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Long before the proof of Andrew Wiles, it was thought that

the path to Fermat’s Last Theorem (FLT) led through the

Bernoulli numbers. Defined by the series

t

et − 1
=

∞

∑
n=0

Bn
tn

n!
,

the Bernoulli numbers Bn are rationals, in lowest terms Nn/Dn,

and both the sequence of numerators Nn and denominators Dn
have a connection to FLT.

n ∶ 0 1 2 3 4 5 6 7 8 9 10 11 12
Bn ∶ 1 −1

2
1
6 0 −1

30 0 1
42 0 −1

30 0 5
66 0 −691

2730
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The Bernoulli numbers are perhaps most famous for their

appearance in the formula:

ζ(2k) = ∣B2k∣
(2π)2k

2(2k)!
. (E.g., ζ(2) =

π2

6
.)

They were originally found to be of use when adding

consecutive powers:

∑
k<N

km =
1

m + 1

m

∑
j=0

Bj(
m + 1

j
)Nm−j+1.

E.g., 14 + 24 +⋯ + (N − 1)4 = 1
5N

5 − 1
2N

4 + 1
3N

3 − 1
30N .
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Write

Bn =
Nn
Dn

, gcd(Nn,Dn) = 1, Dn > 0.

After Kummer, we say an odd prime p is regular if p does not

divide the class number of the cyclotomic field Q[e2πi/p]. He

showed (1850) that Fermat’s Last Theorem holds for regular

primes, the first irregular prime being 37. And he showed that

an odd prime p is regular if and only if it does not divide any

Nn for n even, n < p.

There are also criteria for irregular primes to satisfy FLT, and

before Wiles we knew FLT for every exponent up to several

million.
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It’s conjectured that a positive proportion of primes are regular

and a positive proportion are irregular, but the only thing

known for sure is that there are infinitely many irregular primes.

As far as I know the best lower estimate for the number of

irregular primes up to x is the following.

Luca, Pizarro-Madariaga, & P, 2015: The number of

irregular primes up to x is ≥ (1 + o(1)) log logx/ log log logx.

There is also a slightly tenuous connection of FLT to the

Bernoulli denominators Dn. Sophie Germain showed that the

Fermat equation for prime exponent p has no solutions coprime

to p if 2p + 1 is also prime. It turns out that 2p + 1 prime implies

that 2p + 1 ∣D2p.
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In some sense, the Bernoulli denominators Dn are much less

mysterious than the numerators Nn. Key here is

von Staudt, Clausen, 1840: For n > 0 even, Dn is the product

of those primes p with p − 1 ∣ n.

For example, we can immediately see for n = 100 that

D100 = 2 ⋅ 3 ⋅ 5 ⋅ 11 ⋅ 101, so that D100 = 33,330.

Some consequences are that when n is even, Dn is squarefree

and divisible by 6.
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One might ask if Dn = 6 infinitely often. We have this for
n = 2,14,26,34,38,62,74,86,94,98 looking up to 100. In fact
this holds for about 15% of the even numbers up to 109.

The criterion for an even n to have Dn = 6 is that no prime p > 3
has p − 1 ∣ n. In particular, n is not divisible by any Germain
prime q > 2, since if q ∣ n we have 2q ∣ n, and so p = 2q + 1 ∣Dn.
But there are many other conditions for n.

Erdős, Wagstaff, 1980: For each ε > 0 there is some bound B

such that the asymptotic density of the integers divisible by a
shifted prime p − 1 > B is < ε.

That is, very few integers are divisible by a large shifted prime.
As a consequence, {n even ∶Dn = 6} has positive asymptotic
density.
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How in the world can it be that only a few integers are divisible

by a large shifted prime p − 1? The integers not divisible by any

prime p > B are quite sparsely distributed, their counting

function is of the shape (logx)O(1). But by Erdős–Wagstaff, it

is the opposite for shifted primes; though almost all n have a

large divisor p, very few n have a large divisor p − 1.

This is due to a century-old result of Hardy and Ramanujan

about the “normal” number of prime factors of n: it is

log logn. In fact, the normal number of prime factors ≤ B of an

integer is log logB. The same is true for shifted primes p − 1

from an old result of Erdős. Thus, if n = (p − 1)m, where p > B,

then normally one would expect log logB primes below B in

p − 1 and the same for m, so that n itself would have 2 log logB

primes below B, which is definitely not normal.

7



Erdős and Wagstaff more generally proved that for any d which

appears as some Dm for m even, there is a positive proportion

of even n with Dn = d.

But they gave no clue as to what these proportions actually

are. This was addressed by Sunseri in his 1979 PhD thesis who

showed that the density for d = 6 is at least as big as the other

densities.

P & Wagstaff, 2021: The density for d = 6 is at least 1/3

larger than the next biggest density.

We conjecture that the next biggest density occurs for d = 30,

followed by d = 42.
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Of interest is which numbers can appear as a Bernoulli

denominator Dn. Other than being squarefree multiples of 6,

what else can we say? Up to 109 there are 1,893,060 of them,

out of 50,660,598 squarefree multiples of 6.

Let D be the set of Bernoulli denominators Dn. Given d ∈ D we

can consider the least f with Df = d, denote this f by Fd. Let F

be the set of all Fd for d ∈ D. That is, F is the set of first

occurrences.

Lemma. For d ∈ D, we have Fd = λ(d). Every even m with

Dm = d has λ(d) ∣m. In addition, F = {λ(n) ∶ n > 2, n squarefree}.

Here λ(n) gives the exponent of (Z/nZ)∗, it is the lcm of the

p − 1 for the primes p ∣ n, when n is squarefree.
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Lemma. For d ∈ D, we have Fd = λ(d). Every even m with

Dm = d has λ(d) ∣m. In addition, F = {λ(n) ∶ n > 2, n squarefree}.

Proof. If Dm = d, then d is squarefree and for each p ∣ d,

p − 1 ∣m, so that λ(d) ∣m. This implies that Dλ(d) ∣Dm = d. Also,

p ∣ d implies p − 1 ∣ λ(d), so that p ∣Dλ(d), which implies d ∣Dλ(d).

Thus, Dλ(d) = d and Fd = λ(d).

To complete the proof we should show that for n > 2 and

squarefree we have λ(n) ∈ F. Since n > 2, λ(n) is even; let

d =Dλ(n). Since n is squarefree, we have n ∣ d, so that λ(n) ∣ λ(d).

But by the first part, λ(d) ∣ λ(n), so they are equal. 2
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Let F (x) = #(F ∩ [1, x]). By the lemma,

F (x) = #{λ(n) ≤ x ∶ n > 2, squarefree}.

Ford, Luca, & P, 2014: We have #{λ(n) ≤ x} = x/(logx)β+o(1)

as x→∞, where β = 1 − (1 + log log 2)/ log 2 = 0.08607 . . . .

The proof shows the same holds if n is restricted to squarefree

numbers.

Corollary. We have F (x) = x/(logx)β+o(1) as x→∞.

Note that F (109) = 212,656,697.
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Let D(x) = #(D ∩ [1, x]). Note that if d ∈ D, then Fd = λ(d) ∈ F and

λ(d) < d. Further, λ(d) determines d, since the lemma implies

that d =Dλ(d). Thus,

D(x) ≤ #{λ(n) ∶ n ≤ x}.

Luca & P, 2014: We have #{λ(n) ∶ n ≤ x} = x/(logx)1+o(1) as

x→∞.

Corollary. As x→∞, D(x) ≤ x/(logx)1+o(1).

For a lower bound, we show that for a positive proportion δ of

primes p we have 6p ∈ D, so that D(x) ≥ (δ6 + o(1))x/ logx. Hence,

D(x) = x/(logx)1+o(1) as x→∞.
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In fact, we show that for each d ∈ D the relative density in the

set of primes of those p with Dp−1 = dp exists and is positive.

Probably the largest of these densities is for d = 6 but we were

not able to show this.

We do know that the sum of the densities is 1. A consequence

(but actually part of the proof) is that for “almost all” primes

p, Dp−1/p is in D. The proof of this uses a result in the paper of

Luca, Pizarro-Madariaga, & P mentioned above.
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Probably there are infinitely many p with Dp−1/p ∉ D. We can

prove this on assumption of Dickson’s prime k-tuples

conjecture. This conjecture implies there are infinitely many

twin primes, and similarly for many other linear prime

configurations. For example, there should be infinitely many

Germain primes. The case of interest here: there should be

infinitely many primes p ≡ 3 (mod 4) such that q = 2p−1 is prime.

If p > 3 is such a prime, consider d =Dq−1/q. If d =Dn for some n,

we have p ∣ d, so that p − 1 ∣ n. Also 5 ∣ d, so 4 ∣ n. But

lcm{4, p − 1} = q − 1, so q ∣ d, contradicting Dq−1 squarefree.
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The problem of getting a lower bound for the distribution of
irregular primes is strangely difficult. Let Cn denote the
numerator of Bn/n in lowest terms. Then for n even, every
prime divisor of Cn is irregular, as follows from some a result of
Kummer.

Recall the formula for even n,

ζ(n) = ∣Bn∣
(2π)n

2n!
.

View this, keeping in mind the sizes of the various quantities.
We have ζ(n) ≈ 1. The expression (2π)n of course grows
exponentially, but it can’t touch n!. The Bernoulli denominator
Dn can occasionally be fairly big, with log(Dn) of magnitude
n/ log logn, but not bigger than this (Erdős, P, & Schmutz,
1991). Putting this together, we have Cn = nn+O(n/ logn). And
each prime factor of this huge number is irregular.
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Thank you
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