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Theorem. (Folk Lore) Every positive integer is interesting.

Proof. The number 1 is interesting, since it’s the least positive

integer. The number 2 is interesting, since it’s the first prime

number. One could go on. But to cut to the chase, suppose

there is at least one uninteresting positive integer, and let n be

the least such. Well then! That is indeed an interesting

property for n to have! To resolve the contradiction, it must be

that every number is interesting. 2
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(Every math talk is supposed to have at least one theorem and

one joke. This slide does both!)
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Some dialog from the 73rd episode of The Big Bang Theory
(Dec. 9, 2010):

Sheldon: What is the best number? By the way there’s only
one correct answer.

Raj: Five million, three hundred eighteen thousand, eight?

Sheldon: Wrong. The best number is 73. You’re probably
wondering why.

Leonard: No.

Howard: Uh-uh.

Raj: We’re good.
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Sheldon: 73 is the 21-st prime number. Its mirror, 37, is

the 12-th, and its mirror, 21, is the product of multiplying,

hang on to your hats, 7 and 3. Eh? Eh? Did I lie?

Leonard: We get it. 73 is the Chuck Norris of numbers.

Sheldon: Chuck Norris wishes. In binary, 73 is a palindrome

one zero zero one zero zero one, which backwards is one zero

zero one zero zero one, exactly the same. All Chuck Norris

backwards gets you is Sirron Kcuhc.
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Leaving out the binary palindrome bit, Sheldon is basing his

claim on 73 being the best number on two properties:

(1) The Mirror Property: A number has the mirror property if

it and its mirror (i.e., reverse the digits) are both prime, and

their indices in the sequence of primes are also mirrors of each

other.

(2) The Product Property: The n-th prime p has the product

property if the product of its (base-10) digits is n.

The Sheldon Assertion, i.e., Conjecture: The only number

with both the mirror property and the product property is 73.
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Some examples:

Let pn denote the n-th prime.

Then p1 = 2, p2 = 3, p3 = 5, and p4 = 7 all have the mirror

property, for trivial reasons, since the primes and the subscripts

are each 1-digit numbers, and reversing a 1-digit number leaves

it fixed.

Slightly less trivially, p5 = 11 has the mirror property.

Does every palindromic prime work? Well, the next one after

11 is 101, and it is p26. So, it doesn’t have the mirror property

since 26 is not a palindrome.
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Here’s a large example, that does work. Consider

p8114118 = 143787341.

Heuristically, there are infinitely many palindromic primes with

index in the sequence of primes also a palindrome.

Note that this prime does not have the product property:

1 ⋅ 4 ⋅ 3 ⋅ 7 ⋅ 8 ⋅ 7 ⋅ 3 ⋅ 4 ⋅ 1 = 56448 ≠ 8114118.
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The prime 73 and its index 21 are not palindromes.

Heuristically, there are infinitely many such mirror primes,

but they’re not as common as the palindromic variety.

(Coincidentally, both 73 and its index 21 are binary

palindromes, one of these already noted by Sheldon.)

Let’s look at the product property. In addition to p21 = 73, we

have p7 = 17 and

p181440 = 2475989, where 2 ⋅ 4 ⋅ 7 ⋅ 5 ⋅ 9 ⋅ 8 ⋅ 9 = 181440.

(This prime does not have the mirror property, can you see

why?)

Are there infinitely many primes with the product property?

(To be discussed....)
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All of these examples appeared in “The Sheldon Conjecture”
by Jessie Byrnes, Chris Spicer, and Alyssa Turnquist,
published in Math Horizons, November, 2015.

So Sheldon’s Conjecture must be resting on the marriage of
the mirror property and the product property.
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Are there heuristics for there being infinitely many primes with

the product property?

Lets begin with the fact that if a prime has k digits, then the

product of those digits is < 9k. So, if p = pn has the product

property, then

n < 9k = 9⌈log10 pn⌉ ≈ pln 9/ ln 10
n .

But on the other hand, the Prime Number Theorem says

that the number of primes up to pn is approximately pn/ lnpn.

But it’s exactly n. So

n ≈ pn/ lnpn.

Since ln 9/ ln 10 = 0.9542 ⋅ ⋅ ⋅ < 1, it follows that the above two

approximations are incompatible for large n.
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So there are at most finitely many primes with the product
property. Sheldon’s conjecture may in fact be reasonable!

The argument we just used might be accessible to a calculus
class:

Consider the two functions

f(x) = x

lnx
, g(x) = x0.9542.

As x→∞, which one wins the race? And when does it finally
take the lead for good? We have

f(100) = 21.7, g(100) = 90.0,

f(1010) = 4.34 × 108, g(1010) = 3.48 × 109,

f(1020) = 2.17 × 1018, g(1020) = 1.21 × 1019.

So far, g is winning.
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Let’s consider

f(x)
g(x) = (x/ lnx)

x0.9542
= x

0.0458

lnx

and use L’Hôpital’s rule to compute the limit as x→∞. This

has us replace f(x)/g(x) with

f ′(x)
g′(x) = 0.0458x−0.9542

x−1
= 0.0458x0.0458,

and we see that this tends to infinity as x→∞.

Where does x/ lnx finally take the lead? It’s around 5.3 × 1034,

but actually the situation is a bit messier because of dealing

with the imprecise notation “≈” at several points. If this made

you squirm, then me too!

13



So, the Prime Number Theorem implies there are at most

finitely many primes with the product property. And so, there is

some hope that the Sheldon Conjecture (that 73 is the unique

prime with both the product property and the mirror property)

holds!

Can we actually find a mathematically rigorous numerical

bound above which no prime can have the product property?

For this we need to deal with “≈” in the above argument. A

rigorous statement of the Prime Number Theorem is that π(x),
the exact number of primes in [1, x], satisfies

lim
x→∞

π(x)
x/ lnx

= 1.

A limit at infinity is not going to allow us to get a numerical

bound. We need something a little different.
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Rosser, Schoenfeld (1962): For x ≥ 17, π(x) > x/ lnx.

J. Barkely Rosser Lowell Schoenfeld
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Say pn ≥ 17 has the product property, has k digits, and the
leading digit is a. Then n ≤ a ⋅ 9k−1 and pn > a ⋅ 10k−1. Note that
n is a lot smaller than pn.

By the Rosser–Schoenfeld theorem,

a ⋅ 9k−1 ≥ n = π(pn) > pn
lnpn

> a ⋅ 10k−1

ln(a ⋅ 10k−1)
,

so that

ln(a ⋅ 10k−1) > (10

9
)
k−1

.

The left side grows linearly in k while the right side grows
exponentially. The biggest that a can be is 9, and even then,
this last inequality fails for all values of k ≥ 46.

We conclude that any prime with the product property must be
< 1045. We’ve “reduced” the problem to a finite search!
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By the Rosser–Schoenfeld theorem, the number of primes

below 1045 is greater than 9.6 × 1042, so it’s a very, very large

finite search!

Is it feasible? Am I crazy to attempt this?

Well, I teamed up with Spicer, and we actually did it.

Pomerance, Spicer (2019): The only prime with both the

product property and the mirror property is 73.

This article appeared in the October, 2019 issue of the

American Mathematical Monthly.

17



Though they hadn’t reduced the problem to a finite search,
already in the Math Horizons article of Spicer and his students,
Byrnes and Turnquist, there was a great idea for significantly
speeding up the search:

Search over subscripts n rather than over primes pn.

Why is that better, there are the same number of both?

Well, if pn has the product property, then the subscript n, being
the product of the digits of pn, must have no prime factor > 7.
It is a “7-smooth” number. That is, we can immediately reject
any prime pn whose subscript is not 7-smooth.

And, being 7-smooth is very special. There are only about
2,000,000 of them in the search range, and it is not hard to
enumerate them.
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So, given a 7-smooth number n, how does one go about

deciding whether pn has the product property or the mirror

property?

In particular, how does one go about finding pn?

There is actually a built-in function in Mathematica: Prime[n].

So one can instantly see by plugging in n = 1008 for example,

that pn = 8009. But this quickly bogs down as n grows and

recall that we might be dealing with n’s of over 40 digits.
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Lets look at this example which is far out of range of

Mathematica’s Prime[n] function:

n = 276,468,770,930,688 = 217 ⋅ 316 ⋅ 72.

We are trying to solve for x in the equation π(x) = n, where

again, π(x) is the number of primes up to x. Then pn is the

largest prime up to n.

But we don’t have an exact formula for π(x). If we solve

x/ lnx = n, we find that x ≈ 1.017 × 1016. Are 1,0 the first two

significant digits of pn? (If so, it definitely does not have the

product property!)

The question is, how good an approximation is x/ lnx to π(x)?
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The quick answer: not that good. In the same paper of

Rosser–Schoenfeld from 1962, we find that for x ≥ 67,

x

lnx − 1/2 < π(x) < x

lnx − 3/2.

Using this, we see that if

n = 276,468,770,930,688,

then 9.747 × 1015 < pn < 1.004 × 1016.

So even these finer approximations to π(x) are not sufficient to

resolve even the first digit of pn, even in this modest example.

(It’s possible that if pn is very close to 1016, then even a finer

approximation might not be able to distinguish the first digit.)
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In any event, what’s known about approximations to π(x)?

Around 1750, Euler showed that ∑p≤x1/p, the sum being over
primes at most x, diverges to infinity like ln lnx. Since

∑1<n≤x1/(n lnn) also diverges to infinity like ln lnx, it suggests
that maybe pn is about n lnn, though Euler did not make this
leap.

Around 50 years later, Gauss began looking at primes
statistically, creating tables by hand going up to the millions
counting the number of primes in various intervals. He noticed
that the primes tend to thin out and that “near” x, the chance
that a random number is prime is very close to 1/ lnx. This
suggests that a good approximation to π(x) might be

li(x) ∶= ∫
x

2

dt

ln t
.
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(Courtesy of Yuri Tschinkel
and Brian Conrey) 23



Let’s try out the Gauss approximation at 1020:

π(1020) = 2220819602560918840,

li(1020) = ∫
1020

2

dt

ln t
= 2220819602783663482.4 . . . .

Not too bad!

About 50 years after Gauss, Riemann came up with a plan for

proving the Gauss conjecture, which has still not been fully

completed. The sticking point is the Riemann Hypothesis, an

equivalent formulation being:

∣π(x) − li(x)∣ < x1/2 lnx for x ≥ 3.

(Prove this and win $1,000,000 from the Clay Foundation!)
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Though still not proved, the Riemann Hypothesis (in the form
where the claim is that all of the non-real zeros of the Riemann
zeta function have real part 1/2) has been checked up to high
levels, and there are very nice consequences of this for the
distribution of primes. For example, a new result of Büthe

implies that for 1010 < pn < 1019 we have

0 < pn − li−1(n) < 2.16
√
pn.

Here li−1 is the inverse function of li. Applying this inequality to
our modest example n = 276,468,770,930,688, we see that

9,897,979,324,865,422 < pn < 9,897,979,539,760,756.

This gives us unambiguously the top 7 digits of pn and tells us
that pn has 16 digits. For this particular example, this is still
not enough information to rule out pn having the product
property, and it may well have this property.
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But we can rule out pn nevertheless by considering pm, where m
is the mirror of n. Using the same tool with li−1 we find that
pm has 17 digits, and so cannot be the mirror of pn.

We would like some easily applied filters that let us quickly rule
out most candidates, reserving more time-consuming methods
for the few remaining numbers.

Here are some quick filters:
(1) The leading digit of pn must be 1, 3, 7, or 9. (This rules
out about 50% of candidates n.)
(2) 100 is not a divisor of n. (Else, the mirror of n is too short
to give a prime being the mirror of pn; this kills about 75% of
the candidates.)
(3) When computing the top few digits of pn, there cannot be
a digit 0 appearing nor an interior digit 1. (Else the product
property fails.)
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We found some additional filters that ruled out many more

candidates, and in the end we were able to prove that 73 is

indeed the only number with both the mirror and product

properties!

Theorem(Pomerance & Spicer). Sheldon was right, the only

prime with both the product and mirror properties is 73.

The manuscript, and these slides, are on my home page here at

the Math Department, feel free to check it out.

www.math.dartmouth.edu/∼carlp

Whether this actually makes 73 the “best” number, as Sheldon

claimed, well I’ll leave that up to you, though my mind is made

up!
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David Saltzberg, a physics professor at UCLA, was the

science advisor for The Big Bang Theory. He’s the one who did

the whiteboards that appeared in almost every episode. They

are often in the background, not completely in focus, and only

fleetingly shown, yet if one looks at them, they often have

some interesting scientific or mathematical content.

Here’s a sample from the episode that aired on April 18, 2019.
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A mystery: Where did the 73 problem come from?
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A mystery: Where did the 73 problem come from?

I thought it was Saltzberg, and asked him. But he gave the

credit to the episode’s writers:

Lee Aronsohn, Jim Reynolds, and Maria Ferrari.
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Thank you
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