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ABSTRACT. We show that only a rather small proportion of linear
equations are solvable in elements of a fixed finitely generated sub-
group of a multiplicative group of a number field. The argument
is based on modular techniques combined with a classical idea of
P. Erdés (1935). We then use similar ideas to get a tight upper
bound on the number of linear recurrence sequences which attain
a zero value.

1. MOTIVATION AND SET-UP

Recently, there has been several works counting soluble (globally or
locally) polynomial Diophantine equations in various families, see [1,
3-6,13-15] and references therein.

Here we address a similar question for families of linear equations in
elements of finitely generated groups, which are also known as S-unit
equations, we refer to [9] for background.

Namely, let I' € K* be a finitely generated multiplicative subgroup
of K*, where K is a number field of degree d = [K : Q] over Q.

We also fix an integral basis wy,...,wq of the ring of integers Zx of
K, and for an integer H > 0 we consider the set

AH)={a=wwi1 + ... +ugwq: wi€[-H,H|nZ, i=1,...,d}.

Clearly, A(H) is of cardinality #A(H) = (2H + 1)°.
Finally, we denote by Z(I', H) the number of k-tuples of coefficients
(a1,...,ax) € A(H)¥, such that the equation

(1.1) 01191—+-...+ak19k=0, 191,...,19kGF,

has a solution. Our first main result, Theorem 2.1, estimates Z(T", H)
with a power savings.

We note that the question of estimating Z;(T", H) is somewhat dual
to the scenario of [17] where, for K = Q and k = 3, the coefficients
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are fixed but I" varies among groups generated by r primes in a given
interval.

We also use similar ideas to bound the number of linear recurrence
sequences, which have a zero in their value set.

Let

(1.2) fX)=XF - XF Y~ — e Z[X], ¢ #0,
and let £; denote the set of all linear recurrence sequences
u = (u(f));2,
with the characteristic polynomial f, that is, with
(1.3) w(j+k)=ceu(+k—1)+...+ cou(y), j=12...,

and integer initial values u(1),...,u(k) not all zero.

If there are no roots of unity among the ratios of distinct roots of
its characteristic polynomial f, then all sequences u € L; are called
non-degenerate.

By the classical Skolem Mahler Lech theorem, any non-degenerate
linear recurrence sequence contains only finitely many zeros (see [2]
for the strongest known bound). Hence, there is an integer ng > 0,
depending only on u, such that u(n) # 0 for all n > ny.

It is also easy to see that “typical” polynomials f correspond to
non-degenerate linear recurrence sequences, thus having a zero is a
rare event. Our second main result, Theorem 2.3, implies that in fact
typically linear recurrence sequences u € L£; (whether degenerate or
not) do not have zeros at all.

For U > 1, we give an upper bound on the number Z(U) of linear re-
currence sequences u € L, with integer initial values (u(1),...,u(k)) €
[-U, U]* for which u(n) = 0 for some n.

Our approach to bounding Z(I', H) and Z;(U) is based on a mod-
ular technique and also on generating a reasonably dense sequence of
integers with small values of the Carmichael A-function and composed
from arbitrary sets of primes of positive relative density, see Lemma 3.1
below. (The Carmichael A-function at a positive integer n returns the
exponent of the group (Z/nZ)*.)

The argument we use dates back to work of Erdés [7]; it has also
been used in various modifications in a number of other works, see, for
example, [8].

We also note that in the case of Z;(U), surprisingly enough, the
modular approach gives an essentially tight bound.
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2. MAIN RESULTS

We first give an upper bound on Z(I', H) with a power savings.

We always assume that d, k, the subgroup I' and the characteristic
polynomial f € Z[X] are fixed. In particular all implied constants and
the functions denoted by the o-symbol may depend on them.

Theorem 2.1. Let K be a number field of degree d = [K : Q] over Q
and let I' € K* be a finitely generated group. Then, as H — o0,

Zk(F,H) < Hdk—1+o(1).

Remark 2.2. Examining the proof of Theorem 2.1 one can notice that
similar ideas can allow us to investigate equations with coefficients

which are arbitrary algebraic numbers of the form a/8 with «, 8 €
A(H), or of the form a/b with « € A(H) and be {1,..., H}.

A variation of the argument used in the proof of Theorem 2.1 also
gives the following tight bounds.

Theorem 2.3. Let f € Z[X] be defined by (1.2). If f is separable,
then, as U — 0,

Uk—l < Zf(U) < Uk_1+0(1).

Remark 2.4. It is easy to see that our argument also applies to in-
homogeneous versions of the equations (1.1) with some fixed p € K on
the right hand side and to counting linear recurrence sequences which
contain a prescribed value b € Z and leads to the same upper bounds
(uniformly in p and b).

3. SMALL VALUES OF THE CARMICHAEL A-FUNCTION

We recall that for an integer n > 2, the Carmichael A-function A(n)
is the smallest positive integer m such that ™ = 1 (mod n) for all a
coprime to n.

We say that a set of primes P is of relative density ¢ if

#(Pn[l,z]) ~ dn(x), as T — 00,

where, as usual, 7(z) is the number of primes up to z. Let z be large,
and let

y=10gfl)/10g10gl‘, M =lcm[1,2,...,[yJ],
so that M = g(+to()/loglogz a5 4, oo, Recall that if n = p,...px
where p, ..., p, are distinct primes, then

A(n) =lem[py —1,...,px — 1].
Thus, if each p; — 1 | M, then A\(n) | M and A(n) < z(t+o())/lglogz
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Below, we also allow all constants and o-functions to depend on the
real positive parameter ¢ and the set of primes P.

Lemma 3.1. Let € > 0 be arbitrarily small and suppose P is a set of
primes of relative density § > 0. There is a number zo (depending on &
and P ) such that if x > xo, there is a squarefree integern € ((1 — &)z, x|
composed solely of primes p from P and such that p —1 | M. In
particular, A\(n) < g(1+o(1)/loglogz,

Proof. Let Q = {p € P : p—1| M}. First note that P and Q
agree up to y. Thus, if z; is large enough (depending on € and P) and
loglogz <t < y, then the number of elements p € Q such that p <t
is in the interval ((1 —¢)dt/logt, (1 + €)dt/logt). We first show that
this continues for ¢ up to

z = logzloglogx.

Indeed, if p € P\Q, then p — 1 is divisible either by a prime ¢ > y or
by a prime power # > y, for a prime £ and integer j > 2. The number
of primes p < t satisfying the second condition is at most

D<) tml < tfyt? = o(n(t)

£ prime meN
j=2 j=2

for t < z.

The same is true for the first condition as we now show. If ¢ | p — 1,
write p — 1 = agq, so if p < t and ¢ > y, then a < t/y. Assume
that y < ¢t < 2, fix an integer a < t/y, and count primes ¢ < t/a
with aqg + 1 prime. By Brun’s sieve, the number of such primes ¢
is O ((t/¢(a))(log(t/a))~?), where o(a) is the Euler function, see, for
example, 11, Proposition 6.22] for a much more general and precise
statement. Since y < t < 2, we have a < (loglogz)? and log(t/a) ~
logt ~ loglogz. Since

Z 1/¢(a) « logloglog z ~ loglogt,

a<t/y

we have

#{peP\Q: p <t} «n(t)loglogt/logt = o(n(t)).

Let n; be the product of all of the primes in Q n [1,z], so that
A(ny) | M and n; > z(l-@e)dlelosz  for some absolute constant cj.
Thus, assuming that € is small enough, we see that n; is quite a bit
larger than . Remove the top primes from n; stopping just before
removing the next one would drop the number below z(log x)'/?, and
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denote this number by n,. Thus, z(logz)Y? < ny < z(logx)?z. Let
g = ny/z so that (logz)? < g < (logz)Y/?2.

Since P has a positive relative density in the primes, there are mem-
bers p1,ps in P with p; ~ pa ~ ¢'/2, and in particular, we can take
p1,p2 € ((1—¢/2)g"?, g%?]. Also, since g'/2 < y, we have p;,p; € Q.
Since

(logz)V* < g'? < (log x)Y/42'2 < y,

we have pipy | no. Let n = ny/pipo. Then n € ((1 — &)z, z], which
completes the proof. |

4. PROOF OF THEOREM 2.1

We fix the basis elements wy,...,wy of Zg = Z[w,,...,wy] and let r
be the rank of I.

We first observe that if the prime p splits completely in K then
the residue ring Zg /P modulo a prime ideal B of Zx lying over p is
isomorphic to the finite field F,, of p elements. This means that for any
a € Zg, there is an integer ayp € Z with

a=ay (mod*P).
Let P be the set of primes which split completely in K and also are

relatively prime (as ideals in Zg) to the basis elements wy, . .. ,wq of Zx
and to the prime ideals appearing in the factorisation of the generators
1,...,7 of ', seen as fractional ideals in K.

Therefore, for each p € P and prime ideal 3 of Zy lying over p there
are integers w;p € Z, 1 = 1,...,d, with
(4.1) w; =w;p (modP), i=1,...,d,
and the equation (1.1) implies that
(4.2) apsp ngs% 4+ .o+ Gy ng'” =0 (mod P),

j=1

1,...,k, 7 =1,...,r, and some integers

with some integers s;;, i =
= 1,...,k, and integers g;; = <; (mod P),

a'z‘B = @ (IIlOd m)v ?
j=1,.
Smce the left hand side of (4.2) is an integer, this also implies that

(4.3) ag|[gm+ - +ap[[gn=0 (modp).

j=1
Since a prime p splits completely in K if and only if it splits com-
pletely in the Galois closure of K, see [16, Corollary, Page 108|, by
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the Chebotarev Density Theorem applied to the Galois closure of K,
see [12, Theorem 21.2], the set P is of positive relative density.

We choose now n as in Lemma 3.1 applied with z = H, and since
the congruence (4.3) holds for each p € P, by the Chinese Reminder
Theorem we obtain

(4.4) a ng” + ..o+ ak Hg;’”' =0 (mod n),
j=1 j=1
for some integers a;, i = 1,...,k, and g;, j = 1,...,r, such that

a;i=aip (modP) and  g;j=g;p (modP)
for any prime ideal P of Zg lying over a prime p | n.
Hence the integer vector (aq, ..., a;) satisfies at least one of at most
A(n)*" possible nontrivial linear congruences (4.4), and thus takes at
most A(n)*"n*~! possible values modulo n.

For a given (a1, ...,ax) as above we are left to count the number of
possibilities (a,...,ax) € A(H)* such that

o =ap (mod )

for all prime ideals P of Zg dividing n.

Let a € A(H), that is, @ = wjw; + ... + ugwg, u; € Z n [—H, H|,
i =1,...,d. Let B be a prime ideal of Zg lying over a prime p € P
and let ag € Z satisfy

(4.5) a=ap (modP).
From (4.5) and recalling the notation (4.1), we obtain
wwWip + ... + uqwayp = ap  (mod P).

Hence, as above, this congruence holds modulo p and thus modulo n
chosen above, that is, we have

Wy + ... + uqwg = ap  (mod n),

such that w; = w; 3 (mod *B), 7 = 1,...,d, and where by our definition
of P we have ged(w; - - - wg,n) = 1.

We now see that for n < H there are O(H?/n) elements o € A(H),
which satisfy (4.5).

Therefore, recalling that there are at most A(n)
for (ay,...,ax), we obtain

Zy(T,H) = O (,\(n)'"nk—l (Hd/n)‘“) .

krpk=1 possibilities

Since A(n) = n°Y) = H°W and by Lemma 3.1, we have n > (1 —¢)H,
for € > 0 arbitrarily small, we conclude the proof.
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5. PROOF OoF THEOREM 2.3

The lower bound is obvious from considering initial values with, for
example, u(1) = 0.

To establish the upper bound, we choose the set P of all primes p,
such that f(X) splits completely modulo each p € P. By the Cheb-
otarev Density Theorem [12, Theorem 21.2] applied to the splitting
field of f, the set P is of relative density § > 1/k!.

By removing at most finitely many members of P we may assume
that any p € P is relatively prime to f(0) and the discriminant of f.
This means that any linear recurrence sequence u = (u(j));';l with
the characteristic polynomial f, taken modulo p, is a simple linear
recurrence and thus can be written as

k
(51) U‘(]) = 2 a’u,pgi,p (IIlOd p)) .7 = 1a 2a sy
v=1

for some integers a,, and distinct modulo p integers g,, such that
ged(gup, p) = 1, see [10, Chapter 3] for more details.

We now take n as in Lemma 3.1 applied with x = U.

By the Chinese Remainder Theorem, we derive from (5.1) that

k
U(J)EZAUGJU (mOd n)) j=12,...,
v=1

for some integers A, and distinct modulo n integers GG, such that
ged(G,,n) = 1. Therefore, u(j), j = 1,2,..., is purely periodic modulo
n with period

(5.2) t < A(n).
To represent u using the initial values u(1),...,u(k), we define the
sequences w; € Ly, i = 1,...,k, with initial values
1, ifi=j
'LU,;‘ = ’ ,, =1,,k
) {0, ifitj, 7

It is now obvious that for any u e £; we have

(5.3) u(j) = Y u@wid),  =12...

Indeed, both the left and the right hand-sides of the equation (5.3)
belong to £ and have the same initial values; hence they coincide for
all j.
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In particular (5.3) implies that for any integer m > 1 we have

(5.4) ged (wi(m), ..., we(m),p) =1
for p € P. Indeed, writing (5.3) for shifts of say w, that is, writing

k
wi(f +h) = Y wili + hwi(j), h=0,... k-1,
=1

we see that if (5.4) fails then for some m we have
p | wi(m + h), h=0,...,k—1.

Next, the recurrence relation (1.3) implies that p | wi(m + k), and
similarly p | wy(j) for all 7 > m. Recalling that w; is periodic, we
conclude that p | w;(1), which is a contradiction.
If u € £ has a zero, then, by periodicity, for some positive integer

j < t, the representation (5.3) implies

k

Zu(i)wi(j) =0 (mod n).

i=1
Recalling (5.4), we see that, since by our construction n < U, this is
possible for at most O(U*/n) initial values (u(1),...,u(k)) € [-U, U]*.
Hence, by (5.2),

Z;(U) = O (tU*/n) = O (A(n)U*/n)

and since, as before, by Lemma 3.1, we have n > (1 — €)U, for ¢ > 0
arbitrarily small, we conclude the proof.
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