
COUNTING INTEGERS WITH A SMOOTH TOTIENT

W. D. BANKS, J. B. FRIEDLANDER, C. POMERANCE,
AND I. E. SHPARLINSKI

Abstract. In an earlier paper we considered the distribution of
integers n for which Euler’s totient function at n has all small
prime factors. Here we obtain an improvement that is likely to be
best possible.

1. Introduction

Our paper [1] considers various multiplicative problems related to
Euler’s function ϕ. One of these problems concerns the distribution of
integers n for which ϕ(n) is y-smooth (or y-friable), meaning that all
prime factors of ϕ(n) are at most y. Let Φ(x, y) denote the number of
n ≤ x such that ϕ(n) is y-smooth. Theorem 3.1 in [1] asserts that the
following bound holds:

For any fixed ε > 0, numbers x, y with y ≥ (log log x)1+ε,
and u = log x/ log y → ∞, we have the bound Φ(x, y) ≤
x/ exp((1 + o(1))u log log u).

In this note we establish a stronger bound. Merging Propositions 2.3
and 3.2 below we prove the following result.

Theorem 1.1. For any fixed ε > 0, numbers x, y with y ≥ (log log x)1+ε,
and u = log x/ log y →∞, we have

Φ(x, y) ≤ x exp
(
−u(log log u+ log log log u+ o(1))

)
.

One might wonder about a matching lower bound for Φ(x, y), but
this is very difficult to achieve since it depends on the distribution of
primes p with p−1 being y-smooth. Let ψ(x, y) denote the number of y-
smooth integers at most x, and let ψπ(x, y) denote the number of primes
p ≤ x such that p−1 is y-smooth. It has been conjectured (see [15] and
the discussion therein) that in a wide range one has ψπ(x, y)/π(x) ∼
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ψ(x, y)/x. Assuming a weak form of this conjecture, Lamzouri [9] has
shown that there is a continuous monotonic function σ(u) such that

σ(u) = exp
(
−u(log log u+ log log log u+ o(1))

)
(u→∞),

and such that Φ(x, x1/u) ∼ σ(u)x as x → ∞ with u bounded. The
function σ is explicitly identified as the solution to the integral equation

uσ(u) =

∫ u

0

σ(u− t)ρ(t) dt,

where ρ is the Dickman–de Bruijn function.
In light of Lamzouri’s theorem, it seems likely that we have equality

in Theorem 1.1.
Our proof of Theorem 1.1 is given as two results: Proposition 2.3

for the case when y ≤ x1/ log log x and Proposition 3.2 for the case when
y ≥ exp(

√
log x log log x ). Note that the ranges of Propositions 2.3

and 3.2 have a significant overlap. In the first range we use a variant of
Rankin’s trick. In the second range we use a variant of the Hildebrand
approach [7] for estimating ψ(x, y).

Our proof is adaptable to multiplicative functions similar in structure
to Euler’s ϕ-function. For example, in [14] a version of our theorem is
used for the distribution of squarefree n ≤ x with σ(n) being y-smooth,
where σ is the sum-of-divisors function.

The original purpose of this paper was to correct an error in the
proof of [1, Theorem 3.1], kindly pointed out to us by Paul Kinlaw.
In fact, our treatment there of the sum

∑
p≤y p

−c is flawed for larger
values of y. Being able now to establish a likely best-possible result
was an unexpected bonus.

In a recent paper, Pollack [10] shows (as a special case) that for any
fixed number α > 1,

Φ(x, (log x)1/α) ≤ x1−(α+o(1)) log log log x/ log log x

as x→∞. A slightly stronger inequality follows from our Theorem 1.1,
though in Pollack’s result the inequality applies to sets more general
than the (log x)1/α-smooth integers.

Our paper [1] also considered the distribution of integers n for which
ϕ(n) is a square and the distribution of squares in the image of ϕ. These
results have attracted interest and since then have been improved and
extended in various ways; see [5, 6, 11,12].

In what follows, P (n) denotes the largest prime factor of an integer
n > 1, and P (1) = 1. The letter p always denotes a prime number; the
letter n always denotes a positive integer. As usual in the subject, we
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write logk x for the kth iterate of the natural logarithm, assuming that
the argument is large enough for the expression to make sense.

We use the notations U = O(V ) and U � V in their standard
meaning that |U | ≤ cV for some constant c, which throughout this
paper may depend on the real positive parameters ε, δ, η. We also use
the notations U ∼ V and U = o(V ) to indicate that U/V → 1 and
U/V → 0, respectively, when certain (explicitly indicated) parameters
tend to infinity.

2. Small y

2.1. Dickman–de Bruijn function. As above, we denote by ρ the
Dickman–de Bruijn function; we refer the reader to [8] for an exact
definition and properties. For the first range it is useful to have the
following two estimates involving this function.

Lemma 2.1. Let η > 0 be arbitrarily small but fixed. For A ≥ 2 we
have ∑

n≥1

Anρ(n)� exp

(
(1 + η)A

logA

)
.

Proof. It is sufficient to prove the result for large numbers A. Since
ρ(n) ≤ 1, the sum up to A/(logA)2 is� exp(A/ logA), hence we need
only consider integers n > A/(logA)2. We have for t > 1,
(2.1)

ρ(t) = exp

(
−t
(

log t+ log2 t− 1 +
log2 t− 1

log t
+O

(
(log2 t)

2

(log t)2

)))
;

see for example de Bruijn [3, (1.5)]. Consequently, if n > A/(logA)2

and A is large enough, then

Anρ(n) < exp(n(logA− log n− log2 n+ 1)).

In the case n > A, this implies that

Anρ(n) < exp(−n log2 n+ n) < exp(−n),

and so the contribution to the sum when n > A is O(1). Now assume
that A/(logA)2 < n ≤ A. Let f(t) = t(logA− log t− log2 t + 1). For
any θ ≥ 1/ logA one sees that

f

(
θA

logA

)
=

θA

logA

(
− log θ + log2A− log2

(
θA

logA

)
+ 1

)
= − θA

logA
(log θ + CA,θ),
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where

CA,θ = log

(
logA+ log θ − log2A

logA

)
− 1.

Hence, when A is large enough depending on the choice of η, we have

f

(
θA

logA

)
≤ − θA

logA
(log θ − (1 + η/2)) (θ > 1/ logA).

Since this last expression reaches a maximum when θ = eη/2, we have
f(t) ≤ eη/2A/ logA < (1 + 3η/4)A/ logA for all t > A/(logA)2, and so∑
A/(logA)2<n≤A

Anρ(n) < A exp

(
(1 + 3η/4)A

logA

)
� exp

(
(1 + η)A

logA

)
,

which completes the proof of the lemma. �

To prove the main results of this paper, we need information about
the distribution of primes p with p − 1 suitably smooth. The follow-
ing statement, which is [15, Theorem 1] (see also [1, Equation (2.3)]),
suffices for our purposes.

Lemma 2.2. For exp(
√

log t log2 t ) ≤ y ≤ t and with ut = log t/ log y
we have

ψπ(t, y) =
∑
p≤t

P (p−1)≤y

1� utρ (ut)
t

log t
= ρ(ut)

t

log y
.

It is useful to observe that the range in Lemma 2.2 includes the range

y ≤ t ≤ ylog y/2 log2 y.

2.2. Bound on Φ(x, y) for (log2 x)1+ε ≤ y ≤ x1/ log2 x. We give a proof
of the following result.

Proposition 2.3. Fix ε > 0. For (log2 x)1+ε ≤ y ≤ x1/ log2 x, and
u = log x/ log y →∞, we have

Φ(x, y) ≤ x exp(−u(log2 u+ log3 u+ o(1))).

Proof. We may assume that u is large and shall need to do so at various
points in the proof. We may also assume that ε < 1. Let δ > 0 be
arbitrarily small but fixed. We prove that

Φ(x, y) ≤ x exp(−u(log2 u+ log3 u− δ + o(1))) (u→∞),

which is sufficient for the desired result.
Put

c = 1− (log2 u+ log3 u− δ)/ log y,
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so that c < 1 for u sufficiently large. Also, u < log x implies that

1− c =
log2 u+ log3 u− δ

log y
<

log3 x+ log4 x

(1 + ε) log3 x
< 1− ε

2
,

for u sufficiently large, so we may assume that 1 > c > ε/2. We have

(2.2) Φ(x, y) ≤ xc
∑
n≤x

P (ϕ(n))≤y

1

nc
≤ xc

∏
p≤x

P (p−1)≤y

(
1− 1

pc

)−1
.

Note that xc = x exp(−u(log2 u+ log3 u− δ)), so via (2.2) it suffices to
prove that

(2.3) −
∑
p≤x

P (p−1)≤y

log

(
1− 1

pc

)
= o(u),

as u→∞. Note that, using c > ε/2,

−
∑
p≤x

P (p−1)≤y

log

(
1− 1

pc

)
=

∑
p≤x

P (p−1)≤y

∑
k≥1

1

kpck
�

∑
p≤x

P (p−1)≤y

1

pc
.

To establish (2.3) and hence the desired result, it is sufficient to show
that, as u→∞,

(2.4)
∑
p≤x

P (p−1)≤y

1

pc
= o(u).

Put

(2.5) z =
log y

2 log2 y
,

and consider primes p ≤ x with P (p− 1) ≤ y in two ranges:

(1) p ≤ yz,
(2) p > yz.

Note that the second range contains primes only in the case that yz ≤ x.
To estimate the first range for p, we have∑

p≤yz
P (p−1)≤y

1

pc
≤

∑
1≤k<z+1

∑
yk−1<p≤yk
P (p−1)≤y

1

pc
.
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For the inner sum we use Lemma 2.2 together with partial summation
and the fact that y1−c = e−δ log u log2 u getting that∑
yk−1<p≤yk
P (p−1)≤y

1

pc
� ρ(k)

yk(1−c)

log y
+

∫ yk

yk−1

ρ(k − 1)
1

tc log y
dt

� ρ(k − 1)
yk(1−c)

(1− c) log y
� ρ(k − 1)

(
e−δ log u log2 u

)k
.

We use Lemma 2.1 with A = e−δ log u log2 u and η = δ, finding that∑
p≤yz

P (p−1)≤y

1

pc
� A exp

(
(1 + δ)A

logA

)
.

Since (1 + δ)A/ logA ∼ (1 + δ)e−δ log u as u→∞, and (1 + δ)e−δ < 1,
this shows that the sum in (2.4) is O(u1−δ

′
) for some δ′ > 0 depending

on the choice of δ. Thus we have (2.4) for primes in the first range.
Now we turn to the second range. As mentioned earlier, we may

assume that yz ≤ x. By de Bruijn [2, (1.6)] we have

(2.6) ψ(t, y) ≤ t/eut log ut (yz < t ≤ x),

where ut is as in Lemma 2.2, for u sufficiently large. Ignoring that p is
prime we have the bound

(2.7)
∑

yz<p≤x
P (p−1)≤y

1

pc
≤

∑
yz−1<n≤x
P (n)≤y

1

nc
≤ 1 +

∑
z+1≤k≤u

∑
yk−1<n≤yk
P (n)≤y

1

nc
.

Next, we put

y0 = exp
(
(log2 x)2

)
and consider separately the cases y ≥ y0 and y < y0. In the case that
y ≥ y0, using (2.6) the inner sum on the right side of (2.7) satisfies∑

yk−1<n≤yk
P (n)≤y

1

nc
≤ ψ(yk, y)

ykc
+

∫ yk

yk−1

c ψ(t, y)

tc+1
dt

≤ k−kyk(1−c) + (k − 1)−(k−1)
∫ yk

yk−1

t−c dt

� k−(k−1)
yk(1−c)

1− c
≤ k log y · exp(−k(log k − log2 u− log3 u+ δ)).
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Since y ≥ y0, k ≥ z, with z given by (2.5), and u < log x, we have

log k − log2 u− log3 u ≥ log z − log2 u− log3 u

≥ log2 y − log3 y − log 2− log2 u− log3 u

≥ 7

8
log2 y − log2 u− log3 u

≥ 7

4
log3 x− log2 u− log3 u >

1

2
log3 x

provided that u is large. Hence,∑
yk−1<n≤yk
P (n)≤y

1

nc
� exp(−k) log y

and so the sum in (2.7) is O (exp(−z) log y) = O(1).
It remains to handle the second range when y < y0. In this case, we

use an Euler product for a second time, getting that∑
n≤x

P (n)≤y

n−c <
∏
p≤y

(
1− p−c

)−1 � exp

(∑
p≤y

p−c

)

= exp
(
li(y1−c)(1 +O(1/ log y)) +O(| log(1− c)|)

)
,

where we have used [13, Equation (2.4)] in the last step. Now

li(y1−c) = (1 + o(1))
y1−c

(1− c) log y
=

1 + o(1)

eδ
log u,

as u→∞, and

| log(1− c)| < log2 y < 2 log3 x� log2 u.

Therefore ∑
n≤x

P (n)≤y

n−c ≤ ue
−δ/2

for u sufficiently large. This completes the proof. �

3. Large y

3.1. A version of the Hildebrand identity. We begin this section
by proving an analog of the Hildebrand identity which is adapted to
our function Φ(x, y). Note that it is given as an inequality, but it would
not be hard to account for the excess on the higher side.
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Lemma 3.1. For x ≥ y ≥ 2 we have

Φ(x, y) ≤ 1

log x

∫ x

1

Φ(t, y)

t
dt+

1

log x

∑
d≤x

P (ϕ(d))≤y

Φ
(x
d
, y
)

Λ(d).

Proof. By partial summation, we have

(3.1)
∑
n≤x

P (ϕ(n))≤y

log n = Φ(x, y) log x−
∫ x

1

Φ(t, y)

t
dt.

On the other hand, we have∑
n≤x

P (ϕ(n))≤y

log n =
∑
n≤x

P (ϕ(n))≤y

∑
d |n

Λ(d) =
∑
d≤x

P (ϕ(d))≤y

∑
m≤x/d

P (ϕ(md))≤y

Λ(d)

≤
∑
d≤x

P (ϕ(d))≤y

Φ
(x
d
, y
)

Λ(d).

Substituting (3.1) on the left side and solving the resulting inequality
for Φ(x, y) gives the result. �

3.2. Bound on Φ(x, y) for y ≥ exp(
√

log x log2 x ).

Proposition 3.2. For y ≥ exp(
√

log x log2 x ), and u = log x/ log y →
∞, we have

Φ(x, y) ≤ x exp(−u(log2 u+ log3 u+ o(1))).

Proof. Let δ > 0 be arbitrarily small but fixed, and put

g(u) = exp(−u(log2 u+ log3 u− δ)).

It suffices to show that Φ(x, y)� xg(u) for x, y in the given range.
For any given u ≥ 3, which without loss of generality we may assume,

let Γu be the supremum of Φ(x, y)/(xg(u)) for all x, y with y = x1/u,
so that trivially Γu ≤ 1/g(u). Further, let

γu = sup{Γv : 3 ≤ v ≤ u}.

Our goal is to show that γu is bounded. Towards this end, we may as-
sume that u ≥ u0 ≥ 3, where u0 is a suitably large constant, depending
on the choice of δ. Since γu is nondecreasing as a function of u, we may
assume that

(3.2) γu ≥ 1 (u ≥ u0),
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for otherwise γu is clearly bounded. We further assume that u0 is large
enough so that

(3.3)
1

log v
+

1

log v log2 v
≤ δ (v ≥ u0).

Let N be such that

u0 ≤ N ≤ exp(
√

log x/ log2 x )− 1.

We claim that for u0 large enough

(3.4) sup
N<u≤N+1

Γu ≤ γN .

By induction, this implies that γu ≤ γu0 for all u ≥ u0, and therefore

Φ(x, y) ≤ γu0xg(u)

for all u ≥ u0, and the result would follow.
One other observation is that g(u) ∼ e−δg(u+ 1) log u log2 u as u→

∞, so that with u0 large and u0 ≤ N < u ≤ N + 1, we have

(3.5) g(N) ≤ g(u) log u log2 u and g(N − 1) ≤ g(u)(log u log2 u)2.

To establish (3.4) we first consider the term

T1 =
1

log x

∫ x

1

Φ(t, y)

t
dt

in Lemma 3.1. We split the range of integration as follows:∫ x

1

=

∫ yu0

1

+

∫ yN

yu0
+

∫ x

yN
.

We have trivially that

(3.6)

∫ yu0

1

Φ(t, y)

t
dt < yu0 .

We show that for u0 sufficiently large, we have

(3.7) yu0 ≤ xg(u)/g(u0).

Since yu0 = xu0/u, (3.7) is equivalent to showing that for

D(u) =
(

1− u0
u

)
log x− log g(u0)− u(log2 u+ log3 u− δ),

we have

(3.8) D(u) ≥ 0.

Note that the hypothesis y ≥ exp(
√

log x log2 x) implies that log x >
u2(log2 u + log3 u). By considering D′(u) and using (3.3), we see that
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D(u) is increasing for u ≥ u0 and u0 sufficiently large. Since D(u0) = 0,
this proves (3.8), which establishes (3.7), and so via (3.6) we have

(3.9)

∫ yu0

1

Φ(t, y)

t
dt ≤ xg(u)/g(u0).

Also, ∫ yN

yu0

Φ(t, y)

t
dt ≤ γNI,

where

I =

∫ yN

yu0
g(log t/ log y) dt =

∫ N

u0

g(v)yv log y dv =

∫ N

u0

g(v) d(yv).

Thus, I is equal to

yvg(v)
∣∣∣N
u0

+

∫ N

u0

(
log2 v + log3 v − δ +

1

log v
+

1

log v log2 v

)
g(v)yv dv

< yNg(N) +
log2N + log3N

log y
I,

where we have used (3.3) in the last step. Assuming u0 is sufficiently
large (and thus so are x and y), we see that

(3.10)

∫ yN

yu0

Φ(t, y)

t
dt < 2γNy

Ng(N).

Finally,

(3.11)

∫ x

yN

Φ(t, y)

t
dt ≤

∫ x

yN

Φ(t, t1/N)

t
dt ≤ γNg(N)(x− yN).

Thus, using (3.9), (3.10), and (3.11), we have

T1 ≤
xg(u)

g(u0) log x
+

2γNx

log x
g(N)

≤ 2γN log u log2 u+ 1/g(u0)

log x
xg(u),

(3.12)

assuming that u0 is sufficiently large, where we used (3.5) for the last
step.

Next, we consider the second term

T2 =
1

log x

∑
d≤x

P (ϕ(d))≤y

Φ
(x
d
, y
)

Λ(d)



COUNTING INTEGERS WITH A SMOOTH TOTIENT 11

in Lemma 3.1, and begin by estimating the contribution from terms
d ≤ y. For such d we have yN−1 ≤ x/d (since yN ≤ x), which implies
that y ≤ (x/d)1/(N−1). Hence, this part of T2 is at most

1

log x

∑
d≤y

Φ
(x
d
, y
)

Λ(d) ≤ 1

log x

∑
d≤y

Φ

(
x

d
,
(x
d

)1/(N−1))
Λ(d)

≤ γNx

log x
g(N − 1)

∑
d≤y

Λ(d)

d
.

Hence, by the Mertens formula

1

log x

∑
d≤y

Φ
(x
d
, y
)

Λ(d) ≤ 2γNx log y

log x
g(N − 1)

≤ 2γNx(log u log2 u)2

u
g(u),

(3.13)

assuming that u0 is sufficiently large and using (3.5).
Next, we consider the contribution from terms d = pa > y for which

p ≤ y (and thus the positive integer a is at least two), finding from the
trivial bound Φ (x/pa, y) ≤ x/pa that

(3.14)
1

log x

∑
p≤y
pa>y

Φ

(
x

pa
, y

)
log p ≤ x

log x

∑
p≤y
pa>y

log p

pa
� x
√
y log x

.

The remaining terms are of the form d = pa with p > y, and since
P (ϕ(d)) ≤ y we conclude that a = 1, i.e., d = p. Therefore, we need
to estimate

(3.15)
1

log x

∑
y<p≤x

P (p−1)≤y

Φ

(
x

p
, y

)
log p =

1

log x

∑
1≤k<u

Sk,

where

Sk =
∑

yk<p≤min{x,yk+1}
P (p−1)≤y

Φ

(
x

p
, y

)
log p.

We also denote

Tk =
∑

yk<p≤min{x,yk+1}
P (p−1)≤y

log p

p
.

For integers k ≤ u/2 we use the bound

Sk ≤ γNxg(u− k − 1)Tk ≤ γNx log u log2 u · g(u− k)Tk,



12 BANKS, FRIEDLANDER, POMERANCE, AND SHPARLINSKI

whereas for larger integers k > u/2, the trivial bound Φ (x/p, y) ≤ x/p
and (3.2) together imply that

Sk ≤ γNxTk;

consequently, using (3.15),

1

log x

∑
y<p≤x

P (p−1)≤y

Φ

(
x

p
, y

)
log p

≤ γNx log u log2 u

log x

∑
1≤k≤u/2

g(u− k)Tk +
γNx

log x

∑
u/2<k<u

Tk.

(3.16)

Next, define

h(k) = exp(−k(log k + log2(k+1)− 1))

and note that from (2.1) we have

(3.17) kρ(k)� h(k).

By partial summation, using Lemma 2.2 together with (3.17), we see
that there is an absolute constant c0 such that for 1 ≤ k < u we have

Tk =
∑

yk<p≤min{x,yk+1}
P (p−1)≤y

log p

p
≤ c0h(k) log y.

Using this bound in (3.16) along with the simple bound

h(k) ≤ g(u)

u
(k > u/2)

leads to

1

log x

∑
y<p≤x

P (p−1)≤y

Φ

(
x

p
, y

)
log p

≤ c0γNx log u log2 u

u

∑
1≤k≤u/2

g(u− k)h(k) +
c0γNx

u
g(u).

(3.18)

To bound the sum in (3.18), we start with the estimate

(3.19) log g(u− k) = −(u− k)(log2 u+ log3 u− δ) +O

(
k

log u

)
,

which holds uniformly for 1 ≤ k ≤ u/2. Using (3.19) and assuming
that u0 is sufficiently large depending on δ, we derive that

(3.20) g(u− k)h(k) ≤ g(u)eBu(k) (1 ≤ k ≤ u/2),
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where

Bu(k) = k(log2 u+ log3 u− log k − log2(k+1) + 1− δ/2).

Note that

dBu(k)

dk
= log2 u+ log3 u− δ/2

− log k − log2(k + 1)− k

(k + 1) log(k + 1)

= log

(
e−δ/2

log u

k

)
+ log

log2 u

log(k + 1)
− k

(k + 1) log(k + 1)
.

Therefore, the function Bu reaches its maximum for some k = k0 with

k0 = e−δ/2 log u+O

(
log u

log2 u

)
and, since for a constant C > 0 the derivative is bounded independently
of u for any k in the interval

k ∈
[
e−δ/2 log u− C log u

log2 u
, e−δ/2 log u+ C

log u

log2 u

]
,

we obtain

max
1≤k≤u/2

Bu(k) = Bu

(
e−δ/2 log u

)
+O

(
log u

log2 u

)
= e−δ/2 log u+O

(
log u

log2 u

)
.

This implies via (3.20) that

(3.21) max
1≤k≤u/2

g(u− k)h(k) ≤ g(u)u1−δ/3 (1 ≤ k ≤ u/2),

if u0 is sufficiently large. Moreover, for any fixed constant c > 1, it is
easy to see that Bu is decreasing for k ≥ c log u if u0 is sufficiently large
depending on δ and c, and after a simple estimate we have

max
c log u≤k≤u/2

Bu(k) ≤ (c− c log c) log u.

In particular, with c = 3 (and noting that 3 − 3 log 3 = −0.295 · · · ),
this implies via (3.20) that

(3.22) max
3 log u≤k≤u/2

g(u− k)h(k) ≤ g(u)u−1/4.

Splitting the range of the summation in (3.18) according to whether
k ≤ 3 log u or k > 3 log u, and using (3.21) and (3.22), respectively, we
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have∑
1≤k≤u/2

g(u− k)h(k) ≤
∑

1≤k≤3 log u

g(u)u1−δ/3 +
∑

3 log u<k≤u/2

g(u)u−1/4

≤ 3g(u)u1−δ/3 log u+ g(u)u3/4

≤ g(u)u1−δ/4

if δ is small enough and u0 sufficiently large. Inserting this bound
into (3.18), it follows that

1

log x

∑
y<p≤x

P (p−1)≤y

Φ

(
x

p
, y

)
log p

≤ c0γNx log u log2 u

u
g(u)u1−δ/4 +

c0γNx

u
g(u)

≤ c0γNu
−δ/5g(u)x,

(3.23)

again assuming that u0 is large.
Combining the bounds (3.13), (3.14) and (3.23) we obtain

T2 ≤
2γNx(log u log2 u)2

u
g(u) + c0γNu

−δ/5g(u)x

+O

(
x

√
y log x

)
.

(3.24)

We deduce from Lemma 3.1 and the bounds (3.12) and (3.24), that
for u0 large,

Φ(x, y) ≤ γNg(u)x.

This establishes our claim (3.4), and the proposition is proved. �

4. Comments

The bound of Proposition 2.3, taken at the lower range with y =
(log2 x)1+ε, and thus with

u =
log x

(1 + ε) log3 x
,

implies that

Φ
(
x, (log2 x)1+ε

)
≤ x exp

(
− log x

1 + ε
+O

(
log x log4 x

log3 x

))
= xε/(1+ε)+o(1),

Hence Φ (x, log2 x) = xo(1). Although we do not have any lower bounds
for this range that are much better than the trivial bound Φ(x, y) ≥
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ψ(x, y), this does suggest the existence of a phase transition near the
point y = log2 x. Using the same heuristic as in Erdős [4], one should
have quite small values of y with Φ(x, y) = x1−o(1). In particular this
should hold for any y of the shape (log x)ε, with ε > 0 fixed. It is
interesting to recall that for the classical function ψ(x, y) there is a
well-known phase transition near the point y = log x; see [3].
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