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Abstract. It is conjectured that the sum

Sr(n) =

n∑
k=1

k

k + r

(n
k

)
for positive integers r, n is never integral. This has been shown for r ≤ 22. In

this note we study the problem in the “n aspect” showing that the set of n
such that Sr(n) ∈ Z for some r ≥ 1 has asymptotic density 0. Our principal

tools are some deep results on the distribution of primes in short intervals.

1. Introduction

For positive integers r, n let

Sr(n) =

n∑
k=1

k

k + r

(
n

k

)
.

Motivated by some cases with small r, López-Aguayo [4] asked if Sr(n) is ever an
integer, showing for r ∈ {1, 2, 3, 4} that Sr(n) is not integral for all n. In [5] it was
conjectured that Sr(n) is never integral, and they proved the conjecture for r ≤ 6.
In [3] it was proved for r ≤ 22. Also in [3], using a deep theorem of Montgomery
and Vaughan [6], it was shown for a fixed r that the set of n such that Sr(n) ∈ Z
has upper density bounded by Ok(1/rk) for any k ≥ 1. In fact, this density is 0, as
we shall show. Actually we prove a stronger result. Let

S := {n : Sr(n) ∈ Z for some r ≥ 1}.

Theorem 1. The set S has zero density as a subset of the integers. Further, every
member of S is greater than 106.

It follows from our argument that if we put S(x) = S ∩ [1, x] then #S(x) =
OA(x/(log x)A) for every fixed A. In particular, taking A = 2, we see that the
reciprocal sum of S is finite.

2. The proof

We let x be large and assume that x/2 < n ≤ x. Let

S(r, n) :=

n∑
k=0

r

k + r

(
n

k

)
,
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so that S(r, n) + Sr(n) =
∑n
k=0

(
n
k

)
= 2n ∈ Z. We conclude that Sr(n) is integral

if and only if S(r, n) is integral. It is shown in [5] that

(1) S(r, n) =

r∑
j=1

(−1)r−jr

(
r − 1

j − 1

)
2n+j − 1

n+ j
.

For an odd prime q we write `2(q) for the multiplicative order of 2 modulo q.

Lemma 1. If there is a prime p > n that divides some k + r with 1 ≤ k ≤ n, then
Sr(n) is not integral. Also, if there is a prime q > r that divides some n + j with
1 ≤ j ≤ r and Sr(n) is integral, then q`2(q) | n+ j.

Proof. For the first assertion, say p | k0+r, where 1 ≤ k0 ≤ n. Since p > n, we have
that p does not divide any other k+ r for 1 ≤ k ≤ n. So the term (k0/(k0 + r))

(
n
k0

)
in the definition of Sr(n), in reduced form, has a factor p in the denominator,
and no other terms (k/(k + r))

(
n
k

)
have this property. We deduce that Sr(n) is

nonintegral. For the second assertion, say q = n + j0, 1 ≤ j0 ≤ r. Since q > r, it
does not divide any other n + j, 1 ≤ j ≤ r. For Sr(n) to be integral (and so for
S(r, n) to be integral) it follows then from (1) that q | 2n+j − 1, so `2(q) | n + j.
But also `2(q) | q − 1, so gcd(q, `2(q)) = 1. This implies that q`2(q) | n + j, which
proves our second assertion. �

We now show that S has asymptotic density 0. Suppose that Sr(n) is integral
and x/2 < n ≤ x. We distinguish various cases.

Case 1. r ≥ n.

By Sylvester’s theorem, one of the integers k + r with 1 ≤ k ≤ n is divisible by
a prime p > n. It follows from the first part of Lemma 1 that Sr(n) is nonintegral.

Case 2. n > r > (x/2)1/10.

By a result of Jia (see [2]) for every fixed ε > 0, the interval [n+ 1, n+ n1/20+ε]
contains a prime number p for almost all n, with the number of exceptional values
of n ≤ x being�ε,A x/(log x)A for every fixed A > 0. If r > (x/2)1/10 ≥ (n/2)1/10,

then r > n1/11 holds for all x > x0. If n is not exceptional in the sense of Jia’s
theorem, then the interval [n+ 1, n+ r] contains the interval [n+ 1, n+ n1/11] and
hence a prime p > n, so Sr(n) cannot be an integer by the first part of Lemma 1.
Hence, n must be exceptional in the sense of Jia’s theorem and the set of such n
has counting function OA(x/(log x)A) for any fixed A > 0.

Case 3. y ≤ r ≤ (x/2)1/10, where y := x1/ log log x.

This is the most interesting part. We prove the following lemma.

Lemma 2. There exists r0 such that if r > r0, then the interval I = [r, r + r0.61]
contains 6 primes p1, . . . , p6 such that each `2(pi) > r0.3 for 1 ≤ i ≤ 6 and each
gcd(pi − 1, pj − 1) < r0.001 for 1 ≤ i < j ≤ 6.

Proof. Let π(I) be the number of primes in I. From Baker, Harman, and Pintz [1]
we have for large r that

π(I)� r0.61/ log r.
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(Actually, this follows from earlier results, but [1] holds the record currently for
primes in short intervals.) Let Q be the subset of primes p ∈ I such that `2(p) ≤
r0.3. By a classical argument, #Q � r0.6/ log r. Indeed,

r#Q ≤
∏
p∈Q

p ≤
∏
t≤r0.3

(2t − 1) < 2
∑

t≤r0.3 t < 2r
0.6

,

from which we deduce the desired upper bound on #Q. Since

r0.6/ log r = o(r0.61/ log r) = o(π(I)), as r →∞,
we deduce that most primes p in I have `2(p) ≥ r0.3. Let P denote this set of
primes in I, so that #P � r0.61/ log r. For any positive integer d the number of
pairs of distinct primes p, q in P with d | p − 1 and d | q − 1 is � r2×0.61/d2 even
ignoring the primality condition. Summing over d ≥ r0.001 we see that the number
of pairs p, q ∈ P with gcd(p−1, q−1) ≥ r0.001 is� r2×0.61−0.001, so that most pairs
of primes p, q ∈ P have gcd(p − 1, q − 1) < r0.001. In fact, the number of 6-tuples
of primes p1, . . . , p6 ∈ P with some gcd(pi − 1, pj − 1) ≥ r0.001 is � r6×0.61−0.001,
so we may deduce that most 6-tuples of primes in P satisfy the gcd condition of
the lemma. Of course “6” may be replaced with any fixed positive integer, only
affecting the choice of r0. �

Let {p1, . . . , p6} be the 6 primes in I which exist for x > x0 (such that y > r0).
Either there are 4 of these primes such that the interval [n + 1, n + r] contains
a multiple of each, or there are 3 of these primes which do not have multiples in
[n + 1, n + r]. Take the case of 4 of the primes having a multiple in [n + 1, n + r]
and without essential loss of generality, say they are p1, p2, p3, p4. They determine
integers j1, j2, j3, j4 with 1 ≤ ji ≤ r and pi | n + ji. Further, by the second part
of Lemma 1 we have each `2(pi) | n + ji. We conclude that n is in a residue class
modulo

M := lcm{p1, p2, p3, p4, `2(p1), `2(p2), `2(p3), `2(p4)}.
Now p1, p2, p3, p4 are distinct primes in [r + 1, r + r0.61], and each `2(pi), since it
divides pi − 1, has all prime factors ≤ r, so is coprime to the other pj ’s. Moreover,
each `2(pi) > r0.3 and being a divisor of pi − 1, each gcd(`2(pi), `2(pj)) ≤ r0.001.
Thus,

M > r4r1.2r−0.006 = r5.194.

Further, M � r8 < x. Thus, the number of n in this residue class is � x/M <
x/r5.194. Summing over the different possibilities for j1, j2, j3, j4, our count is �
x/r1.194. Now summing over r > y, we have that the number of n in this case is
� x/y0.194.

We also must consider the possibility that 3 of our 6 primes do not divide any
n + j with 1 ≤ j ≤ r. Again without essential loss of generality, assume they are
p1, p2, p3. Since each is in [r + 1, r + r0.61], it follows that each pi corners n in a
set of O(r0.61) residue classes mod pi. With the Chinese Remainder Theorem, such
n’s are in a set of O(r1.83) residues classes modulo p1p2p3. Note that the modulus
is small, at most O(r3) = o(x). Thus, the number of such n is at most

O

(
r1.83x

p1p2p3

)
= O

( x

r1.17

)
.

Varying the 3 primes in
(
6
3

)
= 20 ways multiplies the above count by a constant

factor. Summing on r > y we deduce that the number of n in (x/2, x] is� x/y0.17.
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With our above estimate, this puts the count in Case 3 at O(x/y0.17) = o(x) as
x→∞.

Case 4. We assume that r ∈ (22, y].

Here, we do the “regular” thing, where we distinguish between smooth numbers
and numbers with a large prime factor. Let P (m) denote the largest prime factor of
m. If P (n+1) ≤ y, this puts n in a set of size x/(log x)(1+o(1)) log log log x as x→∞,
by standard estimates for smooth numbers. So, assume that p = P (n + 1) > y.
Since r ≤ y, it follows that p does not divide any other n + j with j ≤ r, so that
(1) and S(r, n) integral imply that `2(p) | n+ 1.

The number of primes 2 < q ≤ t with `2(q) ≤ q0.3 is by the argument in
the previous case at most t0.6. By a partial summation argument, the number of
n ∈ (x/2, x] with n + 1 divisible by such a prime q > y is O(x/y0.4). So, assume
that `2(p) > p0.3. The number of integers n ∈ (x/2, x] with n+1 divisible by p`2(p)
is ≤ (x+ 1)/(p`2(p))� x/p1.3. Summing on p > y our count is � x/y0.3.

Putting together everything, we get that #S(x) is OA(x/(log x)A) for every fixed
A > 0. This completes the proof of the first part of the theorem.

We next show that all members of S are large. By the first part of Lemma 1, if
one of n+1, . . . , n+r is a prime, then Sr(n) is nonintegral. From [3] we know that if
Sr(n) is integral, then r ≥ 23. We conclude that if one of n+1, . . . , n+23 is a prime,
then Sr(n) is nonintegral. One can check that there is a prime in [n+ 1, n+ 23] for
every n ≤ 1326, so the least member of S (if there are any members at all) is at
least 1327.

Let n0 = 1,349,533. Below n0 the largest gap between consecutive primes has
length 114, see https://oeis.org/A002386. So, if r > 114 and Sn(r) is integral, then
n ≥ n0. Assume then that 23 ≤ r ≤ 114 and that 1327 ≤ n < n0. If some n + j,
1 ≤ j ≤ 23, is divisible by a prime q ≥ (n+ j)/4, then n+ j = aq for some a ≤ 4.
Since (n+ j)/4 > 114 and q > 24 (so that `2(q) > 4), the second part of Lemma 1
shows that Sr(n) is nonintegral. However, every n < n1 := 17,258 has some n+ j,
1 ≤ j ≤ 23, divisible by a prime q ≥ (n+ j)/4. We deduce that each member of S
is at least n1.

Continuing, assume n ≥ n1. If some n+ j, 1 ≤ j ≤ 23, is of the form aq with q
prime and a ≤ 12, then n /∈ S. Indeed, the greatest prime factor of any 2i − 1 for
i ≤ 12 is 127 and q > n1/12 > 127. We find that every n < n2 := 178,701 has this
property, so every member of S is at least n2.

Now assume that n2 ≤ n ≤ 106. If some n+ j, 1 ≤ j ≤ 23, is of the form aq with
q prime and a ≤ 41, then q > n2/41 > 4300. Further, the only values of q > 4300
with `2(q) ≤ 41 are q = 2p − 1 for p = 13 and some values of q > 130,000 with
`2(q) ≥ 17, so that in these latter cases, q`2(q) > 2 × 106. So except possibly for
those n with 13(213 − 1) = 106,483 | n + j for some 1 ≤ j ≤ 23, if n is such that
some n + j = aq with q prime and a ≤ 41, then n /∈ S. We have checked those n
with 106,483 | n + j for some 1 ≤ j ≤ 23 and n2 ≤ n ≤ 106, and each has some
n+j′ of the form aq with q prime, a ≤ 30, and `2(q) - a. It follows that these values
of n are not in S. This concludes our proof that S contains no numbers ≤ 106.

Remarks. Note that assuming Cramér’s conjecture that for some constant c and
for large x there is a prime in [x, x+c(log x)2], the estimate in Case 2 is eliminated.
By then optimizing the choice of y, our final count for S(x) would be of the shape
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O(x/ exp(c
√

log x log log x)) for some c > 0. The hardest cases to try and do better
seem to be r = O(1).

Let sr(m) be the largest r-smooth divisor of m and let Mr(n) = min{sr(n+ j) :
1 ≤ j ≤ r}. It follows from [3, Proposition 3.1] that if Mr(n) ≤ log2 r, then Sr(n)
is nonintegral. Unfortunately, as discussed in [3, Remark 2], it is not always the
case that Mr(n) ≤ log2 r. Nevertheless, it seems interesting to get estimates for
M(r) := max{Mr(n) : n > 0}.
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