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Abstract. Consider the power pseudorandom-number generator
in a finite field Fq . That is, for some integer e ≥ 2, one considers

the sequence u, ue, ue2 , . . . in Fq for a given seed u ∈ F×
q . This

sequence is eventually periodic. One can consider the number of
cycles that exist as the seed u varies over F×

q . This is the same as
the number of cycles in the functional graph of the map x 7→ xe

in F×
q . We prove some estimates for the maximal and average

number of cycles in the case of prime finite fields.

1. Introduction

1.1. Set up. For a prime power q , we use Fq to denote the finite field of
q elements. For a fixed integer e ≥ 2 we denote by Ge,q the functional
graph of the map x 7→ xe with vertices formed by the elements of F×q .
We also denote by N(e, q) the total number of cycles in Ge,q . Alterna-
tively, N(e, q) can be defined as the number of connected components
of Ge,q when it is considered as an undirected graph.

By a result of [4, Theorem 1] for prime fields (see also [15] for e = 2),
which can easily be extended to arbitrary finite fields, we have

(1.1) N(e, q) =
∑
d|ρ

ϕ(d)

`e(d)
,

where ρ is the largest divisor of q−1 which is relatively prime to e and,
for a, b relatively prime and b positive, `a(b) denotes the multiplicative
order of a modulo b .

Here we are interested in the extreme and average values of N(e, q)
when e is fixed and q varies over primes.

We remark that under the Generalised Riemann Hypothesis, the
orders `a(b) tend to be large (of magnitude b in a logarithmic scale);
we refer to [13]. Hence one expects that for most primes we have
N(e, p) ≤ po(1) . On the other hand, we show that the average value of
N(e, p) is quite large.
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1.2. Notation. Throughout the paper, the letters p and r always de-
note prime numbers while the letters a , e , k , m , and n denote positive
integers.

As usual, for a positive real number x we use π(x) to denote the
number of primes p ≤ x . Furthermore, for integers a and k ≥ 1
we define π(x; k, a) as the number of primes p ≤ x in the arithmetic
progression p ≡ a (mod k).

We also use P (k) and ϕ(k) to denote the largest prime divisor and
the Euler function of k , respectively, with P (1) = 1.

We recall that the statements U = O(V ), V � U and U � V are
all equivalent to the inequality |U | ≤ cV with some positive constant
c . In this note, implied constants may depend on the exponent e unless
stated otherwise.

1.3. New results. First, we show that N(e, p) is rather large for infin-
itely many primes p .

Theorem 1.1. For any fixed integer e ≥ 2, there are infinitely many
primes p with

N(e, p) ≥ p5/12+o(1).

We also show the following lower bound on the average value of
N(e, p).

Theorem 1.2. For any fixed integer e ≥ 2 and all sufficiently large real
numbers x, we have

1

π(x)

∑
p≤x

N(e, p) ≥ x0.293.

2. Preliminaries

2.1. Primes in arithmetic progressions. We need a version of a result
of Alford, Granville and Pomerance [1, Theorem 2.1] .

Lemma 2.1. For each fixed ε > 0 and sufficiently large x, depending on
ε, there is a finite set {m1, . . . ,mt} of integers, where t depends only
on ε, and each mi > log x, with the following property. If m ≤ x5/12−ε ,
and m is not divisible by any of m1, . . . ,mt , then we have uniformly
over integers a with gcd(a,m) = 1, that

π(x;m, a)� 1

ϕ(m)
π(x)

where the implied constant depends only on ε.
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2.2. Shifted primes with prescribed smoothness. We also need the
following result, which follows from the work of Baker and Harman [2,
Theorem 1], which improves the estimate in [7]. We recall our conven-
tion that r always denotes a prime number

Lemma 2.2. There is an absolute positive constant κ with the following
property. Let u > 10,

v =
log u

log2 u
, w = v1/0.2961,

and let

Q = {r ∈ [w/(logw)κ, w] : r − 1 |Mv} ,
where Mv is the least common multiple of the integers in [1, v]. Then
for u sufficiently large, we have

#Q ≥ w/(logw)κ.

3. Proofs of main results

3.1. Proof of Theorem 1.1. We fix some integer e ≥ 2 and a real
ε > 0. For a sufficiently large number K we define x by the equation

eK = x5/12−ε.

Now let m1, . . . ,mt be as in Lemma 2.1.
Clearly if gcd(mi, e) > 1 then mi - ek − 1. For each i with mi

coprime to e , we obviously have

(3.1) `e(mi)� logmi � log log x, i = 1, . . . ,m.

Hence for any integer h ≥ 1 we have at least

h−
t∑
i=1

(
h

`e(mi)
+ 1

)
= h+O(h/ log log x+ 1)

integers k in the interval [K − h,K] , which are not divisible by any of
the multiplicative orders `e(mi) for which gcd(mi, e) > 1. Thus ek− 1
is not divisible by any of the integers mi , i = 1, . . . , t . In particular,
we can always find k ∈ [K − h0, K] , where h0 depends only on ε , for
which mi - ek − 1, i = 1, . . . , t . We fix such an integer k and denote
m = ek − 1. Thus by Lemma 2.1 there exists a prime

(3.2) p� x = e12K/(5−12ε) � m12/(5−12ε)

with

p ≡ 1 (mod m).
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Since gcd(m, e) = 1, we have m | ρ , where ρ is the part of p − 1
coprime to e . Thus, using `e(m) = k , we obtain

N(e, p) =
∑
d|ρ

ϕ(d)

`e(d)
≥ ϕ(m)

k
� ϕ(m)

logm
.

Using the minimal order of the Euler function, see [9, Theorem 328],
we thus have

N(e, p)� m

logm log logm
,

which together with (3.2) and taking into account that ε > 0 is arbi-
trary, concludes the proof.

3.2. Proof of Theorem 1.2. We follow the construction from the proof
of [14, Theorem 1] which in turn is based on some ideas of Erdős [5] .

We fix some sufficiently small ε > 0 and let x be large. For

u = x5/12−ε

we consider the set Q and parameters v and w as in Lemma 2.2.
Furthermore, let m1, . . . ,mt be as in Lemma 2.1. Note that (3.1)
guarantees that for each i = 1, . . . , t with gcd(mi, e) = 1 we have
`e(mi) > 1 and thus we can choose a prime divisor ri of `e(mi) (we do
not claim nor require these primes to be distinct). We now remove at
most t such primes from the set Q and denote the remaining set by
Q∗ . Thus #Q∗ = #Q + O(1). Note too that Q∗ contains no prime
dividing e .

Put

ν =

⌊
log u

logw

⌋
and consider the set S of all products of ν distinct primes from Q∗ .
Clearly

(3.3) u ≥ wν ≥ m ≥ (w/(logw)κ)ν = u1+o(1)

for every m ∈ S .
Furrthermore, using Lemma 2.2, an easy calculation shows that

(3.4) #S =

(
#Q∗

ν

)
= u0.7039+o(1).

For every m ∈ S we have

`e(m) |Mv

and so by the prime number theorem, we obtain that

(3.5) `e(m) ≤ exp((1 + o(1))v) = uo(1) = xo(1).
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Recalling the definition of Q∗ we see that for any m ∈ S we have
mi - m , i = 1, . . . , t . By the choice of u and the upper bound in (3.3)
we see that by Lemma 2.1 we have

π(x;m, 1)� 1

ϕ(m)
π(x) = x1+o(1)u−1

for every m ∈ S . Thus, using (3.4) we obtain

(3.6)
∑
m∈S

π(x;m, 1) ≥ x1+o(1)u−0.2961.

Now, let P be the union of all primes p ≤ x with m | p−1 for some
m ∈ S . Since, by the classical bound on the divisor function, each
prime p ∈ P can come from at most xo(1) integers m ∈ S , we obtain
from (3.6) that

(3.7) #P ≥ x1+o(1)u−0.2961.

For every p with m | p − 1 for some m ∈ S , using (3.5) and
then (3.3), we have

N(e, p) ≥ ϕ(m)

`e(m)
= m1+o(1) = u1+o(1).

Therefore, using (3.7),∑
p≤x

N(e, p) ≥
∑
p∈P

N(e, p) ≥ u1+o(1)#P ≥ x1+o(1)u0.7039.

Recalling the choice of u and taking ε to be sufficiently small, we
conclude the proof.

4. Further improvements

Hypothetically the exponents in Theorems 1.1 and 1.2 may be re-
placed with any fixed number smaller than 1. This is true for Theo-
rem 1.1 on the assumption that we have exponent 1 + ε in Linnik’s
theorem; that is, for each integer k > k0(ε) and residue class a (mod k)
coprime to k , the least prime in this residue class is smaller than k1+ε .
The proof that N(e, p) > p1−ε for infinitely many primes p then follows
the same lines as our proof of Theorem 1.1.

To prove a 1 − ε analogue of Theorem 1.2 we need in addition to
the strong Linnik constant as above, the conjecture that in Lemma 2.2
we may replace the number 0.2961 with ε . This conjecture of Erdős
is known to follow from the Elliott–Halberstam conjecture. The proof
that the average of N(e, p) for p ≤ x exceeds x1−ε is then the same as
our proof of Theorem 1.2.
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The above improvements are probably out of reach. However, there
is a possible way to achieve more modest improvements of Theorems 1.1
and 1.2, which is based on a combination of a recent result of Chang [3]
with a result of Harman [11]. For this approach, one first has to verify
that that the exponent 3/4 in [11, Equation (1.2)] can be replaced by
any constant c < 1, see also the remark after [10, Theorem 1.2]. Then
this result can be combined with the bound of Chang [3, Theorem 10]
on the zero-free region of L-functions of characters with smooth mod-
uli, where the modulus m is chosen to satisfy two properties

• m = ek − 1 where k is an integer with a small value of ϕ(k),
that is, with ϕ(k) = o(k);
• m is not divisible by a Siegel modulus, which can be achieved

via the same argument as that used in the proof of Theorem 1.2.

Combining these ideas with our approach one is likely to be able
replace 5/12 with 0.472 and 0.293 with 0.332 in Theorems 1.1 and 1.2
respectively. We also note that using the moduli of the form m =
ek − 1 with ϕ(k) = o(k) as in the above, together with the version of
the Linnik theorem given by Chang [3, Corollary 11] one can obtain
an alternative proof of Theorem 1.1. However this produces a much
sparser sequence of primes than in the current proof of Theorem 1.1.

5. Further results and directions

In [12, Theorem 2] lower bounds are given for the order of e mod-
ulo the part of p− 1 coprime to e that translate to upper bounds for
N(e, p). Indeed, we have for any function ε(p) ↓ 0 that N(e, p) <
p1/2−ε(p) for almost all primes p and on the generalized Riemann Hy-
pothesis, N(e, p) < pε(p) for almost all p . (These normal-order results
are in stark contrast to the above extremal and average-order results.)

One can also consider the average cycle length. For a positive integer
n , let `∗e(n) denote the order of e modulo the prime-to-e part of n .
The average cycle length is then

C(e, p) =
1

p− 1

∑
d|p−1

ϕ(d)`∗e(d).

Note that `∗e(p− 1) = `e(ρ), so we have

ϕ(p− 1)

p− 1
`e(ρ) ≤ C(e, p) ≤ `e(ρ).

One then sees that results on `e(ρ) immediately translate to results on
C(e, p). So, it follows from [12, Theorem 2] that for any ε(p) ↓ 0, we



CONNECTED COMPONENTS OF POWER MAPS 7

have that for almost all primes p , C(e, p) > p1/2+ε(p) . Further, the av-
erage of C(e, p) for p ≤ x exceeds x0.592 for all sufficiently large values
of x . And on the Generalised Riemann Hypothesis, the average exceeds
x1−ε . An upper bound for the minimal order of C(e, p) follows from
the proof of Theorem 1.1. In particular, we have C(e, p) < p0.472+o(1)

for infinitely many primes p .
It would be interesting to generalize the results of this paper to

arbitrary finite fields, or perhaps to consider quantities such as

N(e, pk), k = 1, 2, . . . .

For example, we can show that for any fixed choice of e and p , for
infinitely many k we have

(5.1) N(e, pk) > exp(kc/ log log k),

where c is a positive constant. Indeed, from [6, Theorem 1] there are
infinitely many positive integers m with λ(m) ≤ (logm)O(log log logm) ,
where λ(m) is the maximum order of an element in (Z/mZ)× . Further,
with an easy argument, one can insure that m is coprime to ep . Let
k = `p(m) ≤ λ(m). We have

N(e, pk) ≥ ϕ(ρ)/`e(ρ) ≥ ϕ(ρ)/λ(ρ) ≥ m/λ(m),

using [8, Lemma 2]. Hence N(e, pk) ≥ m1+o(1) . The small size of λ(m)
in comparison to m implies that m is large in comparison to λ(m).
In particular, we have m ≥ exp(λ(m)c/ log log λ(m)) for some c > 0. The
bound (5.1) follows using λ(m) ≥ k .

It also may be of interest to study the number of cycles of the power
generator in the ring Z/nZ , where a seed is coprime to n . It is likely
that the methods of this paper and of [12] should be helpful.
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