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Abstract

Assuming a conjecture intermediate in strength between one of
Chowla and one of Heath-Brown on the least prime in a residue class,
we show that for any coprime integers a and m > 1, there are infinitely
many Carmichael numbers in the arithmetic progression a mod m.
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1 Introduction

For every prime number n, Fermat’s little theorem states that

bn ≡ b mod n for all b ∈ Z. (1)

Around 1910, Carmichael began an in-depth study of composite numbers n
with this property, which are now known as Carmichael numbers. In 1994 the
existence of infinitely many Carmichael numbers was established by Alford,
Granville and Pomerance [1].

Since prime numbers and Carmichael numbers are linked by the common
property (1), it is natural to ask whether certain known results about primes
can also be established for Carmichael numbers. In the present note, we focus
on the question of whether an analogue of Dirichlet’s theorem on primes in
an arithmetic progression holds for the set of Carmichael numbers. Below,
we give a conditional proof in support of the following:

Conjecture. There are infinitely many Carmichael numbers in any arith-
metic progression a mod m with gcd(a,m) = 1.

In fact, we believe a stronger assertion holds. A necessary condition
that there is at least one Carmichael number in the residue class a mod m
is that gcd(g, 2ϕ(g)) = 1, where g = gcd(a,m) and ϕ is Euler’s function.
It is reasonable to conjecture that this condition is also sufficient for the
existence of infinitely many Carmichael numbers in the residue class amodm.
However, our conditional argument does not appear to extend to this more
general case.

The idea behind our argument is to construct Carmichael numbers with
the special form n ·p, where n is a Carmichael number congruent to 1 mod m,
and p is a prime congruent to a mod m. To produce Carmichael numbers
in the arithmetic progression 1 mod m, we use a straightforward variant
of the Alford–Granville–Pomerance construction. The real difficulty in our
approach lies in finding primes p ≡ a mod m such that n and np are both
Carmichael numbers. To do this, we must assume (a weak version of) a con-
jecture of Heath-Brown on the smallest prime in an arithmetic progression,
hence our principal result is conditional.

More precisely, for any integers a, d with 1 6 a 6 d−1 and gcd(a, d) = 1,
let %(d, a) be the least prime p in the arithmetic progression a mod d, and
put

%(d) = max{%(d, a) : 1 6 a 6 d− 1, gcd(a, d) = 1}.
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In 1934, Chowla [3] showed that the bound %(d) �ε d
2+ε with any ε > 0

follows from the generalized Riemann hypothesis, and he conjectured that
the stronger bound %(d)�ε d

1+ε holds. In 1978, Heath-Brown [6], following
thoughts of Cramér on gaps between consecutive primes, conjectured that
the bound %(d)� d(log d)2 holds uniformly for all d > 2. In the present note
we shall assume that the bound

%(d) � d1+ξ/ log log d (d > 2) (2)

holds with a specific real number ξ > 0 identified in the proof of our principal
result. Note that this hypothesis is stronger than the conjecture of Chowla
but weaker than that of Heath-Brown.

Theorem 1. There is a value of ξ > 0 such that if (2) holds for ξ, then
there are infinitely many Carmichael numbers in any arithmetic progression
a mod m with gcd(a,m) = 1.

We remark that Rotkiewicz [10, 11] proved this result unconditionally
for pseudoprimes (that is, composite integers n such that 2n ≡ 2 mod n),
and later, van der Poorten and Rotkiewicz [9] established the same result for
strong pseudoprimes relative to an arbitrary (fixed) base b > 2.

In Section 3, we give a quantitative version of Theorem 1 under the
same hypothesis (2); see Theorem 2. We also give a quantitative version
of Theorem 1 under the slightly stronger hypothesis that the bound

%(d) � d exp((log d)κ) (d > 2) (3)

holds with some fixed real number κ < 1; see Theorem 3.
In Section 4 we conclude with a few additional remarks.
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port of this institution are gratefully acknowledged. The second author was
supported in part by NSF grant DMS-0703850.

2 Preliminaries

In what follows, the letters p and q always denote prime numbers. We denote
by π(x) the prime counting function, and by λ(n) the Carmichael function,
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i.e., the order of the largest cyclic subgroup of (Z/nZ)∗. For an integer n > 1,
we denote by P (n) the largest prime that divides n.

The following result, which is [2, Proposition 1.5], is crucial for our con-
struction of Carmichael numbers in the next section.

Lemma 1. There exists a constant c0 > 0 such that for any fixed coprime
integers a and m > 1, if x is sufficiently large (depending on m) and if L is
a squarefree integer that is coprime to m, then there is an integer k 6 x3/5

such that ∣∣{d | L : p = dk + 1 is prime, p 6 x, and p ≡ a mod m}
∣∣

>
c0

ϕ(m) log x

∣∣{d | L : d 6 x2/5}
∣∣.

For a finite abelian group G, the Davenport constant D(G) is the least
positive integer D with the property that for any sequence of D elements from
G, there is a nonempty subsequence whose product is the identity. Clearly
D(G) > λ(G), where λ(G) denotes the maximal order of an element in G. We
shall use the following result, which is a weakened form of [1, Theorem 1.1].

Lemma 2. If G is a finite abelian group, then D(G) < λ(G)(1 + log |G|).

Finally, we need the following lemma, which is [1, Proposition 1.2].

Lemma 3. Let G be a finite abelian group and let r > t > n = D(G) be
integers. Then any sequence of r elements of G contains at least

(
r
t

)
/
(
r
n

)
distinct subsequences of length at most t and at least t− n, whose product is
the identity.

3 Quantitative results

Theorem 2. There is a value of ξ > 0 such that if (2) holds for ξ, then there
is a constant c > 0 such that for any fixed coprime integers a and m > 1,
one has∣∣{n 6 X : n is Carmichael and n ≡ a mod m}

∣∣ > Xc/ log log logX

for all sufficiently large X (depending on the choice of m).
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Proof. Let the coprime integers a and m > 1 be fixed. Let y be a real
parameter which we shall choose to be large and put

Q = {q prime : y3/ log y < q 6 y3, P (q − 1) 6 y}.

Note that if y is large enough, then no prime factor of m lies in Q. Let L
denote the product of the primes in Q. We know from Friedlander [4] that
|Q| > c1π(y3) for some absolute constant c1 > 0; therefore,

L > exp((c1 + o(1))y3) (y →∞).

On the other hand, since L divides (hence does not exceed) the product of
all primes up to y3, we have

L 6 exp((1 + o(1))y3) (y →∞). (4)

We apply Lemma 1 with x = L5/2. Since all of the 2|Q| divisors d of L
satisfy d 6 x2/5, we see that there is an integer k 6 x3/5 for which the set

P = {p prime : p 6 x, p = dk + 1 for some d | L, and p ≡ a mod m}

has cardinality

|P| > c0
ϕ(m) log x

2|Q| > exp
(

1
5
c1y

3/ log y
)

(5)

for all large y, since 1/5 < (log 2)/3.
It is not so important that members of P are congruent to a mod m; what

is important is that the progressions 1 mod kL and a mod m are compatible
(since P is nonempty and gcd(L,m) = 1) and thus may be glued to a single
progression a′ mod lcm[kL,m], where gcd(a′, lcm[kL,m]) = 1. Let p0 be the
least prime in this progression, so that assuming (2) with ξ = 1

10
c1 we have

p0 � kLm exp
(

1
10
c1 log(kLm)/ log log(kLm)

)
.

Since m is fixed and k 6 x3/5 = L3/2, using (4) we derive the bound

p0 6 kL exp
(
( 1

12
c1 + o(1))y3/ log y

)
(y →∞). (6)

Write p0 = 1 + ukL, so that

u 6 exp
(

1
11
c1y

3/ log y
)

(7)

for large y.
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We now remove from P any prime which happens to divide uLp0, denoting
the remaining set by P ′. It is easy to see that there are � y3/ log y distinct
primes dividing uLp0, hence from (5) it follows that

|P ′| > exp
(
(1

5
c1 + o(1))y3/ log y

)
(y →∞). (8)

Let N be the set of integers n such that gcd(n, uLm) = 1 and n ≡ 1 mod k;
note that P ′ ⊂ N . Let G be the subgroup of (Z/ukLZ)∗×(Z/mZ)∗ consisting
of pairs (α, β) with α ≡ 1 mod k, and let Ψ : N → G be the natural map
that takes each integer n ∈ N to the pair

Ψ(n) = (n mod ukL, n mod m).

We claim that if S is any subset of P ′ with more than one element, nS is
the element of N given by nS =

∏
p∈S p, and Ψ(nS) is the identity in G, then

NS = nSp0 is a Carmichael number in the arithmetic progression a mod m.
To show this, we shall apply

Korselt’s criterion. We have bn ≡ b mod n for all integers b if and only
if n is squarefree and p− 1 divides n− 1 for every prime p dividing n.

The proof is elementary and in fact was found by Korselt before he knew of
the existence of any composite examples. Now consider NS = nSp0. Since
p0 6∈ P ′, NS is squarefree. Since Ψ(nS) is the identity element in G, we have
nS ≡ 1 mod m, hence NS ≡ p0 ≡ a mod m. Further, p0 − 1 = ukL | nS − 1,
and it follows that p0 − 1 | NS − 1. Similarly, for each prime p ∈ S, we
have p− 1 | kL | nS − 1, which implies p− 1 | NS − 1 since p0 ≡ 1 mod kL.
Thus, NS is a Carmichael number by Korselt’s criterion, and the claim is
established.

To estimate the number of Carmichael numbers produced in this manner,
we first need to bound the Davenport constant for the group G. From the
definition of G and using [1, Equation (4.3)], we see that for large y,

λ(G) 6 umλ(L) 6 ume6y.

In view of (7) and the fact that m is fixed, it follows that

λ(G) 6 exp
(
( 1

11
c1 + o(1))y3/ log y

)
(y →∞).

Further, using (4), (7), and the fact that m is fixed, we have

|G| = ϕ(ukL)ϕ(m)

ϕ(k)
6 uLm 6 exp((1 + o(1))y3) (y →∞).
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Hence, applying Lemma 2 we derive that

D(G) 6 exp
(
( 1

11
c1 + o(1))y3/ log y

)
(y →∞). (9)

Put
t = exp

(
1
10
c1y

3/ log y
)

and X = exp(3ty3).

Note that
log log logX = (3 + o(1)) log y (y →∞). (10)

If NS is a Carmichael number of the type constructed above, and |S| 6 t,
then by (6) we have, as y →∞,

NS = p0

∏
p∈S

p 6 xt
(
1 + kL exp

(
1
11
c1y

3/ log y
))

= x(1+o(1))t,

where we have used the inequality kL 6 x in the last step. Taking into
account (4) we have log x = 5

2
logL 6 (5

2
+ o(1))y3, hence

NS 6 exp(3ty3) = X

if y is sufficiently large.
Finally, one sees that the number T of Carmichael numbers NS produced

in this manner is equal to the number of distinct nonempty subsets S ⊂ P ′
such that Ψ(nS) is the identity in G, and |S| 6 t. Applying Lemma 3 with
r = |P ′| and n = D(G), we obtain the lower bound

T >

(
|P ′|
btc

)/(
|P ′|
D(G)

)
>

(
|P ′|
btc

)btc
|P ′|−D(G) = |P ′|btc−D(G) btc−btc . (11)

By (8), (9), and our definition of t, it follows that

T > exp
(
(1

5
c1 − 1

10
c1 + o(1))ty3/ log y

)
(y →∞).

From (10) it follows that ty3/ log y ∼ logX/ log log logX as y → ∞, so it
follows that with c = 1

11
c1

log T >
c logX

log log logX

for all sufficiently large y. Since the value of y can be uniquely determined
from X, the result follows.
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Theorem 3. Suppose that (3) holds with some real number κ < 1. Then
there is a constant c > 0, depending only on κ, such that for any coprime
integers a and m > 1, one has∣∣{n 6 X : n is Carmichael and n ≡ a mod m}

∣∣ > Xc

for all sufficiently large X (depending on the choice of m).

Proof. Our proof follows closely that of Theorem 2, so we focus mainly on
the modifications that are needed.

Let 0 < κ < 1 be arbitrary and suppose that (3) holds with κ. Let Q and
L be defined as before. Let c2 be a fixed real number larger than 5/(2− 2κ).
Let y be a real parameter which is assumed large. Applying Lemma 1 with
x = exp(c2y

3κ), we see that there is an integer k 6 x3/5 for which

|P| > c0
ϕ(m) log x

∣∣{d | L : d 6 x2/5}
∣∣,

where P is defined as before. The product of any

s =

⌊
log(x2/5)

log(y3)

⌋
=

⌊
2c2y

3κ

15 log y

⌋
distinct primes in Q is a divisor d of L with d 6 x2/5. Since |Q| � π(y3), it
follows that as y →∞,

∣∣{d | L : d 6 x2/5}
∣∣ > (|Q|

s

)
>

(
|Q|
s

)s
> exp((2−2κ

5
c2 + o(1))y3κ).

Consequently, |P| > exp(c3y
3κ) for all large y, where c3 is any fixed number

such that 1 < c3 <
2−2κ

5
c2.

As before, we glue the progressions 1 mod kL and a mod m to a single
progression a′ mod lcm[kL,m], where gcd(a′, lcm[kL,m]) = 1. By (3) the
least prime p0 in this progression satisfies the bound

p0 � kLm exp((log(kLm))κ).

Since m is fixed and k 6 x3/5 = Lo(1), using (4) we derive the bound

p0 6 kL exp(c4y
3κ) (12)
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for all large y, where c4 is any fixed number such that 1 < c4 < c3. Write
p0 = 1 + ukL, so that u 6 exp(c4y

3κ).
We now proceed as in the proof of Theorem 2 to form the sets P ′ and

N , the group G, and the map Ψ : N → G. Arguing as before, we derive the
bounds

|P ′| > exp((c3 + o(1))y3κ) (y →∞) (13)

and
D(G) 6 exp((c4 + o(1))y3κ) (y →∞). (14)

Let c5, c6 be fixed real numbers such that c4 < c5 < c3 and c6 > c2, and put

t = exp(c5y
3κ) and X = exp(c6ty

3κ).

If NS = nSp0 is a Carmichael number of the type constructed in Theorem 2,
with |S| 6 t, then by (12) and the fact that log x = c2y

3κ, we have

NS = p0

∏
p∈S

p 6 xt
(
1 + kL exp(c4y

3κ)
)

= x(1+o(1))t = exp((c2 + o(1))ty3κ)

as y →∞. Hence, NS 6 X for large y. Using the lower bound (11) together
with (13), (14), and our definition of t, we see the number T of Carmichael
numbers NS produced in this manner satisfies

T > exp((c3 − c5 + o(1))ty3κ) = X(c3−c5)/c6+o(1) (y →∞).

Thus, if 0 < c < (c3 − c5)/c6 is fixed, then T > Xc for all sufficiently
large y. Since the value of y can be uniquely determined from X, the result
follows.

4 Remarks

We first remark that for the residue class 1 mod m we do not need the
prime p0 as in the previous section, and without a need for bounding p0, the
rest of the proof is completely rigorous. In fact, one can easily amend the
existing proofs of the infinitude of Carmichael numbers in [1] or [5] to prove
the following result, where the exponent 1/3 is from [5].

Theorem 4. Let m be an arbitrary fixed positive integer. The number of
Carmichael numbers n 6 X with n ≡ 1 mod m exceeds X1/3 once X is
sufficiently large (depending on the choice of m).

9



In this result it would be interesting to let the modulus m vary more
dynamically with X; we leave this as a project for the interested reader.

Could it be that for each m, all but finitely many Carmichael numbers
are congruent to 1 mod m? Certainly not if our Conjecture holds, and so
certainly not if the weaker form of Heath-Brown’s conjecture described above
holds. Of course, there may be a cheaper way of disproving such a possibility.
We have not found such a path, but we remark that it is easy to see the
following: For each number B there is some pair a,m with a 6≡ 1 mod m
such that there are at least B Carmichael numbers n ≡ a mod m.

Indeed, let C(x) denote the number of Carmichael numbers in [1, x], and
let x be large. Since no positive integer n 6 x is congruent to 1 mod m
for every modulus m 6 2 log x, there is a pair a,m with a 6≡ 1 mod m
and m 6 2 log x such that at least C(x)/(2 log2 x) Carmichael numbers
lie in the residue class a mod m. From [5] it follows that for all large x,
C(x)/(2 log2 x) > x1/3, which thus proves the assertion in a stronger form.

Finally, let Ca,m(x) denote the number of Carmichael numbers n 6 x
with n ≡ a mod m. It may be that C1,m(x) ∼ C(x) as x → ∞ for each
fixed m. For example, using computations from [8] at x = 2.5 × 1010, we
have Ca,3(x)/C(x) ≈ 0.0116, 0.9792, 0.0092 for a = 0, 1, 2, respectively. Also,
Ca,4(x)/C(x) ≈ 0.9783, 0.0217 for a = 1, 3, respectively. From statistics in [7]
at x = 1015, we have Ca,5(x)/C(x) ≈ 0.0553, 0.8570, 0.0290, 0.0291, 0.0297
for a = 0, 1, 2, 3, 4, respectively.
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