On the distribution of amicable numbers. II

By Carl Pomerance*) at Athens, Georgia

§ 1. Introduction

Let o(n) denote the sum of the divisors of n and let s(n) =0 (n) —n. Two natural
numbers n, m are called an amicable pair if s(n)=m and s(m)=n. The least such pair
with n+m is n=220, m=284. We say a natural number »n is an amicable number if it is
a member of an amicable pair. An equivalent definition is s(s(n)) =n and still another is
o(n)=o0(s(n)). Amicable numbers have a very long history; they were mentioned (in fact,
defined) by Pythagoras, they were investigated by the Arabs during the European Dark
Ages, and they were studied by Fermat, Descartes, and Euler.

While it is intuitively clear that the property of being an amicable number is very
special and so they should be rare among the natural numbers, this fact is not easy to
prove. It was not until 1955 when Erdos [4] showed the amicable numbers have density 0.
The best result to date is in [5] where it is shown that A(x), the number of amicable
numbers not exceeding x, satisfies

¢)) A(x) £ x-exp {—c(logloglog x loglogloglog x)!/?}

for all large x, where c is a certain positive constant. The reader may refer to [5] for the
intermediate history between Erdos’s result and (1). Although better than previous results,
(1) is still very weak; it does not even give 4(x)= O(x/log log x). _ '

In this paper we take a different approach to the problem and prove the dramatically
stronger result

e A(x) = x-exp {—(log )'/3)
for all large x. Note that (2) immediately implies that the sum of the reciprocals of the
amicable numbers is finite, a fact not previously known. Also (2) settles a conjecture of
Erdés [4] that 4 (x) = O (x/(log x)*) for every k. In [4], Erdds conjectures that A (x)> x' ¢
for every ¢> 0. This conjecture conflicts with that of Bratley, Lunnon, and McKay [1]

that A(x)=o([/§). If Erdos is right, then (2) might be near to best possible. However,
we cannot even prove there are infinitely many amicable numbers.

In our discussion p, ¢, r will always denote primes and », m, k, @ natural numbers.
We will denote by P(n) the largest prime factor of n if n> 1; also P(1)=1.
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§ 2. The proof of (2)

In this section we prove the
Theorem. For all large x, A(x) < x/e18®"”

Proof. If n<x is an amicable number, then s(n) =0 (n) —n is also amicable. More-
over, if x is large enough and n < x, we have s(n) <2x loglog x, since

lim sup o (n)/(n loglogn) =€’ < 2.

For simplicity of notation, we shall let

[ plogm's [ _ e% (log x)2/3 log log x
, :

We first show that we may assume
@) P(n)zI?*. P(s(n)=L?.

Indeed, from de Bruijn [2], the number of n<2x loglogx composed only of primes
smaller than L? is o(x/l).

We next show we may assume that

(i) if & divides n or s(n) where a =2, then k° < I°.
Indeed, the number of n<2x loglogx divisible by some k°>/* with =2 is at most

2xloglogx ¥ k™ “< x(loglogx)/I*?=o0(x/I).
kaz 13

Now we show that we may assume

(iii) if pl(n, o(n)), then p<I*.
If p|o(n), then there is a prime power ¢°||n with p|a(¢®). If p =I*, then

> bolg) 24p 2P,

so that by (ii) we may assume a = 1. Thus 7 is divisible by p and a prime g = — 1 (mod p).
The number of such » is at most

X 1 _cxlogx

o 2 —= 2

pq-z—l(p)q p
q=x/p

where ¢ is an absolute constant. Now summing on p =/*, we have the number of n for
which (iii) fails is o(x/]).

Next we show we may assume
(iv) n/P(ny=L, s(n)/P(s(n))=L.

To see this, say we write n=mp where p = P(n) and s(n) =m’'p’ where p’ = P(s(n)). From
(i) and (ii) we have

pym, p'ym', m<x/L?, m' < 2x(loglogx)/L?.
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Thus

A3) m'p’=s(n) =0 (mp) —mp=p(a(m)—m)+c(m),

4) a(m)p'+a(m)=a(m'p)=a(n)=c(mp+o(m).
Multiplying (3) by a(m), (4) by 6(m) —m, and subtracting, we find that

(5) p'(o(mym'—o(m)o(m')+ma(m'))=ma(m)+a(m)a(m’)—ma(m’).

Since the right side of (5) is positive and hence non-zero, we see that m and m’ deter-

mine p’. Furthermore, if m’ and p’ are known, then so is n since n=s(m’p’). Thus the

number of amicable numbers n < x for which (iv) fails is at most the number of pairs
m, m’ where either

m<L, m <2x (loglogx)/L?
or
m<x/L* m <L.
The number of such pairs is less than

4L - x(loglogx)/L*=o(x/]).
Now we show we may assume that
(v) if m=n/P(n), m =s(n)/P(s(n)), then P(c(m))=F, P(a(m'))2/*

Say P(o(m))<!*. Say q is a prime and ¢°||m. If a 22, then by (ii) we have g <I*?. Ifa=1,
then g + 1|o(m), so that P(q+ 1) <I*. Let
Y (m)= I} (@+1)g",
q%||m
so that P(y(m))<I*. Then not only have we defined an integer y (m), but we have given
a factorization of this integer. (By “factorization” we mean a representation as a product
of integers larger than 1 where the order of the factors does not count.) We ask how
many choices for m can map onto not only the same integer k =y (m), but also give the
same factorization of k. We show there are at most 2 such m. Indeed if k =y (m,) =y (m,)
and the factorization of k so described is

k=a1a2 s a'

where the a;> 1 are integers, we first note that if some a;=g¢, a prime, with ¢+ 3, then
q*|m,, g*|m,. We may thus replace m;, m,, and k withm, /q, m,/q,and k=a, ---a;_,a;,,--a,.
Continuing in this fashion we may assume that if g|m,, ¢+ 3, then g||m,, and similarly for
m,. Next, we argue that if some a;+ 4 is composite, then a;= g+ 1 for some prime ¢q with
qllmy, q|lm,. Replacing m,, m,, and k with m,/q, m,/q, k/a; and continuing in this fashion,
we finally reach the stage where

my, myef{2*-3*:a=0o0r 1, b=0,1,2,...}.

Then y (m,) =y (m,) implies m,, m, € {3**!, 2- 3*} for some b =1. Thus there cannot be 3
distinct m which give the same factorization of k =y (m).
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Let f(k) denote the number of factorizations of k. Thus if z is any quantity, then
the number N(z) of m with y(m) <z and P(y(m))<I* satisfies

N2 T fk).
P(’;c)§<zl4

Following the methods of [3] (Theorem 5. 1) where we use a result of McMahon and a
method of Rankin, we have for ¢> 3/4,

N(@2)£2z° Y floke=2z TI (1—k—°)“<<zc-exp( X k79

Pk)<14 Pk)<14 Pk)<14
k>1
—z¢exp (IT (1-p) ') =2 exp {exp (£ p~+0(1)
p<l14 p<lIl4

where the implied constants are absolute. We shall take

c=1—(logx)~'73.

From the prime number theorem and partial summation we find
14 14
Y pe=l*n(*+ [ es M i(s)ds+ [ es™ 7 (m(s)—li(s)) ds
p<l* 2 2
14 '

ds+ 174 (n(I*) = 1i(1*)+271i@2) + | es™ 25" ~*(n(s) — li(s)) ds
2

-C

S
ogs

1
s"C

14
=]
2
14
=£ logs ds+0(1),

since s!T¢<*UT9=¢* Also

14 —c 14(1-¢) ed e —1
(S ag= | D T 2 s gt -0+ 00),
2 logs 2i-c logu ,i-culogu ,i-culogu

so that
3> pc=3%loglogx+0O(1).

p<l4
If z = L, we thus have

N
__(_zz<< 27! expexp (5 loglog x + O(1))

=exp {(c— 1) logz+exp (3 loglogx+ O(1))}

Sexp {—3(logx)'? loglogx + O ((logx)'*)}.

Thus for all large x and z = L we have
©) N(@)Zz/P.
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Note that lim sup Y (m)/(m loglogm)=6e’/n><2. By (iv), m=L so we may
assume x is large enough so that y(m)<2mloglogm. If n<x is an amicable number
and p = P(n), then again from (iv) we have x/p = L. Thus the number of such » with the
first inequality in (v) failing is by (6) at most

2 1
S N(2xtoglogx)p) s 5T 5 Lo,

2
pSx/L [ pEx/L

Similarly the number of » for which the second inequality in (v) fails is at most

3 N(4x(loglogx)?/p)=o(x/I).

p=2x(loglogx)/L
We thus may assume (V).
We now consider amicable numbers n < x that satisfy (i)—(v). In addition, if we
double the count and let n range up to 2x loglog x, we may also assume
(vi) P(n)=P(s(n)).
Let n<2xloglogx be such an amicable number. Write n=mp where p= P(n).
-From (v) there is a prime r =/* with r|o(m). Since pfm (from (i) and (ii)), we have

rlc(n)=o(s(n)). Thus from (i) there are primes g¢,q' with g=¢'=—1(modr) and
qllm, q'l|ls(n). Thus

@) (a(m)—m)p+a(m)=0(modg’).
Since ¢’ > I*, we have from (iii) that

g(m)—m=£0(mod q’).

Thus given m and ¢, (7) places p in a certain residue class mod ¢’, call this class a(m,q").
From all of these considerations we have the number of such n at most

2x loglog x
DI 2 2 )> 1= XYY ———
r214 q=-1(¢) m=0( q'=—-1() p=a(ma’)@) r g om q qgm
gsx m<x gq <2xloglogx p=<2x(loglogx)/m
pz4q’
x log x loglog x
<z 3 p TRt
2 logl
<3 z:x(logx) oglog x
r q rq
x (log x)3 loglog x
<3 g )r2 glogx _ /.

This calculation completes the proof of our theorem.

Remark. Some small alterations in the above proof allow us to establish the slightly
stronger result that there is some ¢ > 0 with

A(x) < x-exp {—c(logx loglog x)'3}.
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