ( )
i ) pEIi vy log y
(3.5)
v
1 1,71
= Of—yre— (] =) )
Vi!109 Y pEIi P and
where the last equality follows from the fact that y < log x/3 loglog X
implies ZpEI 1/p > ¢ > 0 for some absolute constant c¢ for x > X,.
i
This estimate is uniform for i = -1,0,...,k-1.
Therefore we have
v
1 1 1,71
s.(u,,v.) > (1 (o) V)= ] =)
i1’ 1 log vy vt pEIi p
so that from (3.1) we have
k-1 v,
(3.3) st,y) > ¢ I Ao é) i
i=-1 1% p€I.
1 i4.

for some absolute constant c¢ > 0.

We first estimate the factorials in (3.3). By Stirling's formu-

la we have

185
k-1 k-1
log T v.i= vy log vy = V¥ 0(log v, )}
i=-1 * i=-1
K .S ;- Lto- 1)
= v(l - =) (log y + log(l - iT) - 1) + L,(loq Y log
+ 0(k logiy/L) + log ¥)
k } k., _ &k .
=y logy =Yy * v (log {1l - iT) - T log (1l L') o log L')
+ 0(k log(y/L) + log V)
2
k k
= log y! + v(- 7T log L + O(-§ 1)

Next note that by the prime number theorem with error term,

v -cvlog vy
) Lyt o=y - 1+ Ole )
log( 5) = V_q log (L 1 (
p&I_l
= y{(l - g%)log L + 0(k log L) + O(y/L)
k 1
= yilog L - log L + O<f))
kol 1.4 kol -cv (log x)/y))
) ) = o= Y v. log(l + Of(e
i= peT,
S —
- oly e—c»loglog x) = 0(y/L)
pPutting these estimates and (3.4) into (3.3) , we have
1 E l 1.
s(x,y) > 2 exp{y(log L + ¢ * O(L)),
our theorem now follows from Proposition 2.1.
An upper bound for the same range.
In this section we complete our proof of (1.7).
Theorem 4.1. Uniformly for all x > 3 and integers Y

we have

3 satisfying
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K
2 log x K 1 B PR _ N
(loglog x) <y < TIGIE@“; (4.3) I T < exp{‘l (ai a. log ai>
i=-2 1 i=~2
we have K
= exply(l - logy - | o log a;)
“ty) ¢ X expiy(log Lo+ 222 L 4 oh) =2
XY = vl piyd g L L ;
where L = loglog x - log y - loglog y. where we interpret 0 log 0 as 0 should some «y = 0.
Note that
Proof. We may assume x 1s large. Let
7 p ® = loglog y + 0(1) ,
K = [log v] + 1 . pUET_,
Let —c/Tog ¥
T @ - 1og 2 + O(e ' ¥y <1, for x> X4 .
1/2 1 / 1< g 0
=0, v, 1= WM v, 1, =y, <MY A
2 -1 0 €1
P
i-1, i
Ii = (Xe /Y, Xe /Y] for i =1, ,K eToeS
7 e = Lo,
a
Then p EIO
' K a,
1 v 1,71 JTioa X7y
(4.1) sx,y) 2 R ) R iE—Z ai!( agq ) ) p~2 =1+ o0( ¢ (log X)/y) for i=1,...,K
—27 9k P =P a
p €I.
where I' indicates the sum is over all ordered partitions of
. , Therefore
Yy = a_, t.ootoay into non-negative summands where
K -a ai ] 1
(4.2) a_, < (2+ o(1))vy/log vy , a_y; < (1 +o())y/logy, (4.4) _?_2( az P ) < expiving log L + o(i))}
1= p €I
ao K i-1 a,
and vy 1o Yyt oo« Indeed from (4.2) we have
i=1 -
1
. S . o log(loglog y + 0(1)) = O(f) ,
Our strategy is to majorize the summand of I' in (4.1) over -2
all allowable ordered partitions and then multiply this er bound b
P u ply upp y —c/T5§—§)) S
the number of such partitions. o_q log(log 2 + Ofe ’
We let 1
K - -cv/loglog x
e/ (log x) /Y - cvloglog %y _ (3
= a. log(l + Of(e y) = 0Ofe oo
By T Ay 121 .
Using the inequality 1/u! < e , we have Therefore, from (4.3) and (4.4) we have
K
K a. 1
(4.5) I __],-__( y 1,1 < 1 exp{y (o, log L- Z o, logot.i +O(f))} .
: : a,! = a - y! 0 jo-p 1
i=-2 71 a p
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Thus we should consider the maxinum value taken by the expressicn

in
the .'s. We have the
Lemma. Let
K
Fie_ 5 ,LK> = log L - .. log
i=-2
where the oL 0 satisfy the constraints
K X
} <y = 1 and } et <1
i=-2 i=1 *
Then
log L 1
P Py .,cK) < log L + v~%- + O(E)

Before we prove the lemma, we note how the theorem follows almost
immediately from it and (4.5). 1Indeed all we need do is multiply by

,a and this number is

the number of ordered partitions a_?,a_l,... K

majorized by

(Y+1)K+3 = expiO((log y)z)? = explo(y/L)}

To prove the lemma we first show we may take I large. Indeed
when L 1s bounded the only assertion of the lemma is that F 1is

bounded. 2And this assertion is easy to see, since the contribution to

F from the 5y with i > 2 1is at most
7oi-ne M = o .
i>2

In proving the lemma we shall find it convenient to replace F
with a larger function G which has infinitely many variables. This
is really only to streamline the arguments since it is easy to see that
the contribution to F from the ey with 1 > 2 log L 1is negligible.
Let

where each ay > 0,
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(4.6)

Then the maximum value of is at most the maximum value of G

We next note that 1f G attains its maximum value at

(1 2 )  then each a, > 0. We show this for i > 2, the
SIPYE I ORRE 5 . . e
proof of the remaining cases is simpler. SO Suppose i>» 2, 1 0
and RN > 0. Let
. 1, e
e M -t T B
1 _ e
T R 5.1 “i-1 !
P =
*i e Xi-1
x' = na. for j #£0,1i-1,1
J J
Then alz,all,... satisfy the constraints (4.6) and
G(alz,all,... )y > G(u_z,a_l,... ) .

Thus the maximum point of G occurs at an interior point and may

be located by the method of Lagrange multipliers. This method gives

our maximum point the shape

- e = e L o, = e_>‘e_uel-l for 1 > 1.
a_, =0_y T € ;o Gy =€ , : >
The constraints (4.6) give us the equations
e ) .
(4.7) 2+ L+ ) e T o et = .z ele
320 320
and at this point we have
(4.8) Gla_, a_grees ) = A F e

Thus it remains to estimate X + u. First note we may assume
0 <u<1l, for if u>1, (4.7) implies L 1is bounded above (in

fact, (4.7) implies L < O ). Thus we have
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value of 1l/e. at t =

190

t
px -ue
Jo e at + o(1)

t

log 1/ mve g 4 g1

“0

[ Vi1 v owe®at + o

log 1/u + 0(1)

t
t -ue : . .
e e on [0,=) increases to 1ts maximum

log 1/u and then decreases. The value at

1 + log 1/¢ 1is el'e/; Therefore
1-e | - N -
€ < 7 ede™ o [Fefe™ar v o = 0d)
320 g i
so that from (4.7) we have
(4.10) et = %

Thus from (4.7),

large, we have

(4.11)

so that

(4.12) log L

Thus from (4.7), (4.9),

(4.9), (4.10), and our assumption that L is

= log 1/u + 0O(1)

and (4.12) we have

A = log(L + log L + 0(1)) = 1log L + ;2%—2 + O(%)

and the lemma and the theorem now follow from (4.8) and (4.11).

§5. A lower bound for the distribution of rounder numbers.

In this section we establish the lower bound in (1.9)
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Theorem 5.1. There is an absolute constant A such that for

y = [c log x/loglog x] where
1/3 < ¢ < 1 - 1/loglog x
we have uniformly

- A
T{(x,y) > XY Yi1-c)¥ ™Y

Proof. Let T = % log x - loglog x, so that

1 < T < 2 loglog x + o(l)

Let
1
k = [(loglog x)z] -1, o= T ¢ B =
Let
g i
a = 1 - aB™ ,
0 i=1
so that
k
- k
g = 1 - af 15 1-8(-85 > 1-8
We have
X i
(5.1) 0<T- ] iaB" = o(l) (as x + @).
i=1
Indeed
k
T oLaet = ag 1-gk*L = Get1) 81 (1-8)
i=1 (1-8)

T - T8k+l - (k+l)8k+l

. k+1
Thus (5.1) will be proved if we show B8 = o(1/k)

T
T+1 °

as

But
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k+1 , 2 1
log = < (loglog x)~ log(l - E:I)
2
< =(loglogx)“/(T+1)
1
< T3 loglog x + O (1) ,
so that
Jk+1l _
(5.2) S = 0(1/vY1log x) = o(l/k)
Now let
- _ i-1 i
IO = (0, log x] , Ii = (e log x, e log x] for 1i =1, .k
Let
) k
a. = [qely] for i =1 k a.=y - ) a
i ; rrsrmo 0 L i
i=1
Let w(I) denote the number of primes in the interval I. We have
ei log x
ﬂ(Ii) > Cy 1 T Toglog X for i =20,1,...,k
where cl > 0 is some absolute constant.
Say we construct an integer n by choosing a; different primes
in Ii and multiply them all together for i = 0,1,...,k. Then
k i a; k
n < T (e log x) = (log x)¥ exp{ J i ai}
i=0 i=1
< (log x)y eTy = x ,
by (5.1). Also, each such n has w(n) =y. Thus 7(x,y) 1is at
least the number of choices of such n. That is,
k m(I.) k m(I,)\a,
(5.3) m(x,y) > I . > I )t
i=0 a, i=o| %3
i
k c et log x 4
2 I (%+1 1 )
=0 {253 oglog x
k . . y
= exp{izo(—ai log a; +ia;- ailog(l + loglog x))}(cl log x)
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From (5.1) we have
k
k k . ko
(5.4) v ia; = 1 i[agty] = Ty + oly) + 0(.2l i}y = Ty + oly)
i=1 i=1 i=
We now show that
: + O(y)
(5.5) % a. log(i + loglog x) =y logloglog X Yy
i=o *
Indeed, this sum is
k
;
[k/log%og * 5 a. log((j+1)loglog x) + Of ) a;)
rs I . 1 i
3=0 {i/loglog x]1=3J i=0
i<k
7 3 j o (y)
= Y a. logloglog x + |} [ @& log (j+1} + y
= i ¢
i=0
= vy logloglog x + ¥ ) agt log 3 + O(y)
j#0 1
j loglog x] .
= vy logloglog x + Oy ‘;o g3 tog log j) + O()
J

y logloglog x +

i

oly 1 (1—c2)j log j) + O
j#0

»
+

o (y)

y logloglog

is an absolute constant.

where 1 > c2 > 0

Completing the estimate of the right side of we are going

(5.3)

to show that

= - + log T + O(y)
(5.6) - a; log a; y log vy y

“.MW

i=0

But first we note that the theorem will follow immediately from (5.3)-

(5.6) , for we have
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T(x,y) > explyi-log y + log T + T - logloglog x + loglog x + O(1))}

v oY :
= xy “expiy(log T - logloglog x + O(1))}

= xy ¥ expiy log(l/c -1) + O(y)!}

= xv Y1-c)¥exploly)}
To see (5.6) , we first estimate the error introduced by replacing
a, 1 i A
O. o9 a, with Y log(xo y) and a; log a; for 1 =1,...,k with
i et i
aB” ylog (al™ y). If 22t y< 1, then

4 i . ‘
(28T ylog(xely) - a; loga;]l = laB ylog(xe’y)i < 1/e

i
If 2B y > 1, then

[aBi ylog(m%i y) - a; log ai: < 1+ log(ocBi y) < 1+ logy
Thus
(5.7) [}f aBileg(%Bi 7
L ¢ y) - izl a; log ai] = O(k log y) = ofly)

Next
note that ay < ey < a, < ayY + k , so that

5.
(5.8) |d0 ylog(ao y) - a, log aol << k logy = oly).

From (5.7) and (5.8) we have

(5.9 - a. log a = i i i
i log a; = -ajylogla,y) - J aB ylog(aBTy) + oly)

0 i=1

Il o~

i

k

]

i=1

k+1
log a +T log B) + oly)

-y (logy +ag loga, + B loga - B

0

using (5.1). We now use (5.2) and the definitions of our letters
to see that

‘Y(ao(log ao + log y) + .Z ael(log a+1ilogf+logy)) + oly)
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4 log Yy o~ o(1l) , g log x = =-log T + O(1)
SeRtlogag 4 = 022Dy - o), T log g = O(L)
vYiog x
Putting these estimates into (5.9) we have (5.6) and thus the

theorem.

§6. An upper bound for the distribution of the roundest numbers.

In this section we show the upper bound implicit in (1.9) and
also the ineguality (1.10). Although these are stated as separate

results, there is a common proof.

Theorem 6.1. Uniformly for 1/3 < c < 1 - 1/loglog x , we have, with

y = [c log x/loglog X]

T(x,y) < X y-y(l—c)yeo(y)

Uniformly for vy > (1 - 1/loglog x)log x/loglog x , we have

n(x,y) < eO(y)
Procf. Consider the intervals
i-1 i .

I0 = (1, log x} ., Ii = (e log x, e log x] for 1 = 1,2,....k
where k = [log x]. Fix an ordered partition of y into non-negative
summands
(6.1) y = a4 + al +...+ ay
We first count N(ao,...,ak) , the number of n < x with w(n) =y
and 1 = a; for each i =0,.,...,k. In fact we shall get

pln,p€rI,
i
and upper bound for
N = N max . N(ao,...,ak)
0’ "k
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and then multiply N

by the number of ordered partitions (6.1)
which N\ao,...,ak) ~ 0 to obtain an upper bound for ~(x,y).
Define ty for i =0,1,...,k by the equation

,...,ak) to be positive, the ai's must

(6.2)

where M({t) 1is the product of the first

(6.2) , note that if

t primes. To see the

statement in
then

n < x

is counted by N(ao,..

satisfy

1
< ;(log X —(y—ao)loglog x - log M(aOM

latter

-,ak),

a. k -

k .
X > Mla 1 i-1 C 1 = i )
> O)i:l<e log x) = M(ao)exp{izl(l—l)ai vi(log x)

so that (6.2)

We next note that for

immediately follows.

X 2 XO ,

(6.3) a, loglog x - log M(ao) < y(loglog x - log y - loglog y +

Inde i
ed, there is a tO so that for t > tO we have

log M(t) > t(log t + loglog t) .

If x is large enough, then (6.3) is true for aO < tO. For

0
ag 2 ty, we have

a, logl -
0 glog x log M(ao) < ao(loglog x - log ag - loglog ao)

~% Yy log oy + ao(loglog X - log y - loglog ao) .

Since the latter term is increasing in the variable a for
0

(6.3).
small, we assume that x

holds. (6.3) in

2 < i
< aolf y and since —ao log ao < 1/e, we have
Since our theorem is true for x
large, and in particular, that (6.3)

(6.2), we have

Putting

—

k k
(6.4) o, =1 i -
izo i , izl(l Da; < = log x - logy - loglog y + 1

<

1) .

is
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We now prove that if ho’il""’lk are non-negative and satisfy
k k
(6.5) 7 x, =1 and (i-1)2, =T -1,
L i i
i=0 i=1
where T > 1, then
X
(6.6) - ¥ 4, log a, < log T+ 2,
i=0 * T

where we interpret 0 log 0 as 0. The proof is similar to, but easier

than the proof of the lemma in section 4. We use the method of Lagrange

multipliers. The choice of ao,...,uk which maximizes =T @y log ty
either has some ay0= 0 or 1 or there is a * and with
-log 11 -1 = + p(i-1) , 1 = 0,1,...,k

These equations imply the a, are in geometric progression, so there

is an a, B with
(6.7) a, = aBf”, i=20,1,...,k

As in the proof of the lemma in section 4, it is easy to show

that the maximum occurs at a point where all oy satisfy 0 < o; < 1,

so we may assume (6.7) holds. Moreover, it is clear that at the maxi-
mum point we have a4 < &4 Lo. 20y, SO that we have 8 < 1. If B8 =1,
then the a, are all equal to a« and (6.5) implies a = 1/(k+1)
and k(k-1)/2(k+1) =T - 1, so that
- z oy log o; = log(k+l) < 1log T + 1
Thus we may assume 0 < B < 1.
Tt is also clear that the maximum of -I oy log ay increases with

(6.7) 1is an infinite geometric progression.

translates to

k , SO we now assume
Thus (6.5)

1=oa/(1-8), T= ] ia;= a8/ (1-8)% .
i=0

Solving for o and 8 , we have
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Therefore
- T 4 log s, = -7 ai(log s + i log B)

= -log 2 - T log &

= lOg<T+l> - T lOg —E—— < log T 4+ 2

T+1
Thus (6.6) 1s proved.
Let ~'(I) denote the number of prime powers in the interval 1I.
Then for Gy satisfying (6.4) we have
K [ (I.) 21 1
(6.8) Na,, ray) I ) o< o9 x/1ogiod X ]If o tog w/loglog
i=0 a; ag i=1 a;
X a k i
< (T l/avl)(g_jfﬁiji_ 0 q (EL_Jffi_i)ai
i=0 1 loglog x i=1 loglog x
k
_ log x .Y aO X
= I 1/a.!) (—=29 X i
<i=0 /al )(loglog x) 2 exp(izl ] Y)
k
< (I 1l/a 1)(__223_5_ ¥
= UL i) YogTog x) exp(log x ~ y log y - y loglogy+ 2y) .

k k
z l/ai! < .E exp{—ai(log a; - 1)}

It

exp{~-y log vy +y - o. Y log ai}

0 1

I o~ %

IA

exp{-y log y + vy log(% log x - log v - loglog y + 2) + 3y}

from (6.4), (6.5), and (6.6). Putting this calculation into (6.8)
we have

(6.9) N(aO,...,ak) < x-exp{y(loglog x - logloglogx - 2 logy - loglog y
1
+ log(; logx - logy - loglogy + 2) + 5)}

-y 1
< xy ?exply(-loglogy + log(§ logx - logy- loglogy +2)+ O(1)).
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For [c log x/loglog x] with 1/3 < ¢ ¢ 1 - 1/lcglog x , Wwe

<
i

have
-loglog vy + log(% log x - log y - loglog y + 2) = log(l-c) + O(L)

and for vy > (1 - 1/loglog x)log x/loglog x (but
v = (1 + o(1))log x/loglog x) we have

il

-loglog v + log(% log X - log y - loglog vy + 2) -logloglog x +0(1).

Thus from (6.9) , we have

N

X y_y(l—c)y explO(y)

exp{O(y)?

depending on whether y 1is smaller or greater than
(1 - 1/loglog x)log x/loglog x

Thus it only remains to show that the number of ordered partitions

,a of y satisfying (6.4) 1s at most eO(y)‘ Since

@ X

o'

|

log x - log y - loglog y << loglog x << log y .
it follows from (6.4) that

12/37 a; << »—/5 i;/fz(i_l)ai << 4y log y

Thus the number of non-zero a; for i > /y is at most o (/Y log y)
If pl(t) denotes the number of numerical partitions of t , we thus
have that the number of ordered choices of the a; for i > /Yy is

at most (where AYY log y is an integer and A is a large constant)

k 2
p(A/Y log y) (AYY log y)! = eo('@(lOg y) ).
A/Y log y
But the number of ordered choices of the a. for i < /Yy 1is at most
(y+l)‘/§+1 _ O log ¥)

We conclude that the number of choices for ordered partitions ao,...,ak

of y 1s at most
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thus concluding the proof of the theorem.

v
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Some Remarks in Number Theory

S. Srinivasan

Dedicated to Professor Paul Erdos on the occasion of his Seventieth Birthday

§ 1. {(cf. [7(1)]). For given integer T > 1, prime p, it is observed that

r-1 r T
2P o1, P - n/eP -1 =L

. r .
This immediately implies the infinitude of primes = l(mod p y. On the same lines,

existence of primes = 1l(mod n), for all n, can be proved.
§ 2 In the direction of difference between consecutive primes the following
remarks may be of some interest.

(I) It is easily seen that the roots p' of

1
(1 ... [ ag(s,a)da = 0 (Re s > 1)
0

are precisely the complex zeros p, of the Riemann's zeta function, shifted by 1.

T -3
(Here, as usual, ¢(s,a) := zo(n + )7, 0 <a)
n=

(11) (cf. [5); see also [4].) In the context of Grimm's conjecture, the

following formulation may be useful. Assume that n+l,...,n+k are composite, and

also that k > exp({log n)e), with a fixed 8 < 1. Then is it true that
(2) ... N Q(m) > k(log log k + C)
n<m<n+k

holds with 'large' C? (Here, as usual, q(m) denotes the number of prime divisors,

counted with multiplicity, of m.) This means, since
(3) ... I 9/m = k(log log k + 0(1))
n<m<n+k

(where Qk(m) is the number of primes p < k, pjm counted with multiplicity),

whether we have (2) with C exceeding the constant implied by 0(1) in (3.

Clearly, (2) with arbitrarily large € would yield Piltz' conjecture - even with
?

a Cd—>m as 06— 1.

(I11) We might conjecture that
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