ON A NONINTEGRALITY CONJECTURE

FLORIAN LUCA AND CARL POMERANCE

ABSTRACT. It is conjectured that the sum

51 =3 13

k=1

for positive integers r,n is never integral. This has been shown for r < 22. In
this note we study the problem in the “n aspect” showing that the set of n
such that Sy, (n) € Z for some r > 1 has asymptotic density 0. Our principal
tools are some deep results on the distribution of primes in short intervals.

1. INTRODUCTION

For positive integers r,n let

Sr(n) = ,; k—ﬁr (Z)

Motivated by some cases with small r, Lépez-Aguayo [4] asked if S,.(n) is ever an
integer, showing for r € {1, 2, 3,4} that S,.(n) is not integral for all n. In [B] it was
conjectured that S,.(n) is never integral, and they proved the conjecture for r < 6.
In [3] it was proved for r < 22. Also in [3], using a deep theorem of Montgomery
and Vaughan [6], it was shown for a fixed r that the set of n such that S,(n) € Z
has upper density bounded by O (1/r*) for any k > 1. In fact, this density is 0, as
we shall show. Actually we prove a stronger result. Let

S :={n:8,.(n) € Z for some r > 1}.

Theorem 1. The set S has zero density as a subset of the integers. Further, every
member of S is greater than 10°.

It follows from our argument that if we put S(x) = S N [1,z] then #S(z) =
Oa(z/(logx)?) for every fixed A. In particular, taking A = 2, we see that the
reciprocal sum of S is finite.

2. THE PROOF

We let x be large and assume that /2 < n < z. Let
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so that S(r,n) + Sy(n) = >p_, (1) = 2" € Z. We conclude that S,(n) is integral
if and only if S(r,n) is integral. It is shown in [5] that

. g (71 ot 1
) Stram) =31 (o5

For an odd prime ¢ we write ¢5(q) for the multiplicative order of 2 modulo g.

Lemma 1. If there is a prime p > n that divides some k+r with 1 < k < n, then
Sr(n) is not integral. Also, if there is a prime q > r that divides some n + j with
1< j <r and S,.(n) is integral, then ql2(q) | n+ j.

Proof. For the first assertion, say p | ko+r, where 1 < kg < n. Since p > n, we have
that p does not divide any other k+r for 1 < k < n. So the term (ko/(ko+7)) (]:))
in the definition of S,.(n), in reduced form, has a factor p in the denominator,
and no other terms (k/(k + r))(}) have this property. We deduce that S,(n) is
nonintegral. For the second assertion, say ¢ = n + jo, 1 < jo < r. Since g > r, it
does not divide any other n 4+ j, 1 < j < r. For S.(n) to be integral (and so for
S(r,n) to be integral) it follows then from that q | 2" — 1, so £2(q) | n + j.
But also ¢2(q) | ¢ — 1, so ged(q, ¢2(g)) = 1. This implies that ¢l2(q) | n + j, which
proves our second assertion. O

We now show that S has asymptotic density 0. Suppose that S,.(n) is integral
and /2 < n < z. We distinguish various cases.

Case 1. r > n.

By Sylvester’s theorem, one of the integers k 4+ r with 1 < k < n is divisible by
a prime p > n. It follows from the first part of Lemma [1| that S, (n) is nonintegral.

Case 2. n > r > (z/2)Y/10.

By a result of Jia (see [2]) for every fixed € > 0, the interval [n + 1,n + n'/20+¢]
contains a prime number p for almost all n, with the number of exceptional values
of n < x being <, 4 z/(logx)* for every fixed A > 0. If r > (2/2)Y/10 > (n/2)'/19,
then > n!/1 holds for all & > xy. If n is not exceptional in the sense of Jia’s
theorem, then the interval [n + 1,7+ r] contains the interval [n + 1,1 +n'/'!] and
hence a prime p > n, so S.(n) cannot be an integer by the first part of Lemma
Hence, n must be exceptional in the sense of Jia’s theorem and the set of such n
has counting function O (x/(logx)?) for any fixed A > 0.

Case 3. y<r< (3;/2)1/10, where Y= xl/loglogz.

This is the most interesting part. We prove the following lemma.

Lemma 2. There exists ro such that if r > 1o, then the interval I = [r,r + r%61]

contains 6 primes pi,...,pe such that each l3(p;) > r%2 for 1 < i < 6 and each
ged(p; — 1,p; — 1) < 70001 for 1 < i< j <6.

Proof. Let 7(I) be the number of primes in I. From Baker, Harman, and Pintz [I]
we have for large r that

7(I) > r% /logr.
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(Actually, this follows from earlier results, but [I] holds the record currently for
primes in short intervals.) Let Q be the subset of primes p € I such that £3(p) <
r0-3. By a classical argument, #Q < r%¢/logr. Indeed,

0 [[pe [] @ -1)<o5mnst <2
peEQ t<r0:3
from which we deduce the desired upper bound on #Q. Since
%8 /logr = o(r°%! /logr) = o(n(I)), as  r— oo,

we deduce that most primes p in I have f3(p) > r%3. Let P denote this set of
primes in I, so that #P > 196! /logr. For any positive integer d the number of
pairs of distinct primes p,q in P with d | p—1and d | ¢ — 1 is < 72961 /d? even
ignoring the primality condition. Summing over d > r%9°! we see that the number
of pairs p,q € P with ged(p—1,q—1) > r9-001 jg « ¢-2x0.61=0.001 "5 that most pairs
of primes p,q € P have ged(p — 1,q — 1) < 9991 In fact, the number of 6-tuples
of primes p1,...,ps € P with some ged(p; — 1,p; — 1) > r000 js « p6x0.61-0.001
so we may deduce that most 6-tuples of primes in P satisfy the gcd condition of
the lemma. Of course “6” may be replaced with any fixed positive integer, only
affecting the choice of 7. O

Let {p1,...,ps} be the 6 primes in I which exist for z > xg (such that y > rg).
Either there are 4 of these primes such that the interval [n 4+ 1,n + r] contains
a multiple of each, or there are 3 of these primes which do not have multiples in
[n 4+ 1,n 4 r]. Take the case of 4 of the primes having a multiple in [n + 1,n + 7]
and without essential loss of generality, say they are pi,ps, p3, p4. They determine
integers j1, jo2,j3,74 with 1 < j; < r and p; | n + j;. Further, by the second part
of Lemma || we have each f2(p;) | n + j;. We conclude that n is in a residue class
modulo

M :=lem{p1, p2, p3, pa, £2(p1), €2(p2), £2(p3), £2(pa) }-
Now p1,p2, p3, pa are distinet primes in [r + 1,7 + r%61] and each f5(p;), since it
divides p; — 1, has all prime factors < r, so is coprime to the other p;’s. Moreover,
each f5(p;) > r%3 and being a divisor of p; — 1, each ged(la(p;), la(p;)) < 70001
Thus,
M > 74120006 _  5.104

Further, M < r® < x. Thus, the number of n in this residue class is < x/M <

x/r>19 Summing over the different possibilities for ji, j2, j3, ja, our count is <
x/rt19 Now summing over r > y, we have that the number of n in this case is
< a/y0194,

We also must consider the possibility that 3 of our 6 primes do not divide any
n+j with 1 < j <r. Again without essential loss of generality, assume they are
p1,P2,p3. Since each is in [r + 1,7 + r%61] it follows that each p; corners n in a
set of O(r?:61) residue classes mod p;. With the Chinese Remainder Theorem, such
n’s are in a set of O(r1-®3) residues classes modulo p;paps. Note that the modulus
is small, at most O(r3) = o(x). Thus, the number of such n is at most

r183, x
© (p1p2p3> =0 (7'1'17> .
6

Varying the 3 primes in (3) = 20 ways multiplies the above count by a constant
factor. Summing on 7 > y we deduce that the number of n in (z/2, 7] is < x/y%'7.
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With our above estimate, this puts the count in Case 3 at O(z/y%'7)

T — 0.

= o(z) as

Case 4. We assume that r € (22,y].

Here, we do the “regular” thing, where we distinguish between smooth numbers
and numbers with a large prime factor. Let P(m) denote the largest prime factor of
m. If P(n+1) <y, this puts n in a set of size 2/(log z)(1 o) logloglog® ag 7 4 0,
by standard estimates for smooth numbers. So, assume that p = P(n+ 1) > y.
Since r < y, it follows that p does not divide any other n 4+ j with j < r, so that
and S(r,n) integral imply that f2(p) | n + 1.

The number of primes 2 < ¢ < t with f5(q) < ¢ is by the argument in
the previous case at most t%6. By a partial summation argument, the number of
n € (x/2,x] with n + 1 divisible by such a prime ¢ > y is O(x/y"*). So, assume
that f2(p) > p*-3. The number of integers n € (x/2, z] with n+ 1 divisible by p/a(p)
is < (x4 1)/(pl2(p)) < x/p'3. Summing on p > y our count is < z/y%3.

Putting together everything, we get that #S(z) is O (x/(log x)?) for every fixed
A > 0. This completes the proof of the first part of the theorem.

We next show that all members of S are large. By the first part of Lemma [T} if
one of n+1,...,n+r is a prime, then S,(n) is nonintegral. From [3] we know that if
Sy-(n) is integral, then r > 23. We conclude that if one of n+1, ..., n+23 is a prime,
then S, (n) is nonintegral. One can check that there is a prime in [n + 1, n+ 23] for
every n < 1326, so the least member of S (if there are any members at all) is at
least 1327.

Let ng = 1,349,533. Below ng the largest gap between consecutive primes has
length 114, see https://oeis.org/A002386. So, if r > 114 and S,,(r) is integral, then
n > ng. Assume then that 23 < r < 114 and that 1327 < n < ng. If some n + 7,
1 < j <23, is divisible by a prime g > (n + j)/4, then n + j = aq for some a < 4.
Since (n + j)/4 > 114 and ¢ > 2* (so that f5(q) > 4), the second part of Lemma
shows that S,.(n) is nonintegral. However, every n < n; := 17,258 has some n + j,
1 < j <23, divisible by a prime ¢ > (n + j)/4. We deduce that each member of S
is at least nq.

Continuing, assume n > nj. If some n+ j, 1 < j < 23, is of the form agq with ¢
prime and a < 12, then n ¢ S. Indeed, the greatest prime factor of any 2¢ — 1 for
i <12is 127 and ¢ > ny/12 > 127. We find that every n < ny := 178,701 has this
property, so every member of S is at least no.

Now assume that ny < n < 106, If some n+j, 1 < j < 23, is of the form aq with
¢ prime and a < 41, then ¢ > ny/41 > 4300. Further, the only values of ¢ > 4300
with l2(q) < 41 are ¢ = 2P — 1 for p = 13 and some values of ¢ > 130,000 with
l3(q) > 17, so that in these latter cases, gfa(q) > 2 x 10%. So except possibly for
those n with 13(2!3 — 1) = 106,483 | n + j for some 1 < j < 23, if n is such that
some n + j = aq with ¢ prime and a < 41, then n ¢ S. We have checked those n
with 106,483 | n + j for some 1 < j < 23 and ny < n < 105, and each has some
n+j’ of the form aq with ¢ prime, a < 30, and ¢2(q) { a. It follows that these values
of n are not in S. This concludes our proof that S contains no numbers < 10°.

Remarks. Note that assuming Cramér’s conjecture that for some constant ¢ and
for large z there is a prime in [z, z + c(log x)?], the estimate in Case 2 is eliminated.
By then optimizing the choice of y, our final count for S(x) would be of the shape
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O(z/ exp(ev/log xloglog x)) for some ¢ > 0. The hardest cases to try and do better
seem to be r = O(1).

Let s,.(m) be the largest r-smooth divisor of m and let M,.(n) = min{s,(n+j) :
1 <j <r} It follows from [3| Proposition 3.1] that if M,(n) < log,r, then S,(n)
is nonintegral. Unfortunately, as discussed in [3, Remark 2], it is not always the
case that M,.(n) < log,r. Nevertheless, it seems interesting to get estimates for
M(r) := max{M,(n) : n > 0}.
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