Sierpiński and Carmichael numbers

Department of Mathematics
University of Missouri
Columbia, MO 65211, USA
bbanks@math.missouri.edu
Mathematics Department
Carrie Finch
Florian Luca
Carl Pomerance
Department of Applied Mathematics
Naval Postgraduate School
Monterey, CA 93943, USA
pstanica@nps.edu

September 30, 2012

Abstract

We establish several related results on Carmichael, Sierpiński and Riesel numbers. First, we prove that almost all odd natural numbers k have the property that $2^{n} k+1$ is not a Carmichael number for any $n \in \mathbb{N}$; this implies the existence of a set \mathcal{K} of positive lower density such that for any $k \in \mathcal{K}$ the number $2^{n} k+1$ is neither prime nor Carmichael for every $n \in \mathbb{N}$. Next, using a recent result of Matomäki, we show that there are $\gg x^{1 / 5}$ Carmichael numbers up to x that are also Sierpiński and Riesel. Finally, we show that if $2^{n} k+1$ is Lehmer, then $n \leqslant 150 \omega(k)^{2} \log k$, where $\omega(k)$ is the number of distinct primes dividing k.

1 Introduction

In 1960, Sierpiński [25] showed that there are infinitely many odd natural numbers k with the property that $2^{n} k+1$ is composite for every natural number n; such an integer k is called a Sierpiński number in honor of his work. Two years later, J. Selfridge (unpublished) showed that 78557 is a Sierpiński number, and this is still the smallest known example. ${ }^{1}$

Every currently known Sierpiński number k possesses at least one covering set \mathcal{P}, which is a finite set of prime numbers with the property that $2^{n} k+1$ is divisible by some prime in \mathcal{P} for every $n \in \mathbb{N}$. For example, Selfridge showed that 78557 is Sierpiński by proving that every number of the form $2^{n} \cdot 78557+1$ is divisible by a prime in $\mathcal{P}:=\{3,5,7,13,19,37,73\}$. When a covering set is used to show that a given number is Sierpiński, every natural number in a certain arithmetic progression (determined by the covering set) must also be Sierpiński; in particular, the set of Sierpiński numbers has a positive lower density.

If N is a prime number, Fermat's little theorem asserts that

$$
\begin{equation*}
a^{N} \equiv a \quad(\bmod N) \quad \text { for all } a \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Around 1910, Carmichael [9, 10] initiated the study of composite numbers N with the same property; these are now known as Carmichael numbers. In 1994, Alford, Granville and Pomerance [1] proved the existence of infinitely

[^0]many Carmichael numbers. Since prime numbers and Carmichael numbers share the property (1), it is natural to ask whether certain results for primes can also be established for Carmichael numbers; see, for example, $[2,3,5$, $14,20,29]$ and the references contained therein.

Our work in this paper originated with the question as to whether there exist Sierpiński numbers k such that $2^{n} k+1$ is not a Carmichael number for any $n \in \mathbb{N}$. Since there are many Sierpiński numbers and only a few Carmichael numbers, it is natural to expect there are many such k. However, because the parameter n can take any positive integer value, the problem is both difficult and interesting. Later on, we dropped the condition that k be Sierpiński and began to study odd numbers k for which $2^{n} k+1$ is never a Carmichael number. Our main result is the following theorem.

Theorem 1. Almost all odd natural numbers k have the property that $2^{n} k+1$ is not a Carmichael number for any $n \in \mathbb{N}$.

This is proved in $\S 2$. Our proof uses results and methods from a recent paper of Cilleruelo, Luca and Pizarro-Madariaga [11], where it is shown that the bound

$$
\begin{equation*}
n \leqslant 2^{2000000 \tau(k)^{2} \omega(k)(\log k)^{2}} \tag{2}
\end{equation*}
$$

holds for every Carmichael number $2^{n} k+1$. Here, $\tau(k)$ is the number of positive integer divisors of k, and $\omega(k)$ is the number of distinct prime factors of k. To give some perspective on this result, let $v_{2}(\cdot)$ be the standard 2 -adic valuation, so that $2^{-v_{2}(m)} m$ is the odd part of any natural number m. Theorem 1 implies that the set

$$
\left\{k=2^{-v_{2}(n-1)}(n-1): n \text { is a Carmichael number }\right\}
$$

has asymptotic density zero. ${ }^{2}$ By comparison, Erdős and Odlyzko [15] have shown that the set

$$
\left\{k=2^{-v_{2}(p-1)}(p-1): p \text { is a prime number }\right\}
$$

has a positive lower density.
Since the collection of Sierpiński numbers has a positive lower density, the following corollary is an immediate consequence of Theorem 1.

[^1]Corollary 1. There exists a set $\mathcal{K} \subseteq \mathbb{N}$ of positive lower density such that for any fixed $k \in \mathcal{K}$, the number $2^{n} k+1$ is neither prime nor Carmichael for each $n \in \mathbb{N}$.

Riesel numbers have a similar definition to that of Sierpiński numbers. An odd natural number k is called a Riesel number if $2^{n} k-1$ is composite for all $n \in \mathbb{N}$. Such numbers were first investigated in 1956 by Riesel [24]. At present, the smallest known example is $509203 .{ }^{3}$ It is known that there are infinitely many natural numbers that are both Sierpiński and Riesel. Using a recent result of Matomäki [20] and Wright [29] coupled with an extensive computer search, we prove the following result in $\S 3$.

Theorem 2. Infinitely many natural numbers are simultaneously Sierpiński, Riesel, and Carmichael. In fact, the number of them up to x is $>x^{1 / 5}$ for all sufficiently large x.

Let $\varphi(\cdot)$ be the Euler function, which is defined by $\varphi(n):=n \prod_{p \mid n}\left(1-p^{-1}\right)$ for all $n \in \mathbb{N}$; in particular, one has $\varphi(p)=p-1$ for every prime p. In 1932, Lehmer [19] asked whether there are any composite numbers n such that $\varphi(n) \mid n-1$, and the answer to this question is still unknown. We say that n is a Lehmer number if n is composite and $\varphi(n) \mid n-1$. It is easy to see that every Lehmer number is Carmichael, but there are infinitely many Carmichael numbers which are not Lehmer (see [4]). We prove the following result in $\S 4$.

Theorem 3. Let k be an odd natural number. If $2^{n} k+1$ is Lehmer, then $n \leqslant 150 \omega(k)^{2} \log k$. If $2^{n} k-1$ is Lehmer, then $n=1$.

Throughout the paper, we use $\log _{k} x$ to denote the k-th iterate of the function $\log x:=\max \{\ln x, 1\}$, where $\ln x$ is the natural logarithm. We use the notations O, o, \ll, \gg with their customary meanings. Any constant or function implied by one of these symbols is absolute unless otherwise indicated.

Acknowledgments. The authors thank Jan-Hendrik Evertse for helpful advice and for providing some references. They also thank Pedro Berrizbeitia for an enlightening conversation. The third-named author was supported in

[^2]part by Project PAPIIT 104512 and a Marcos Moshinsky fellowship. The fourth-named author would like to acknowledge support from NSF grant DMS-1001180.

2 Proof of Theorem 1

2.1 Preliminary estimates

Let x be a large real parameter, and put

$$
\mathcal{C}(x):=\left\{\text { odd } k \in(x / 2, x]: 2^{n} k+1 \text { is Carmichael for some } n\right\} .
$$

If $\mathcal{S}(x) \subseteq \mathcal{C}(x)$ for all large x, we say that $\mathcal{S}(x)$ is negligible if $|\mathcal{S}(x)|=o(x)$ as $x \rightarrow \infty$. Below, we construct a sequence $\mathfrak{C}_{1}(x), \mathfrak{C}_{2}(x), \ldots$ of negligible subsets of $\mathcal{C}(x)$, and for each $j \geqslant 1$ we denote

$$
\mathcal{C}_{j}^{*}(x):=\mathcal{C}(x) \backslash \bigcup_{i=1}^{j} \mathcal{C}_{i}(x)
$$

Theorem 1 is the statement that $\mathcal{C}(x)$ is itself negligible; thus, we need to show that $\mathcal{C}_{j}^{*}(x)$ is negligible for some j.

Let $\Omega(n)$ be the number of prime factors of n, counted with multiplicity, and put

$$
\mathcal{N}_{1}(x):=\left\{k \leqslant x: \Omega(k)>1.01 \log _{2} x\right\} .
$$

Since $\log _{2} x$ is the normal order of $\Omega(n)$ over numbers $n \leqslant x$, it follows that

$$
\begin{equation*}
\left|\mathcal{N}_{1}(x)\right|=o(x) \quad(x \rightarrow \infty) \tag{3}
\end{equation*}
$$

In fact, using the Turán-Kubilius inequality (see [27]) one sees that $\left|\mathcal{N}_{1}(x)\right| \ll$ $x / \log _{2} x$, and stronger bounds can be deduced from results in the literature (although they are not needed here). Using (3) it follows that

$$
\mathcal{C}_{1}(x):=\mathcal{C}(x) \cap \mathcal{N}_{1}(x)
$$

is negligible.
Next, let $\Omega(z ; n)$ denote the number of prime factors $p \leq z$ of n, counted with multiplicity. Set

$$
\mathcal{N}_{2}(x):=\left\{k \leqslant x: \Omega\left(z_{1} ; k\right)>2 \log _{3} x\right\} \quad \text { with } \quad z_{1}:=(\log x)^{10}
$$

Since the normal order of $\Omega\left(z_{1} ; n\right)$ over numbers $n \leqslant x$ is $\log _{2} z_{1} \sim \log _{3} x$, it follows that $\left|\mathcal{N}_{2}(x)\right|=o(x)$ as $x \rightarrow \infty$; therefore,

$$
\mathcal{C}_{2}(x):=\mathcal{C}(x) \cap \mathcal{N}_{2}(x)
$$

is negligible.
In what follows, we denote

$$
y_{\mathrm{L}}:=x^{1 / 2-10 \varepsilon} \quad \text { and } \quad y_{\mathrm{U}}:=x^{1 / 2+10 \varepsilon},
$$

where

$$
\varepsilon=\varepsilon(x):=\frac{1}{\log _{2} x}
$$

According to Tenenbaum [26, Théorème 1] (see also Ford [17, Theorem 1]) there are precisely $x /\left(\log _{2} x\right)^{\delta+o(1)}$ numbers $k \leqslant x$ that have a divisor $d \in$ $\left[y_{\mathrm{L}}, y_{\mathrm{U}}\right]$, where $\delta:=1-(1+\ln \ln 2) / \ln 2$; in particular, the set

$$
\mathcal{N}_{3}(x):=\left\{k \leqslant x: k \text { has a divisor } d \in\left[y_{\mathrm{L}}, y_{\mathrm{U}}\right]\right\}
$$

is such that $\left|\mathcal{N}_{3}(x)\right|=o(x)$ as $x \rightarrow \infty$; therefore,

$$
\mathcal{C}_{3}(x):=\mathcal{C}(x) \cap \mathcal{N}_{3}(x)
$$

is negligible.
For each $k \in \mathcal{C}(x)$, let $n_{0}(k)$ be the least $n \in \mathbb{N}$ for which $2^{n} k+1$ is a Carmichael number. For any real $X \geqslant 1$ let

$$
\mathcal{F}(X):=\left\{k \in \mathcal{C}(x): n_{0}(k) \leqslant X\right\},
$$

and for any subset $\mathcal{Q} \subseteq \mathbb{N}$, let $\mathcal{F}(Q ; X)$ be the set of $k \in \mathcal{F}(X)$ for which there exists $n \leqslant X$ with the property that $2^{n} k+1$ is a Carmichael number divisible by some number $q \in \mathcal{Q}$.

Lemma 1. If X and Q are both defined in terms of x, and one has

$$
X \sum_{q \in \mathbb{Q}} q^{-1}=o(1) \quad \text { and } \quad X|\mathcal{Q}|=o(x) \quad(x \rightarrow \infty)
$$

then $|\mathcal{F}(\Omega ; X)|=o(x)$ as $x \rightarrow \infty$.

Proof. For fixed $n \leqslant X$ and $q \in Q$, if $2^{n} k+1$ is a Carmichael number that is divisible by q, then k lies in the arithmetic progression $-2^{-n} \bmod q$; thus, the number of such $k \leqslant x$ cannot exceed $x / q+1$. Summing over all $n \leqslant X$ and $q \in \mathcal{Q}$ we derive that

$$
|\mathcal{F}(Q ; X)| \leqslant \sum_{\substack{n \leqslant X \\ q \in \mathcal{Q}}}(x / q+1) \leqslant x X \sum_{q \in \mathcal{Q}} q^{-1}+X|\mathcal{Q}|=o(x) \quad(x \rightarrow \infty)
$$

as required.

2.2 Small values of $n_{0}(k)$

Consider the set

$$
\mathcal{C}_{4}(x):=\mathcal{F}\left(X_{1}\right), \quad \text { where } \quad X_{1}:=\frac{\log x}{\log _{2} x}
$$

According to Pomerance [22] there are $\ll t / L(t)$ Carmichael numbers that do not exceed t, where

$$
L(t):=\exp \left(\frac{\log t \log _{3} t}{\log _{2} t}\right) .
$$

Since the function $f(k):=2^{n_{0}(k)} k+1$ is one-to-one and maps $\mathcal{C}_{4}(x)$ into the set of Carmichael numbers not exceeding $2^{X_{1}} x+1$, we have

$$
\left|\mathcal{C}_{4}(x)\right| \ll \frac{2^{X_{1}} x}{L\left(2^{X_{1}} x\right)}=\frac{x}{L(x)^{1+o(1)}}=o(x) \quad(x \rightarrow \infty)
$$

In other words, $\mathfrak{C}_{4}(x)$ is negligible.

2.3 Medium values of $n_{0}(k)$

Our aim in this subsection is to show that

$$
\mathcal{S}(x):=\mathcal{F}\left(X_{2}\right) \backslash \mathcal{F}\left(X_{1}\right) \quad \text { with } \quad X_{2}:=\exp \left(\frac{\log x}{\log _{2} x}\right)
$$

is negligible. To do this, we define five more negligible sets $\mathcal{C}_{5}(x), \ldots, \mathfrak{C}_{9}(x)$ and show that $\mathcal{S}(x)$ is contained in $\bigcup_{i=1}^{9} \mathcal{C}_{i}(x)$. We denote

$$
\mathcal{S}_{j}^{*}(x):=\mathcal{S}(x) \backslash \bigcup_{i=1}^{j} \mathfrak{C}_{i}(x) \quad(1 \leqslant j \leqslant 9)
$$

As before, we put

$$
z_{1}:=(\log x)^{10}, \quad y_{\mathrm{L}}:=x^{1 / 2-10 \varepsilon}, \quad y_{\mathrm{U}}:=x^{1 / 2+10 \varepsilon}, \quad \varepsilon:=\frac{1}{\log _{2} x} .
$$

Note that $X_{2}=x^{\varepsilon}$ with this notation.
Let $N:=2^{n} k+1$ be a Carmichael number with $k \in \mathcal{S}_{4}^{*}(x)$ and $n \leqslant X_{2}$. For any prime p dividing N we have $p-1 \mid N-1=2^{n} k$ (the well-known Korselt's criterion); thus, $p=2^{m} d+1$ for some $m \leqslant n$ and some divisor $d \mid k$. Note that $d \notin\left[y_{\mathrm{L}}, y_{\mathrm{U}}\right]$ since $k \notin \mathcal{C}_{3}(x)$.

Suppose that $d>y_{\mathrm{U}}$. Writing $k=d d_{1}$ we see that $d_{1} \leqslant x / d<x / y_{\mathrm{U}}=y_{\mathrm{L}}$. Furthermore, $2^{n-m} d_{1}=(N-1) /(p-1) \equiv 1(\bmod p)$; that is, $p \mid 2^{n-m} d_{1}-1$. Note that $2^{n-m} d_{1}-1=(N-p) /(p-1)$ is nonzero since N is Carmichael, hence composite.

Now let \mathcal{P} be the set of primes of the form $2^{m} d+1$ with $m \leqslant X_{2}$ and $d \in\left[y_{\mathrm{U}}, x\right]$, and let \mathcal{P}_{1} be the subset of \mathcal{P} consisting of those primes p that divide at least one Carmichael number $N=2^{n} k+1$ with $k \in \mathcal{S}_{4}^{*}(x)$ and $n \leqslant X_{2}$. In view of the above discussion we have

$$
\prod_{p \in \mathcal{P}_{1}} p \mid \prod_{\substack{0 \leqslant \ell<X_{2} \\ d_{1} \leqslant y_{\mathrm{L}} \\\left(\ell, d_{1}\right) \neq(0,1)}}\left(2^{\ell} d_{1}-1\right) \leqslant \prod_{\substack{0 \leqslant \ell \leq X_{2} \\ d_{1} \leqslant y_{\mathrm{L}}}} e^{X_{2}} \leqslant \exp \left(2 X_{2}^{2} y_{\mathrm{L}}\right)
$$

Here, we have used the fact that $2^{\ell} d_{1}-1 \leqslant 2^{X_{2}} y_{\mathrm{L}} \leqslant e^{X_{2}}$ holds for $x>x_{0}$. Since $p \geqslant y_{\mathrm{U}} \geqslant x^{1 / 2}$ for all $p \in \mathcal{P}$, it follows that

$$
\left|\mathcal{P}_{1}\right| \leqslant \frac{\log \left(\prod_{p \in \mathcal{P}_{1}} p\right)}{\log \left(x^{1 / 2}\right)} \leqslant \frac{4 X_{2}^{2} y_{\mathrm{L}}}{\log x}=\frac{4 x^{1 / 2-8 \varepsilon}}{\log x}
$$

for $x>x_{0}$; in particular, $X_{2}\left|\mathcal{P}_{1}\right|=o(x)$ as $x \rightarrow \infty$. Using this inequality for $\left|\mathcal{P}_{1}\right|$ we also have

$$
X_{2} \sum_{p \in \mathcal{P}_{1}} p^{-1} \leqslant \frac{X_{2}\left|\mathcal{P}_{1}\right|}{y_{\mathrm{U}}} \leqslant \frac{4 x^{-17 \varepsilon}}{\log x}=o(1) \quad(x \rightarrow \infty)
$$

Applying Lemma 1 we see that the set

$$
\mathcal{C}_{5}(x):=\mathcal{S}_{4}^{*}(x) \cap \mathcal{F}\left(\mathcal{P}_{1} ; X_{2}\right)=\mathcal{C}_{4}^{*}(x) \cap \mathcal{F}\left(\mathcal{P}_{1} ; X_{2}\right)
$$

is negligible.

Similarly, let \mathcal{P}_{2} be the set of primes of the form $2^{m} d+1$ with $m \geqslant \log x$ and $d \leqslant y_{\mathrm{L}}$. Clearly, for $x>x_{0}$ we have the bound

$$
\begin{equation*}
\left|\mathcal{P}_{2}\right| \leqslant\left|\left\{(m, d): 1 \leqslant m \leqslant X_{2}, d \leqslant y_{\mathrm{L}}\right\}\right| \leqslant X_{2} y_{\mathrm{L}}=x^{1 / 2-9 \varepsilon} \tag{4}
\end{equation*}
$$

Therefore, $X_{2}\left|\mathcal{P}_{2}\right|=o(x)$ as $x \rightarrow \infty$. Moreover,

$$
X_{2} \sum_{p \in \mathcal{P}_{2}} p^{-1} \leqslant \frac{X_{2}\left|\mathcal{P}_{2}\right|}{2^{\log x}} \leqslant x^{1 / 2-\log 2-8 \varepsilon}=o(1) \quad(x \rightarrow \infty)
$$

Applying Lemma 1 we see that the set

$$
\mathcal{C}_{6}(x):=\mathcal{S}_{5}^{*}(x) \cap \mathcal{F}\left(\mathcal{P}_{2} ; X_{2}\right)=\mathcal{C}_{5}^{*}(x) \cap \mathcal{F}\left(\mathcal{P}_{2} ; X_{2}\right)
$$

is negligible.
We now take a moment to observe that for every $k \in \mathcal{S}_{6}^{*}(x)$ one has

$$
n_{0}(k) \leqslant X_{3} \quad \text { with } \quad X_{3}:=(\log x)^{3} .
$$

Indeed, let $2^{n} k+1$ be a Carmichael number such that $n \leqslant X_{2}$. If $p \mid 2^{n} k+1$, then $p=2^{m} d+1$ with $m \leqslant \log x, d \leqslant y_{\mathrm{L}}$ and $d \mid k$. Taking into account that $d \leqslant y_{\mathrm{L}} \leqslant x^{1 / 2} \leqslant 2^{\log x}-1$ for $x>x_{0}$, it follows that $2^{m} d+1 \leqslant 2^{2 \log x}$, and so

$$
2^{n} \leqslant 2^{n} k+1 \leqslant \prod_{\substack{m \leqslant \log x \\ d \leqslant y_{\mathrm{L}}, d \mid k}}\left(2^{m} d+1\right) \leqslant 2^{2(\log x)^{2} \tau(k)}
$$

Since $k \notin \mathcal{N}_{1}(x)$ we have

$$
\begin{equation*}
\tau(k) \leqslant 2^{\Omega(k)} \leqslant 2^{1.01 \log _{2} x} \leqslant(\log x)^{0.8} \tag{5}
\end{equation*}
$$

and therefore,

$$
n \leqslant 2(\log x)^{2.8} \leqslant X_{3} \quad\left(x>x_{0}\right)
$$

Let \mathcal{P}_{3} be the set of primes of the form $2^{m} d+1$ with $m \geqslant M$ and $d \leqslant y_{\mathrm{L}}$, where

$$
M:=10 \log _{2} x .
$$

The estimation in (4) shows that $\left|\mathcal{P}_{3}\right| \leqslant x^{1 / 2-9 \varepsilon}$; thus $X_{3}\left|\mathcal{P}_{3}\right|=o(x)$ as $x \rightarrow \infty$. Also,

$$
X_{3} \sum_{p \in \mathcal{P}_{3}} p^{-1} \leqslant X_{3}\left(\sum_{m \geqslant M} 2^{-m}\right)\left(\sum_{d \leqslant y_{\mathrm{L}}} d^{-1}\right) \ll(\log x)^{4-10 \log 2}=o(1)
$$

as $x \rightarrow \infty$. By Lemma 1 it follows that the set

$$
\mathcal{C}_{7}(x):=\mathcal{S}_{6}^{*}(x) \cap \mathcal{F}\left(\mathcal{P}_{3} ; X_{3}\right)=\mathcal{C}_{6}^{*}(x) \cap \mathcal{F}\left(\mathcal{P}_{3} ; X_{3}\right)
$$

is negligible.
Next, let Q_{1} be the collection of almost primes of the form $q=p_{1} p_{2}$, where $p_{1}=2^{m_{1}} d+1, p_{2}=2^{m_{2}} d+1, m_{1}<m_{2} \leqslant M$, and $d>z_{1}$. Here, $M:=10 \log _{2} x$ and $z_{1}:=(\log x)^{10}$ as before. Clearly, the bound

$$
\left|Q_{1}\right| \leqslant\left|\left\{\left(m_{1}, m_{2}, d\right): m_{1}, m_{2} \leqslant M, d \leqslant y_{\mathrm{L}}\right\}\right| \leqslant M^{2} y_{\mathrm{L}} \leqslant x^{1 / 2-9 \varepsilon}
$$

holds if $x>x_{0}$, and thus $X_{3}\left|\mathfrak{Q}_{1}\right|=o(x)$ as $x \rightarrow \infty$. Also,

$$
X_{3} \sum_{q \in Q_{1}} q^{-1} \leqslant X_{3}\left(\sum_{m \geqslant 1} 2^{-m}\right)^{2}\left(\sum_{d>z_{1}} d^{-2}\right) \ll \frac{X_{3}}{z_{1}}=(\log x)^{-7}=o(1)
$$

as $x \rightarrow \infty$. Applying Lemma 1 again, we see that

$$
\mathcal{C}_{8}(x):=\mathcal{S}_{7}^{*}(x) \cap \mathcal{F}\left(Q_{1} ; X_{3}\right)=\mathcal{C}_{7}^{*}(x) \cap \mathcal{F}\left(Q_{1} ; X_{3}\right)
$$

is negligible.
Similarly, let \mathcal{Q}_{2} be the collection of almost primes of the form $q=p_{1} p_{2}$, where $p_{1}=2^{m_{1}} d_{1}+1, p_{2}=2^{m_{2}} d_{2}+1, m_{1}<m_{2} \leqslant M, d_{1}, d_{2} \leqslant y_{\mathrm{L}}$, and $\operatorname{gcd}\left(d_{1}, d_{2}\right)$ is divisible by some prime $r>z_{1}$. We have

$$
\left|\mathfrak{Q}_{2}\right| \leqslant\left|\left\{\left(m_{1}, m_{2}, d_{1}, d_{2}\right): m_{1}, m_{2} \leqslant M, d_{1}, d_{2} \leqslant y_{\mathrm{L}}\right\}\right| \leqslant M^{2} y_{\mathrm{L}}^{2} \leqslant x^{1-19 \varepsilon}
$$

if $x>x_{0}$, hence $X_{3}\left|\mathcal{Q}_{2}\right|=o(x)$ as $x \rightarrow \infty$. Furthermore,

$$
\begin{aligned}
\sum_{q \in Q_{2}} q^{-1} & \leqslant\left(\sum_{m \geqslant 1} 2^{-m}\right)^{2}\left(\sum_{\substack{d_{1}=r u \leqslant y_{\mathrm{L}} \\
d_{2}=r v \leqslant y_{\mathrm{L}} \\
r>z_{1}}}\left(d_{1} d_{2}\right)^{-1}\right) \\
& \ll\left(\sum_{r>z_{1}} r^{-2}\right)\left(\sum_{\substack{u \leqslant y_{\mathrm{L}}}} u^{-1}\right)^{2} \ll(\log x)^{-8}
\end{aligned}
$$

and therefore

$$
X_{3} \sum_{q \in Q_{2}} q^{-1} \ll(\log x)^{-5}=o(1) \quad(x \rightarrow \infty)
$$

By Lemma 1 the set

$$
\mathcal{C}_{9}(x):=\mathcal{S}_{8}^{*}(x) \cap \mathcal{F}\left(Q_{2} ; X_{3}\right)=\mathcal{C}_{8}^{*}(x) \cap \mathcal{F}\left(Q_{2} ; X_{3}\right)
$$

is negligible.
To conclude this subsection, we now show that $\mathcal{S}_{9}^{*}(x)=\varnothing$; this implies that $\mathcal{S}(x)$ is contained in $\mathcal{C}_{1}(x) \cup \cdots \cup \mathcal{C}_{9}(x)$ as claimed.

Suppose on the contrary that $\mathcal{S}_{9}^{*}(x) \neq \varnothing$. For each $k \in \mathcal{S}_{9}^{*}(x)$ there exists $n \in\left(X_{1}, X_{3}\right]$ such that $2^{n} k+1$ is Carmichael; let

$$
\begin{equation*}
2^{n} k+1=\prod_{j=1}^{\ell}\left(2^{m_{j}} d_{j}+1\right) \tag{6}
\end{equation*}
$$

be its factorization into (distinct) primes. Grouping the primes on the right side of (6) according to the size of d_{j}, we set

$$
A:=\prod_{\substack{1 \leqslant j \leqslant \ell \\ d_{j} \leqslant z_{1}}}\left(2^{m_{j}} d_{j}+1\right) \quad \text { and } \quad B:=\frac{2^{n} k+1}{A} .
$$

For every prime $p_{j}:=2^{m_{j}} d_{j}+1$ dividing A we have $m_{j}<M$ since $k \notin \mathcal{C}_{7}(x)$; therefore,

$$
p_{j} \leqslant 2^{M+1} z_{1}=2^{10 \log _{2} x+1+(10 / \log 2) \log _{2} x} \leqslant 2^{30 \log _{2} x}=2^{3 M}
$$

Taking into account the bound (5), we see that

$$
\begin{equation*}
A \leqslant \prod_{\substack{d \mid k \\ m<M}} 2^{3 M} \leqslant 2^{3 M^{2} \tau(k)} \leqslant 2^{300\left(\log _{2} x\right)^{2}(\log x)^{0.8}} \leqslant 2^{(\log x)^{0.9}} \quad\left(x>x_{0}\right) \tag{7}
\end{equation*}
$$

On the other hand, every prime $p_{j}:=2^{m_{j}} d_{j}+1$ dividing B has $d_{j}>z_{1}$. Since each $m_{j}<M$ and $k \notin \mathcal{C}_{8}(x)$, it follows that the divisors d_{j} are different for distinct primes p_{j} dividing B. For any such divisor d_{j}, factor $d_{j}=d_{j}^{-} d_{j}^{+}$, where $d_{j}^{-}\left[\right.$resp. $\left.d_{j}^{+}\right]$is the largest divisor of d that is composed solely of primes $\leqslant z_{1}\left[\right.$ resp. $\left.>z_{1}\right]$. The numbers $\left\{d_{j}^{+}\right\}$are coprime in pairs since $k \notin \mathcal{C}_{9}(x)$; consequently,

$$
\prod_{p_{j} \mid B} d_{j}^{+} \leqslant k
$$

as the product on the left side is a divisor of k. As for the numbers $\left\{d_{j}^{-}\right\}$, we note that

$$
d_{j}^{-} \leqslant z_{1}^{\Omega\left(z_{1} ; k\right)} \leqslant(\log x)^{20 \log _{3} x} \leqslant 2^{\left(\log _{2} x\right)^{2}} \quad\left(x>x_{0}\right)
$$

where we have used the fact that $k \notin \mathcal{N}_{2}(x)$ for the second inequality. Putting everything together, we derive the bound

$$
\begin{equation*}
B \leqslant \prod_{p_{j} \mid B} 2^{M+1} d_{j}^{-} d_{j}^{+} \leqslant\left(2^{10 \log _{2} x+1+\left(\log _{2} x\right)^{2}}\right)^{\tau(k)} \prod_{p_{j} \mid B} d_{j}^{+} \leqslant 2^{(\log x)^{0.9}} k \tag{8}
\end{equation*}
$$

for all $x>x_{0}$. Combining (6), (7) and (8) it follows that

$$
2^{n} k+1=A B \leqslant 2^{2(\log x)^{0.9}} k,
$$

and therefore, $n \leqslant 2(\log x)^{0.9}$. However, since $n>X_{1}=(\log x) / \log _{2} x$ this is impossible for large x. The contradiction implies that $\mathcal{S}_{9}^{*}(x)=\varnothing$ as claimed.

2.4 Large values of $n_{0}(k)$

Recall that a number k is said to be powerful if $p^{2} \mid k$ for every prime p dividing k. We denote

$$
\mathcal{C}_{10}(x):=\{k \leqslant x: k \text { is powerful }\} .
$$

By the well known bound $\left|\mathcal{C}_{10}(x)\right| \ll x^{1 / 2}$, the set $\mathcal{C}_{10}(x)$ is negligible.
From now on, fix $k \in \mathcal{C}_{10}^{*}(x)$, and let $n>X_{2}:=\exp \left((\log x) / \log _{2} x\right)$ be such that $2^{n} k+1$ is a Carmichael number. Also, let $p=2^{m} d+1$ be a fixed prime factor of $2^{n} k+1$. For convenience, we denote

$$
N_{1}:=\left\lfloor\sqrt{\frac{n}{\log x}}\right\rfloor \quad \text { and } \quad N_{2}:=\frac{n}{N_{1}} .
$$

Since numbers of the form $u m+v n$ with $(u, v) \in\left[0, N_{1}\right]^{2}$ all lie in the interval [$0,2 n N_{1}$], and there are $\left(N_{1}+1\right)^{2}$ such pairs (u, v), by the pigeonhole principle there exist $\left(u_{1}, v_{1}\right) \neq\left(u_{2}, v_{2}\right)$ such that

$$
\left|\left(u_{1} m+v_{1} n\right)-\left(u_{2} m+v_{2} n\right)\right| \leqslant \frac{2 N_{1} n}{\left(N_{1}+1\right)^{2}-1} \leqslant \frac{2 n}{N_{1}}=2 N_{2} .
$$

Put $u:=u_{1}-u_{2}$ and $v:=v_{1}-v_{2}$. Then

$$
\begin{equation*}
(u, v) \neq(0,0), \quad \max \{|u|,|v|\} \leqslant N_{1}, \quad|u m+v n| \leqslant 2 N_{2} . \tag{9}
\end{equation*}
$$

Replacing u, v with $u / d, v / d$, where d is either $\operatorname{gcd}(u, v)$ or $-\operatorname{gcd}(u, v)$, we can further assume that

$$
\begin{equation*}
\operatorname{gcd}(u, v)=1 \quad \text { and } \quad u \geqslant 0 \tag{10}
\end{equation*}
$$

From the congruences

$$
\begin{equation*}
2^{m} d \equiv-1 \quad(\bmod p) \quad \text { and } \quad 2^{n} k \equiv-1 \quad(\bmod p) \tag{11}
\end{equation*}
$$

we derive that

$$
2^{u m+v n} d^{u} k^{v} \equiv(-1)^{u+v} \quad(\bmod p)
$$

Therefore, p divides the numerator of the rational number

$$
G:=2^{u m+v n} d^{u} k^{v}-(-1)^{u+v} .
$$

We claim that $G \neq 0$. Indeed, suppose on the contrary that $G=0$. Since k and d are both odd, it follows that $u m+v n=0$ and $d^{u} k^{v}=1$. If $u=0$ or $v=0$, the first equation implies that $(u, v)=(0,0)$, which is not allowed; hence $u v \neq 0$, and by (10) we have $u>0$. Since u and v are coprime, the equality $d^{u}=k^{-v}$ implies that $k=k_{1}^{u}$ for some $k_{1}>1$. As $k \notin \mathcal{C}_{10}(x)$, it follows that $u=1$. Then, as $d \mid k$ and $d=k^{-v}$, we also have $v=-1, d=k$, and $0=u m+v n=m-n$, so $m=n$. But this shows that $2^{n} k+1=p$, which is not possible since $2^{n} k+1$ is a Carmichael number. This contradiction establishes our claim that $G \neq 0$.

Since p divides the numerator of G, using (9) we derive the bound

$$
\begin{equation*}
p \leqslant 2^{|u m+v n|} d^{|u|} k^{|v|}+1 \leqslant 2^{2 N_{2}+1} x^{2 N_{1}}=2^{(2+2 / \log 2) N_{2}+1}, \tag{12}
\end{equation*}
$$

which is used below and in $\S 2.5$. We also need the following:
Lemma 2. Let

$$
\Delta_{1}:=\frac{\sqrt{2}\left(\log _{2} x\right)^{3 / 2}}{(\log n)^{1 / 4}}
$$

For $x>x_{0}$, the Carmichael number $2^{n} k+1$ has no more than $n^{1 / 3}$ prime divisors $p=2^{m} d+1$ with $m>\Delta_{1} N_{2}$.

Proof. With the minor modifications outlined here, this result is essentially contained in [11, Lemma 7]. The underlying argument is fairly standard (see, for example, $[6,7,12,13,18]$), although it relies on a quantitative version of the Subspace Theorem due to Evertse [16], a bound of Pontreau [23] on the number of solutions to certain S-unit equations, and Baker's bound on linear forms in logarithms (see [21] or [8, Theorem 5]).

Let $p=2^{m} d+1$ be a prime divisor of $2^{n} k+1$ with $m>\Delta_{1} N_{2}$. Using the Euclidean algorithm, we write

$$
\begin{equation*}
n=m q+r \quad \text { with } \quad 0 \leqslant r<m \leqslant 5 N_{2}, \tag{13}
\end{equation*}
$$

where the last inequality is a consequence of (12). Note that

$$
\begin{equation*}
q \leqslant \frac{n}{m} \leqslant \frac{n}{\Delta_{1} N_{2}}=\Delta_{1}^{-1} N_{1} . \tag{14}
\end{equation*}
$$

From (11) we obtain the congruences

$$
2^{m q} d^{q} \equiv(-1)^{q} \quad(\bmod p) \quad \text { and } \quad 2^{m q+r} k \equiv-1 \quad(\bmod p)
$$

hence p divides

$$
G:=d^{q}+(-1)^{q} 2^{r} k .
$$

We claim that $G \neq 0$. Indeed, suppose on the contrary that $G=0$. Then $r=0$ (since d is odd), q is odd, and $k=d^{q}$. As $k \notin \mathcal{C}_{10}(x), q=1$. But this implies that $d=k$ and $n=m q+r=m$, hence $2^{n} k+1=p$, which is impossible since $2^{n} k+1$ is a Carmichael number. This contradiction establishes our claim that $G \neq 0$.

Since p divides G, using (13) and (14) we derive the bound

$$
\begin{align*}
p \leqslant|G| & \leqslant 2^{r} d^{q} k \leqslant 2^{r} x^{q+1} \leqslant 2^{r+(q+1)(\log x) / \log 2} \\
& \leqslant 2^{5 N_{2}+\left(\Delta_{1}^{-1} N_{1}+1\right)(\log x) / \log 2} \leqslant 2^{2 \Delta_{1}^{-1} N_{2}} \quad\left(x>x_{0}\right) \tag{15}
\end{align*}
$$

We also have the lower bound

$$
\begin{equation*}
p-1=2^{m} d \geqslant 2^{m}>2^{\Delta_{1} N_{2}} \tag{16}
\end{equation*}
$$

Put

$$
U:=2^{m} d, \quad V_{1}:=d^{q} \quad \text { and } \quad V_{2}:=(-1)^{q} 2^{r} k
$$

Then, taking into account the fact that $V_{1}+V_{2}=G$, the inequalities (15) and (16) together imply that

$$
U>\left|V_{1}+V_{2}\right|^{\Delta_{2}} \quad \text { with } \quad \Delta_{2}:=\frac{1}{2} \Delta_{1}^{2}=\frac{\left(\log _{2} x\right)^{3}}{(\log n)^{1 / 2}}
$$

Taking into account the bound (5) and the combination of [11, Lemmas 2, 3], for $x>x_{0}$ we see that all but $O\left(\log _{2} x\right)$ of the triples $\left(U, V_{1}, V_{2}\right)$ constructed in this manner satisfy the conditions of [11, Lemma 7] if the parameter δ_{2} in that lemma is replaced by Δ_{2}. Following the proof, we conclude that the bound [11, Equation (47)] on the number $t_{1} t_{2}$ of such triples $\left(U, V_{1}, V_{2}\right)$ can be replaced by

$$
t_{1} t_{2} \leqslant 2^{100 \mu^{2} s} \quad\left(x>x_{0}\right)
$$

in our situation, where

$$
\mu:=2\left\lfloor 3 \Delta_{2}^{-1}\right\rfloor+1 \quad \text { and } \quad s:=\omega(k)+2 .
$$

As $\mu \leqslant 7 \Delta_{2}^{-1}$ and $s \leqslant 1.1 \log _{2} x$ (since $k \notin \mathcal{N}_{1}(x)$), we see that

$$
100 \mu^{2} s \leqslant 5400 \frac{\log n}{\left(\log _{2} x\right)^{5}} \leqslant \frac{\log n}{3 \log 2}-1 \quad\left(x>x_{0}\right)
$$

Putting everything together, it follows that the Carmichael number $2^{n} k+1$ has at most $t_{1} t_{2}+O\left(\log _{2} x\right) \leqslant\left(\frac{1}{2}+o(1)\right) n^{1 / 3}$ prime divisors $p=2^{m} d+1$ with $m>\Delta_{1} N_{2}$. The result follows.

2.5 The final argument

We continue to use notation introduced earlier.
Put $z_{2}:=\left\lfloor\log _{4} x\right\rfloor$, and let $\mathcal{C}_{11}(x)$ be the set of numbers $k \in \mathcal{C}_{10}^{*}(x)$ such that $q^{2} \mid k$ for some $q>z_{2}$. For any such q the number of $k \leqslant x$ cannot exceed x / q^{2}; summing over all q we have

$$
\left|\mathcal{C}_{11}(x)\right| \leqslant \sum_{q>z_{2}} \frac{x}{q^{2}} \ll \frac{x}{z_{2}} \ll \frac{x}{\log _{4} x}=o(x) \quad(x \rightarrow \infty) ;
$$

thus, $\mathcal{C}_{11}(x)$ is a negligible set.
Next, let $\mathcal{C}_{12}(x)$ be the set of $k \in \mathcal{C}_{11}^{*}(x)$ with the property that there is a prime q such that $q^{z_{2}} \mid k$. For any such q the number of $k \leqslant x$ does not
exceed $x / q^{z_{2}}$. Also, since $z_{2}>2$ for $x>x_{0}$ and $k \notin \mathcal{C}_{11}(x)$, it follows that $q \leqslant z_{2}$. Consequently,

$$
\left|\mathfrak{C}_{12}(x)\right| \leqslant \sum_{q \leqslant z_{2}} \frac{x}{q^{z_{2}}} \leqslant \frac{x \cdot \pi\left(z_{2}\right)}{2^{z_{2}}} \leqslant \frac{2 x \log _{4} x}{\left(\log _{3} x\right)^{\log 2}}=o(x) \quad(x \rightarrow \infty)
$$

hence, $\mathfrak{C}_{12}(x)$ is negligible.
Finally, we put $\mathcal{C}_{13}(x):=\mathcal{C}_{12}^{*}(x)$. To complete the proof of Theorem 1 it is enough to show that $\mathcal{C}_{13}(x)$ is negligible. We begin by noting that for every $k \notin \mathcal{N}_{1}(x)$ the bound

$$
n \leqslant K_{1}:=\exp \left((\log x)^{4}\right)
$$

holds whenever $2^{n} k+1$ is Carmichael; in fact, it is an easy consequence of (2) since $\tau(k) \leqslant(\log x)^{0.8}$ (by (5)) and $\omega(k) \leqslant \Omega(k) \leqslant 1.01 \log _{2} x$.

In particular, for every $k \in \mathcal{C}_{13}(x)$ there exists $n \in\left[X_{2}, K_{1}\right]$ such that $2^{n} k+1$ is a Carmichael number. The interval $\left[X_{2}, K_{1}\right]$ can be covered with at most $O\left(\log K_{1}\right)=O\left((\log x)^{4}\right)$ intervals of the form $[a, 2 a)$. Thus, if we denote by $\mathfrak{C}_{13}(a ; x)$ the set of $k \in \mathfrak{C}_{13}(x)$ such that $2^{n} k+1$ is a Carmichael number for some $n \in[a, 2 a)$, we have

$$
\left|\mathcal{C}_{13}(x)\right| \ll(\log x)^{4} \max _{X_{2} \leqslant a \leqslant K_{1}}\left|\mathcal{C}_{13}(a ; x)\right|
$$

hence it suffices to show that

$$
\begin{equation*}
\max _{X_{2} \leqslant a \leqslant K_{1}}\left|\mathcal{C}_{13}(a ; x)\right| \ll \frac{x}{(\log x)^{5}} \tag{17}
\end{equation*}
$$

From now on, we work to prove (17).
Now, fix $a \in\left[X_{2}, K_{1}\right]$ and $k \in \mathcal{C}_{13}(a ; x)$, and let $n \in[a, 2 a)$ be such that $N:=2^{n} k+1$ is Carmichael. Let \mathcal{P} denote the set of prime divisors $p=2^{m} d+1$ of N with $m>\Delta_{1} N_{2}$. Put

$$
A:=\prod_{\substack{p \mid 2^{n} k+1 \\ p \in \mathcal{P}}} p \quad \text { and } \quad B:=\frac{2^{n} k+1}{A}
$$

Since every prime $p \mid N$ satisfies (12), and $|\mathcal{P}| \leqslant n^{1 / 3}$ by Lemma 2 , we have

$$
\begin{equation*}
A \leqslant\left(2^{5 N_{2}}\right)^{n^{1 / 3}}=2^{5 n^{5 / 6}(\log x)^{1 / 2}} \leqslant 2^{10 a^{5 / 6}(\log x)^{1 / 2}} \quad\left(x>x_{0}\right) \tag{18}
\end{equation*}
$$

Put $s:=\left\lfloor\log _{2} x\right\rfloor$ and $z_{3}:=(\log x)^{0.9}$. We split the prime factors of B into three sets according to the following types:
(i) Primes $p=2^{m} d+1$ of type I are those for which either $m \leqslant a^{1 / 3}$, or p divides $2^{n_{j}} k_{j}+1$ for $j=1, \ldots, s$, where k_{1}, \ldots, k_{s} are distinct numbers in $\mathcal{C}_{13}(a ; x)$ and $n_{1}, \ldots, n_{s} \in[a, 2 a)$;
(ii) Primes $p=2^{m} d+1$ of type II have the property that $2^{t} d+1$ is a prime factor of B for at most 100 values of t in the interval $\left[m, m+z_{3}\right]$;
(iii) Primes p of type $I I I$ are prime factors of B that are neither of type I nor of type $I I$.

Factor $B=B_{I} B_{I I} B_{I I I}$, where

$$
B_{I}:=\prod_{\substack{p \mid B \\ p \text { of type } I}} p, \quad B_{I I}:=\prod_{\substack{p \mid B \\ p \text { of type } I I}} p \quad \text { and } \quad B_{I I I}:=\prod_{\substack{p \mid B \\ p \text { of type } I I I}} p .
$$

Our approach is to show that primes of type I are small, whereas primes of type $I I$ are few in number. As for primes of type III, there may be many for a given k; however, we show that there are only a few such primes on average, and this is sufficient to finish the proof.

Case 1. Primes of type I.
Let $p:=2^{m} d+1$ be a prime of type I. Since $d \leqslant x$ for all $p \mid B$, in the case that $m \leqslant a^{1 / 3}$ it is easy to see that

$$
\begin{equation*}
m \leqslant M_{3}:=10 a^{1 / 3} \log x \quad \text { and } \quad p \leqslant 2^{M_{3}} \quad\left(x>x_{0}\right) \tag{19}
\end{equation*}
$$

Our goal is to show that (19) holds for every type I prime. Assuming this result for the moment and using (5), we derive the bound

$$
\begin{equation*}
B_{I} \leqslant \prod_{\substack{m \leqslant M_{3} \\ d \backslash k}} 2^{M_{3}} \leqslant 2^{M_{3}^{2} \tau(k)} \leqslant 2^{a^{2 / 3}(\log x)^{3}} \quad\left(x>x_{0}\right) \tag{20}
\end{equation*}
$$

Now suppose that $p:=2^{m} d+1$ is of type I with $m>a^{1 / 3}$, and let k_{1}, \ldots, k_{s} and n_{1}, \ldots, n_{s} have the properties described in (i). We claim that there are two numbers k_{j}, say k_{1} and k_{2}, for which there exists a prime q dividing k_{2} but not k_{1}; in particular, since d divides each k_{j}, q does not divide d. Indeed, suppose on the contrary that every k_{j} is divisible by the primes $q_{1} \ldots, q_{t}$, which we order by

$$
q_{1}<\cdots<q_{r} \leqslant z_{2}<q_{r+1}<\cdots<q_{t}
$$

with $0 \leqslant r \leqslant t$. Since $k_{j} \notin \mathcal{C}_{11}(x) \cup \mathcal{C}_{12}(x)$ for each j, it follows that

$$
k_{j}=q_{r+1} \cdots q_{t} \prod_{i=1}^{r} q_{i}^{\alpha_{i, j}} \quad \text { with } \quad 1 \leqslant \alpha_{i, j} \leqslant z_{2} \quad(1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s)
$$

As s cannot exceed the number of all such factorizations, we have (using the bound $\pi(u) \leqslant 2 u / \log u$ for all large $u)$

$$
\left\lfloor\log _{2} x\right\rfloor=s \leqslant z_{2}^{r} \leqslant z_{2}^{\pi\left(z_{2}\right)} \leqslant \exp \left(2 z_{2}\right) \leqslant\left(\log _{3} x\right)^{2}
$$

which is impossible for $x>x_{0}$. This contradiction proves the claim.
Next, we apply a three-dimensional analogue of the argument used in $\S 2.4$ to derive the inequality (12).

Put $N_{3}:=\left\lceil(2 a)^{1 / 3}\right\rceil$. Since $\max \left\{m, n_{1}, n_{2}\right\} \leqslant 2 a=N_{3}^{3}$, all numbers of the form $u m+v n_{1}+w n_{2}$ with $(u, v, w) \in\left[0, N_{3}\right]^{3}$ lie in the interval $\left[0,3 N_{3}^{4}\right]$; as there are $\left(N_{3}+1\right)^{3}$ such triplets (u, v, w), it follows that there exist $\left(u_{1}, v_{1}, w_{1}\right) \neq\left(u_{2}, v_{2}, w_{2}\right)$ for which

$$
\left|\left(u_{1} m+v_{1} n_{1}+w_{1} n_{1}\right)-\left(u_{2} m+v_{2} n_{1}+w_{2} n_{2}\right)\right| \leqslant \frac{3 N_{3}^{4}}{\left(N_{3}+1\right)^{3}-1} \leqslant 3 N_{3} .
$$

Put $(u, v, w):=\left(u_{1}-u_{2}, v_{1}-v_{2}, w_{1}-w_{2}\right) \neq(0,0,0)$, and note that

$$
\begin{equation*}
\max \{|u|,|v|,|w|\} \leqslant N_{3}, \quad\left|u m+v n_{1}+w n_{2}\right| \leqslant 3 N_{3} . \tag{21}
\end{equation*}
$$

In view of the congruences

$$
2^{m} d \equiv-1 \quad(\bmod p) \quad \text { and } \quad 2^{n_{j}} k_{j} \equiv-1 \quad(\bmod p) \quad(j=1,2)
$$

we have

$$
2^{u m+v n_{1}+w n_{2}} d^{u} k_{1}^{v} k_{2}^{w} \equiv(-1)^{u+v+w} \quad(\bmod p)
$$

Therefore, p divides the numerator of the rational number

$$
G:=2^{u m+v n_{1}+w n_{2}} d^{u} k_{1}^{v} k_{2}^{w}-(-1)^{u+v+w} .
$$

We claim that $G \neq 0$. Indeed, suppose on the contrary that $G=0$. Since $d k_{1} k_{2}$ is odd, it follows that $u m+v n_{1}+w n_{2}=0, u+v+w$ is even, and $d^{u} k_{1}^{v} k_{2}^{w}=1$. Since there is a prime q that divides k_{2} but neither k_{1} nor d, it follows that $w=0$, and therefore

$$
2^{u m+v n_{1}} d^{u} k_{1}^{v}=(-1)^{u+v} .
$$

However, by the arguments of $\S 2.4$ we see this relation is not possible unless $(u, v)=(0,0)$; but this leads to $(u, v, w)=(0,0,0)$, which is not allowed. We conclude that $G \neq 0$.

Since p divides the numerator of G, using (21) we derive the bound

$$
p \leqslant 2^{\left|u m+v n_{1}+w n_{2}\right|} d^{|u|} k_{1}^{|v|} k_{2}^{|w|}+1 \leqslant 2^{3 N_{3}+1} x^{3 N_{3}} \leqslant 2^{M_{3}} \quad\left(x>x_{0}\right)
$$

Since $p>2^{m}$, this establishes the promised result that (19) holds for every type I prime.

Case 2. Primes of type II.
We first observe that every prime factor $p=2^{m} d+1$ of B satisfies

$$
\begin{equation*}
m \leqslant \Delta_{1} N_{2} \leqslant \frac{2 a^{1 / 2}(\log x)^{1 / 2}\left(\log _{2} x\right)^{3 / 2}}{(\log n)^{1 / 2}} \leqslant M_{4}:=2 a^{1 / 2}\left(\log _{2} x\right)^{2} \tag{22}
\end{equation*}
$$

where we have used the fact that

$$
\log n>\log X_{2}=\frac{\log x}{\log _{2} x}
$$

Let d be fixed and split the interval $\left[0, M_{4}\right]$ into subintervals \mathcal{I}_{j} of length z_{3}, where $\mathcal{I}_{j}:=\left[j z_{3},(j+1) z_{3}\right)$ for $j=0, \ldots,\left\lfloor M_{4} / z_{3}\right\rfloor$. Every such \mathcal{I}_{j} contains at most 100 indices m for which $p=2^{m} d+1$ is a type $I I$ prime factor of $2^{n} k+1$; these primes clearly satisfy

$$
p=2^{m} d+1 \leqslant 2^{2 M_{4}} \quad\left(x>x_{0}\right)
$$

Thus, for fixed d we have

$$
\prod_{\substack{p \mid B_{I I} \\ p=2^{m} d+1}} p \leqslant\left(2^{2 M_{4}}\right)^{100\left(M_{4} / z_{3}+1\right)} \leqslant 2^{300 M_{4}^{2} / z_{3}} \quad\left(x>x_{0}\right) .
$$

Then, taking the product over all divisors d of k, we derive that

$$
B_{I I} \leqslant 2^{300 M_{4}^{2} \tau(k) / z_{3}} \quad\left(x>x_{0}\right)
$$

Finally, using (5) and the definitions of M_{4} and z_{3}, for all $x>x_{0}$ we have

$$
\frac{300 M_{4}^{2} \tau(k)}{z_{3}} \leqslant \frac{1200 a\left(\log _{2} x\right)^{4}(\log x)^{0.8}}{(\log x)^{0.9}} \leqslant \frac{a}{(\log x)^{0.09}} \quad\left(x>x_{0}\right)
$$

hence we obtain the bound

$$
\begin{equation*}
B_{I I} \leqslant 2^{a /(\log x)^{0.09}} \quad\left(x>x_{0}\right) \tag{23}
\end{equation*}
$$

Case 3. Primes of type III.
Combining the bounds (18), (20) and (23), we have

$$
A B_{I} B_{I I} \leqslant 2^{10 a^{5 / 6}(\log x)^{1 / 2}+a^{2 / 3}(\log x)^{3}+a /(\log x)^{0.09}} \leqslant 2^{a / 2} \quad\left(x>x_{0}\right)
$$

therefore, since

$$
2^{a} \leqslant 2^{n} k+1=A B=A B_{I} B_{I I} B_{I I I}
$$

it follows that

$$
\begin{equation*}
B_{I I I} \geqslant 2^{a / 2} \quad\left(x>x_{0}\right) \tag{24}
\end{equation*}
$$

We now adopt the convention that for every $k \in \mathcal{C}_{13}(a ; x)$, the number n is chosen to be the least integer in $[a, 2 a)$ such that $2^{n} k+1$ is a Carmichael number. With this convention in mind, we use the notation $B_{I I I}(k)$ instead of $B_{I I I}$ to emphasize that this number depends only on k.

Multiplying the bounds (24) over all $k \in \mathcal{C}_{13}(a ; x)$, we get

$$
\begin{equation*}
2^{(a / 2)\left|\mathrm{C}_{13}(a ; x)\right|} \leqslant \prod_{k \in \mathfrak{C}_{13}(a ; x)} B_{I I I}(k) \leqslant\left(\prod_{p \in \mathcal{B}_{a}} p\right)^{s} \tag{25}
\end{equation*}
$$

where we have used \mathcal{B}_{a} to denote the collection of type III primes that divide some $B_{\text {III }}(k)$ with $k \in \mathcal{C}_{13}(a ; x)$. Note that every prime in \mathcal{B}_{a} is repeated no more than s times since p is not of type I.

Let $p=2^{m} d+1 \in \mathcal{B}_{a}$. Since $d \leqslant x$ and $m \geqslant a^{1 / 3} \geqslant X_{2}^{1 / 3} \geqslant 2 \log x$ for all $x>x_{0}$, it follows that $p \leqslant 2^{2 m}$. Thus, fixing m and denoting by $\mathcal{D}_{a, m}$ the set of numbers d for which $2^{m} d+1 \in \mathcal{B}_{a}$, it follows that

$$
\prod_{d \in \mathcal{D}_{a, m}}\left(2^{m} d+1\right) \leqslant 2^{2 m\left|\mathcal{D}_{a, m}\right|} \leqslant 2^{2 M_{4}\left|\mathcal{D}_{a, m}\right|}
$$

where we used (22) for the second inequality. Taking the product over all values of $m \leqslant M_{4}$, we have for $x>x_{0}$:

$$
\begin{equation*}
\prod_{p \in \mathcal{B}_{a}} p \leqslant 2^{2 M_{4}^{2} D_{a}} \quad \text { with } \quad D_{a}:=\max _{m \leqslant M_{4}}\left|\mathcal{D}_{a, m}\right| \tag{26}
\end{equation*}
$$

Hence, to get an upper bound for the product in (26), it suffices to find a uniform upper bound for D_{a}.

Observe that, as the primes in \mathcal{B}_{a} are not of type $I I$, every $d \in \mathcal{D}_{a, m}$ has the property that $2^{t} d+1$ is prime for at least 100 values of t in the interval $\left[m, m+z_{3}\right]$. Let m be fixed, and let $\lambda_{1}<\cdots<\lambda_{100}$ be fixed integers in the interval $\left[0, z_{3}\right]$. We begin by counting the number of $d \leqslant x$ for which the 100 numbers $\left\{2^{m+\lambda_{j}} d+1: 1 \leqslant j \leqslant 100\right\}$ are simultaneously prime. By the Brun sieve, the number of such $d \leqslant x$ is

$$
O\left(\frac{x}{(\log x)^{100}}\left(\frac{E}{\varphi(E)}\right)^{100}\right), \quad \text { where } \quad E:=\prod_{i<j}\left(2^{\lambda_{j}-\lambda_{i}}-1\right)
$$

Since

$$
E \leqslant 2^{100^{2} z_{3}} \leqslant 2^{10^{4} \log x}=x^{10^{4} \log 2}
$$

using the well known bound $u / \varphi(u) \ll \log _{2} u$ we have

$$
\frac{E}{\varphi(E)} \ll \log _{2} E \ll \log _{2} x
$$

Hence, for fixed $\lambda_{1}<\cdots<\lambda_{100}$ the number of possibilities for d is

$$
O\left(\frac{x\left(\log _{2} x\right)^{100}}{(\log x)^{100}}\right)
$$

As the number of choices for $\lambda_{1}, \ldots, \lambda_{100}$ in $\left[0, z_{3}\right]$ is $\leqslant\left(z_{3}+1\right)^{100} \ll(\log x)^{90}$, it follows that

$$
\left|\mathcal{D}_{a, m}\right| \ll \frac{x\left(\log _{2} x\right)^{100}}{(\log x)^{10}}
$$

Consequently,

$$
D_{a}:=\max _{m \leqslant M_{4}}\left|\mathcal{D}_{a, m}\right| \leqslant \frac{x}{(\log x)^{9}} \quad\left(x>x_{0}\right)
$$

and we have

$$
\begin{equation*}
2 M_{4}^{2} D_{a} \leqslant \frac{8 a x\left(\log _{2} x\right)^{4}}{(\log x)^{9}} \leqslant \frac{a x}{(\log x)^{8}} \quad\left(x>x_{0}\right) \tag{27}
\end{equation*}
$$

Inserting estimate (27) into (26), and combining this with (25), we see that

$$
2^{(a / 2)\left|\mathfrak{C}_{13}(a ; x)\right|} \leqslant 2^{a x s /(\log x)^{8}}
$$

and therefore

$$
\left|\mathfrak{C}_{13}(a ; x)\right| \leqslant \frac{2 x s}{(\log x)^{8}} \leqslant \frac{x \log _{2} x}{(\log x)^{8}} \quad\left(x>x_{0}\right)
$$

Since this bound clearly implies (17), our proof of Theorem 1 is complete.

3 Proof of Theorem 2

The following statement provides the key to the proof of Theorem 2.
Theorem 4 (Matomäki). If $\operatorname{gcd}(b, m)=1$ and b is a quadratic residue $\bmod m$, then for all large x there are $>_{m} x^{1 / 5}$ Carmichael numbers up to x in the arithmetic progression $b \bmod m$.

In the recent preprint [29], Wright extends the previous theorem to remove the condition on b being a quadratic residue modulo m. Precisely, he showed (under $\operatorname{gcd}(b, m)=1$) that the number of Carmichael numbers up to x that are congruent to $b \bmod m$ is $\gg x^{\frac{K}{\left(\log _{3} x\right)^{2}}}$, for some constant $K>0$. Using this result would allow a somewhat easier approach to the problem, but we prefer to use Matomäki's Theorem 4, since it gives a better lower bound for the count.

The next proposition illustrates our approach to the proof of Theorem 2.
Proposition 1. For all large x, there are $\gg x^{1 / 5}$ natural numbers up to x that are both Sierpinski and Carmichael.

Proof. In view of Theorem 4, to prove this result it suffices to find coprime b, m such that b is a quadratic residue $\bmod m$, and every sufficiently large number in the arithmetic progression $b \bmod m$ is a Sierpiński number.

Suppose that we can find a finite collection $\mathcal{C}:=\left\{\left(a_{j}, n_{j} ; b_{j}, p_{j}\right)\right\}_{j=1}^{N}$ of ordered quadruples of integers with the following properties:
(i) n_{1}, \ldots, n_{N} are natural numbers, and p_{1}, \ldots, p_{N} are distinct primes;
(ii) every integer lies in at least one of the arithmetic progressions $a_{j} \bmod n_{j}$;
(iii) $p_{j} \mid 2^{n_{j}}-1$ for each j;
(iv) $p_{j} \mid 2^{a_{j}} b_{j}+1$ for each j;
(v) b_{j} is a quadratic residue $\bmod p_{j}$ for each j.

Put $m:=p_{1} \cdots p_{N}$, and let $b \in \mathbb{Z}$ be such that $b \equiv b_{j}\left(\bmod p_{j}\right)$ for each j. Since p_{1}, \ldots, p_{N} are distinct primes, is clear from (v) that b is a quadratic residue $\bmod m$. Let k be an arbitrary element of the arithmetic progression $b \bmod m$ that exceeds $\max \left\{p_{1}, \ldots, p_{N}\right\}$. For every $n \in \mathbb{Z}$ there exists j such that $n \equiv a_{j}\left(\bmod n_{j}\right)$. For such j, using (iii) and (iv) one sees that $p_{j} \mid 2^{n} k+1$, hence $2^{n} k+1$ is composite since $k>p_{j}$. As this is so for every $n \in \mathbb{Z}$, it follows that k is Sierpiński.

To complete the proof of the theorem it suffices to observe that

$$
\begin{align*}
\mathcal{C}:=\{ & (1,2 ; 1,3),(2,4 ; 1,5),(4,8 ; 1,17),(8,16 ; 1,257), \\
& (16,32 ; 1,65537),(32,64 ; 1,641),(0,64 ;-1,6700417)\} \tag{28}
\end{align*}
$$

is a collection with the properties $(i)-(v)$.
Proof of Theorem 2. In view of Theorem 4, it suffices to find coprime b, m such that b is a quadratic residue mod m, and every sufficiently large number in the arithmetic progression $b \bmod m$ is both Sierpiński and Riesel.

Suppose that we can find two finite collections $\mathcal{C}:=\left\{\left(a_{j}, n_{j} ; b_{j}, p_{j}\right)\right\}_{j=1}^{N}$ and $\mathcal{C}^{\prime}:=\left\{\left(c_{j}, m_{j} ; d_{j}, q_{j}\right)\right\}_{j=1}^{M}$ such that \mathcal{C} has the properties $(i)-(v)$ listed in Proposition 1, and \mathcal{C}^{\prime} has the properties:
(vi) m_{1}, \ldots, m_{N} are natural numbers, and q_{1}, \ldots, q_{N} are distinct primes;
(vii) the union of the arithmetic progressions $c_{j} \bmod m_{j}$ is \mathbb{Z};
(viii) $q_{j} \mid 2^{m_{j}}-1$ for each j;
(ix) $q_{j} \mid 2^{c_{j}} d_{j}-1$ for each j;
$(x) d_{j}$ is a quadratic residue $\bmod q_{j}$ for each j.
Furthermore, assume that
(xi) $\operatorname{gcd}\left(p_{1} \cdots p_{N}, q_{1} \cdots q_{M}\right)=1$.

Put $m:=p_{1} \cdots p_{N} q_{1} \cdots q_{M}$, and let $b \in \mathbb{Z}$ be such that $b \equiv b_{i}\left(\bmod p_{i}\right)$ for $i=1, \ldots, N$ and $b \equiv d_{j}\left(\bmod q_{j}\right)$ for $j=1, \ldots, M$. Since all the primes p_{i} and q_{j} are distinct, is clear from (v) that b is a quadratic residue $\bmod m$. Arguing as in the proof of Proposition 1 we see that every sufficiently large
number in the arithmetic progression b mod m is both Sierpinski (using (iii) and (iv)) and Riesel (using (viii) and (ix)).

Hence, to prove the theorem it suffices to exhibit collections \mathcal{C} and \mathcal{C}^{\prime} with the stated properties. For this, we take \mathcal{C} to be the collection listed in (28), whereas for \mathcal{C}^{\prime} we use the collection disclosed in the Appendix.

4 Proof of Theorem 3

For the second statement of Theorem 3, observe that if $N:=2^{n} k-1$ is a Lehmer number, then $\varphi(N) \mid N-1=2\left(2^{n-1} k-1\right)$. For $n \geqslant 2$ this implies that $4 \nmid \varphi(N)$, which is impossible since N is odd, squarefree and composite.

Turning to the first statement of Theorem 3, let us now suppose that $N:=2^{n} k+1$ is Lehmer. We can clearly assume that $n \geqslant 150 \log k$, and by Wright [28] we must have $k \geqslant 3$; therefore,

$$
\begin{equation*}
1 \leqslant \omega(k) \leqslant \frac{\log k}{\log 3}<\frac{n}{150} . \tag{29}
\end{equation*}
$$

Since every Lehmer number is Carmichael, we can apply the following lemma, which is a combination of [11, Lemmas 2, 3, 4].

Lemma 3. Suppose that $p=2^{m} d+1$ is a prime divisor of the Carmichael number $N=2^{n} k+1$, where $d \mid k$ and $n>3 \log k$.
(i) If $d=1$, then $m=2^{\alpha}$ for some integer $\alpha \geqslant 0$, and $p<k^{2}$;
(ii) if $d>1$ and the numbers $2^{m} d$ and $2^{n} k$ are multiplicatively dependent, then $p<2^{n / 3} k^{1 / 3}+1$;
(iii) if $d>1$ and the numbers $2^{m} d$ and $2^{n} k$ are multiplicatively independent, then $m<7 \sqrt{n \log k}$.

Moreover, N has at most one prime divisor for which (ii) holds.
Let A_{1}, A_{2}, A_{3} respectively denote the product of the primes $p \mid N$ for each possibility $(i),(i i),(i i i)$ in Lemma 3. If $A_{1}>1$ and $p=2^{2^{\alpha}}+1$ is the largest prime dividing A_{1}, then we have

$$
\begin{equation*}
A_{1} \leqslant \prod_{j=0}^{\alpha}\left(2^{2^{j}}+1\right)=2^{2^{\alpha+1}}-1=(p-1)^{2}-1 \leqslant p^{2} \leqslant k^{4} \tag{30}
\end{equation*}
$$

and clearly Lemma 3 implies that

$$
\begin{equation*}
A_{2} \leqslant 2^{n / 3} k^{1 / 3}+1 \leqslant 2^{n / 3+1} k^{1 / 3} \tag{31}
\end{equation*}
$$

Furthermore, if the prime divisors of A_{3} are $p_{j}:=2^{m_{j}} d_{j}+1, j=1, \ldots, r$, then

$$
d_{1} \cdots d_{r}\left|\varphi\left(A_{3}\right)\right| \varphi(N) \mid N-1=2^{n} k
$$

so we see that $d_{1} \cdots d_{r} \mid k$ and $r \leqslant \omega(k)$. Consequently,

$$
\begin{equation*}
A_{3}=\prod_{j=1}^{r}\left(2^{m_{j}} d_{j}+1\right) \leqslant \prod_{j=1}^{r} 2^{m_{j}+1} d_{j} \leqslant 2^{(7 \sqrt{n \log k+1) \omega(k)}} k \tag{32}
\end{equation*}
$$

Combining (30), (31) and (32), it follows that

$$
2^{n} k \leqslant N=A_{1} A_{2} A_{3} \leqslant 2^{n / 3+1+\left(7 \sqrt{n \log k+1) \omega(k)} k^{16 / 3} . . . ~\right.}
$$

Taking the logarithm and using the inequalities of (29) we derive that

$$
\begin{aligned}
n & \leqslant \frac{n}{3}+1+(7 \sqrt{n \log k}+1) \omega(k)+\frac{13 \log k}{3 \log 2} \\
& \leqslant \frac{n}{3}+(7 \sqrt{n \log k}) \omega(k)+\frac{19 n}{450 \log 2}
\end{aligned}
$$

and it follows that

$$
n \leqslant 49\left(\frac{2}{3}-\frac{19}{450 \log 2}\right)^{-2} \omega(k)^{2} \log k \leqslant 150 \omega(k)^{2} \log k
$$

as stated.

5 Appendix A

The collection \mathcal{C}^{\prime} that is needed for our proof of Theorem 2 (see $\S 3$) consists of the quadruples $\left(c_{j}, m_{j} ; d_{j}, q_{j}\right)$ disclosed in the following tables.

c_{j}	m_{j}	d_{j}	q_{j}
0	2	1	3
1	3	4	7
2	5	8	31
6	7	2	127
0	9	1	73
0	15	1	151
14	21	128	337
23	25	4	601
3	25	1576	1801
21	27	64	262657
11	35	58	71
31	35	16	122921
24	45	22473	23311
35	45	393	631

c_{j}	m_{j}	d_{j}	q_{j}
23	63	55318	92737
2	63	487243	649657
1	70	a_{1}	p_{1}
38	75	15604	100801
63	75	4096	10567201
3	81	2269	2593
30	81	69097	71119
47	81	84847359	97685839
5	90	4120594	18837001
89	105	7154	29191
59	105	48124	106681
26	105	48168	152041
a$=290641821624556480 ; p_{1}:=581283643249112959$			

c_{j}	m_{j}	d_{j}	q_{j}
38	135	43817595232267	49971617830801
39	135	41	271
66	135	41811	348031
51	150	1133819953185	1133836730401
29	162	134527	135433
137	162	33554432	272010961
158	175	12419	39551
8	175	30170438	60816001
33	175	a_{2}	p_{2}
155	189	1072100	1560007
92	189	a_{3}	p_{3}
51	210	247125	664441
179	210	412036	1564921

$a_{2}:=311219987433457559260630$
$p_{2}:=535347624791488552837151$
$a_{3}:=44183558259521350402959571$
$p_{3}:=207617485544258392970753527$

c_{j}	m_{j}	d_{j}	q_{j}
93	225	68316	115201
168	225	111534	617401
183	225	196089342	1348206751
141	225	5524543637190621	13861369826299351
65	270	14107	15121
134	315	465324	870031
44	315	944338	983431
296	315	524288	29728307155963706810228435378401
245	405	421858	537841
155	405	794228530486264	11096527935003481
219	405	a_{4}	p_{4}
33	450	4714696801	4714696801
143	450	a_{5}	p_{5}
231	525	2325	4201
458	525	3644	7351
336	525	108146490	181165951
21	525	a_{6}	p_{6}
138	567	a_{7}	p_{7}
518	675	a_{8}	p_{8}
68	675	a_{9}	p_{9}
$a_{4}:=5374027197450830037173993714239791208197682$			
$p_{4}:=17645665556213400107370602081155737281406841$			
$a_{5}:=277105769675251661059822497$			
$p_{5}:=281941472953710177758647201$			
$a_{6}:=130389571378501740404359908566659664918592879449898771616$			
$p_{6}:=325985508875527587669607097222667557116221139090131514801$			
$a_{7}:=34175792320105064276509598883086470918869640752174548399861885128941214865520182674355385966526465$			
$p_{7}:=34175792320105064276509600649933535697253970335472049142780400956425111741139140798213387072831489$			
$a_{8}:=1086551216887830778103354063694$			
$p_{8}:=1094270085398478390395590841401$			
$a_{9}:=375881803356253828783891377794842091038$			
$p_{9}:=470390038503476855180627941942761032401$			

c_{j}	m_{j}	d_{j}	q_{j}
668	675	128	2842496263188647640089794561760551
68	675	378466	1605151
293	675	31900530	289511839
83	810	2980	9721
141	810	1619	6481
425	810	1113369644664597	1969543281137041
29	945	a_{10}	p_{10}
96	945	a_{11}	p_{11}
96	1575	79759849	82013401
1356	1575	21286182334	32758188751
344	1575	27829883893510195	76641458269269601
233	1575	a_{12}	p_{12}
411	1575	a_{13}	p_{13}
1806	2025	29194	81001
1191	2025	375769199	429004351
1131	2025	a_{14}	p_{14}

$a_{10}:=50835936807709736817104784421509870$
$p_{10}:=124339521078546949914304521499392241$
$a_{11}:=59062237672015342892330136827234845353476843214908095835470998053274553710744754308864210671730$
$p_{11}:=89371283318924988713544642472309024678004403189516730060412595564942724011446583991926781827601$
$a_{12}:=499918989349861832576268113521739$
$p_{12}:=764384916291005220555242939647951$
$a_{13}:=415411639487789290827522873736236492723576906851307827673621379441482$
$p_{13}:=745832506848141808511611576240568244832258614550704416204357517716551$
$a_{14}:=462022372600473167169237015384303310307$
$p_{14}:=2029839982282855554442383177052070534551$.

6 Appendix B

We conclude with examples of Sierpiński-Carmichael, Riesel-Carmichael, and Sierpiński-Riesel-Carmichael numbers. The idea behind the construction is the same for each of the three examples. We construct a Carmichael number of the form $N=f(t)=(2 t+1)(4 t+1)(6 t+1)$, where each of the factors $2 t+1$, $4 t+1$ and $6 t+1$ is prime. We can then check that N is Carmichael since $2 t$, $4 t$ and $6 t$ are easily seen to be factors of $N-1$. What remains is to construct the coverings necessary to produce Sierpiński or Riesel numbers (or both): we have called the elements in these coverings $\left(c_{j}, m_{j} ; d_{j}, q_{j}\right)$ throughout this article. The final step is to solve the congruence $f\left(t_{j}\right) \equiv d_{j}\left(\bmod q_{j}\right)$. Thus, we have an additional column for t_{j} in the tables presented below.

Sierpiński-Carmichael number

Let $f(t)=(6 t+1)(12 t+1)(18 t+1)$.

c_{j}	m_{j}	d_{j}	q_{j}	t_{j}
1	2	1	3	0
2	4	1	5	0
4	8	1	17	0
8	16	1	257	0
16	32	1	65537	0
0	48	96	97	76
16	24	226	241	42
32	96	655316	2225377	9066929

Now observe that $\left(c_{j}, m_{j}\right)$ forms a covering, $t=1034170868575402949878725$ satisfies all the congruences $t_{j}\left(\bmod q_{j}\right)$, and that $f(t) \equiv d_{j}\left(\bmod q_{j}\right)$ for each j. Thus, for this value of $t, f(t)$ is Sierpiński. To see that $f(t)=1433447863276475102293771681784302201846076475365432242305613689102632631601$ is also Carmichael, notice that $6 t+1=6205025211452417699272351,12 t+$ $1=12410050422904835398544701$, and $18 t+1=18615075634357253097817051$ are all prime, and $f(t)-1$ is divisible by $6 t, 12 t$, and $18 t$.

Riesel-Carmichael number

Let $f(t)=(2 t+1)(4 t+1)(6 t+1)$.

c_{j}	m_{j}	d_{j}	q_{j}	t_{j}
0	2	1	3	0
0	3	1	7	0
4	9	32	73	1
5	12	11	13	5
7	8	2	17	11
11	18	14	19	11
25	36	13	37	22
11	48	53	97	44
1	36	55	109	28
19	24	32	241	73
3	16	225	257	196
37	48	29	673	210

Again, the congruences $c_{j}\left(\bmod m_{j}\right)$ form a covering. Moreover, observe that $t=383045479078858981706118$ satisfies all the congruences t_{j} $\left(\bmod q_{j}\right)$, and that $f(t) \equiv d_{j}\left(\bmod q_{j}\right)$ for each j. Thus, for this value of t, $f(t)$ is Riesel. To see that
$f(t)=2697691354484186943747008650234933049993410660498697822360729113096591609$
is also Carmichael, notice that $2 t+1=766090958157717963412237,4 t+1=$ 1532181916315435926824473 , and $6 t+1=2298272874473153890236709$ are all prime, and $f(t)-1$ is divisible by $2 t, 4 t$, and $6 t$.

Sierpiński-Riesel-Carmichael number

Let $f(t)=(2 t+1)(4 t+1)(6 t+1)$.

c_{j}	m_{j}	d_{j}	q_{j}	t_{j}
1	2	1	3	0
0	4	4	5	3
6	12	1	13	0
4	9	41	73	8
10	18	10	19	1
2	24	60	241	91
14	36	16	37	14
34	36	105	109	1
38	72	325	433	91
62	72	37713	38737	1256
0	2	1	3	0
0	3	1	7	0
0	5	1	31	0
5	8	8	17	10
1	10	6	11	1
2	15	38	151	32
11	16	32	257	141
3	20	36	41	26
7	30	75	331	196
3	32	57345	65537	51629
9	40	59633	61681	59393
7	48	72	97	54
19	48	641	673	224
59	60	2	61	26
13	60	1028	1321	129
79	80	2	4278255361	1351662299
113	120	128	4562284561	3018421270

In the table above, the congruence $c_{j}\left(\bmod m_{j}\right)$ in the top part of the table form a covering, and the congruences in the bottom part of the table form a separate covering. The integer
$t=1338979105545414811992186692235778298273840303222085925082378476296462844923$
satisfies all of the congruences $t_{j}\left(\bmod q_{j}\right)$ in the entire table. Thus, $f(t) \equiv d_{j}$ $\left(\bmod q_{j}\right)$ for both the top and bottom parts of the table. This implies that $f(t)$ is both Sierpinski (from the top part) and Riesel (from the bottom part). Finally,
$f(t)=115229224052855887100756588659264307276443422419402462627311319917631839876768-$
$543292399537807831615677851203822707234896300064793740772960178584232868017442980971-$
810181759397938835296681335113793727167516391877007957575147486369
is Carmichael, since the factors
$2 t+1=2677958211090829623984373384471556596547680606444171850164756952592925689847$,
$4 t+1=5355916422181659247968746768943113193095361212888343700329513905185851379693$, and
$6 t+1=8033874633272488871953120153414669789643041819332515550494270857778777069539$
are all prime, and $f(t)-1$ is divisible by $2 t, 4 t$, and $6 t$.

References

[1] W. Alford, A. Granville, and C. Pomerance, 'There are infinitely many Carmichael numbers,' Ann. of Math. (2) 139 (1994), no. 3, 703-722.
[2] W. Banks, 'Carmichael numbers with a square totient,' Canad. Math. Bull. 52 (2009), no. 1, 3-8.
[3] W. Banks, 'Carmichael numbers with a totient of the form $a^{2}+n b^{2}$,' Monatsh. Math. 167 (2012), no. 2, 157-163.
[4] W. Banks, W. Nevans and C. Pomerance, 'A remark on Giuga's conjecture and Lehmer's totient problem,' Albanian J. Math. 3 (2009), no. 2, 81-85.
[5] W. Banks and C. Pomerance, 'On Carmichael numbers in arithmetic progressions,' J. Aust. Math. Soc. 88 (2010) no. 3, 313-321.
[6] Y. Bugeaud, P. Corvaja and U. Zannier, 'An upper bound for the g.c.d. of $a^{n}-1$ and $b^{n}-1,{ }^{\prime}$ Math. Z. 243 (2003), 79-84.
[7] Y. Bugeaud and F. Luca, 'A quantitative lower bound for the greatest prime factor of $(a b+1)(a c+1)(b c+1),{ }^{\prime}$ Acta Arith. 114 (2004), 275294.
[8] Y. Bugeaud, M. Mignotte and S. Siksek, 'Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers,' Ann. of Math. (2) 163 (2006), no. 3, 969-1018.
[9] R. D. Carmichael, 'Note on a new number theory function,' Bull. Amer. Math. Soc. 16 (1910), 232-238.
[10] R. D. Carmichael, 'On composite numbers P which satisfy the Fermat congruence $a^{P-1} \equiv 1 \bmod P,^{\prime}$ Amer. Math. Monthly 19 (1912), no. 2, 22-27.
[11] J. Cilleruelo, F. Luca and A. Pizarro-Madariaga, 'Carmichael numbers in the sequence $\left\{2^{n} k+1\right\}_{n \geqslant 1}$,' preprint, 2012.
[12] P. Corvaja and U. Zannier, 'On the greatest prime factor of $(a b+$ 1)(ac+1),' Proc. Amer. Math. Soc. 131 (2003), 1705-1709.
[13] P. Corvaja and U. Zannier, 'A lower bound for the height of a rational function at \mathcal{S}-units,' Monatsh. Math. 144 (2005), 203-224.
[14] A. Ekstrom, C. Pomerance and D. S. Thakur, 'Infinitude of elliptic Carmichael numbers,' J. Austr. Math. Soc. 92 (2012) no. 1, 45-60.
[15] P. Erdős and A. M. Odlyzko, 'On the density of odd integers of the form $(p-1) 2^{-n}$ and related questions,' J. Number Theory 11 (1979), no. 2, 257-263.
[16] J.-H. Evertse, 'An improvement of the Quantitative Subspace Theorem,' Compositio Math. 101 (1996), 225-311.
[17] K. Ford, 'The distribution of integers with a divisor in a given interval,' Ann. of Math. (2) 168 (2008), no. 2, 367-433.
[18] S. Hernández and F. Luca, 'On the largest prime factor of $(a b+1)(a c+$ 1)(bc +1),' Bol. Soc. Mat. Mexicana 9 (2003), 235-244.
[19] D. H. Lehmer, 'On Euler's totient function,' Bull. Amer. Math. Soc. 38 (1932), 745-757.
[20] K. Matomäki, 'Carmichael numbers in arithmetic progressions', J. Aust. Math. Soc., to appear.
[21] E. M. Matveev, 'An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II,' Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180; English transl. in Izv. Math. 64 (2000), 1217-1269.
[22] C. Pomerance, 'On the distribution of pseudoprimes,' Math. Comp. 37 (1981), 587-593.
[23] C. Pontreau, 'A Mordell-Lang plus Bogomolov type result for curves in $G_{m}^{2},{ }^{\prime}$ Monatsh. Math. 157 (2009), 267-281.
[24] H. Riesel, 'Några stora primtal,' Elementa 39 (1956), 258-260.
[25] W. Sierpiński, 'Sur un problème concernant les nombres $k 2^{n}+1$,' Elem. Math. 15 (1960), 73-74; Corrig. 17 (1962), 85.
[26] G. Tenenbaum, 'Sur la probabilité qu'un entier possède un diviseur dans un intervalle donné,' Compositio Math. 51 (1984), 243-263.
[27] P. Turán, 'On a theorem of Hardy and Ramanujan', J. London Math. Soc. 9 (1934), 274-276.
[28] T. Wright, 'On the impossibility of certain types of Carmichael numbers,' Integers 12 (2012), A31, 1-13.
[29] T. Wright, 'Infinitely many Carmichael numbers in arithmetic progressions,' preprint, 2012.

[^0]: ${ }^{1}$ At present, there are only six smaller numbers that might have the Sierpiński property: 10223, 21181, 22699, 24737, 55459, 67607; see http://www.seventeenorbust.com for the most up-to-date information.

[^1]: ${ }^{2}$ In [11] it is shown that 27 is the smallest number in this set.

[^2]: ${ }^{3}$ As of this writing, there are 55 candidates smaller that 509203 to consider; see http://www.prothsearch.net/rieselprob.html for the most recent information.

