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Universidad Nacional Autonoma de México

C.P. 58089, Morelia, Michoacán, México
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Abstract

Let ϕ denote Euler’s function. Clearly ϕ(n) | n − 1 if n = 1 or
if n is a prime. In 1932, Lehmer asked if any composite numbers n
have this property. Improving on some earlier results, we show that
the number of composite integers n ≤ x with ϕ(n) | n − 1 is at most
x1/2/(logx)1/2+o(1) as x → ∞. Key to the proof are some uniform
estimates of the distribution of integers n where the largest divisor of
ϕ(n) supported on primes from a fixed set is abnormally small. 1

1 Introduction

Let ϕ(n) be the Euler function of n. Lehmer [6] asked if there exist composite
positive integers n such that ϕ(n) | n − 1. In 1977, the second author [8]
proved that if one sets

L(x) = {n ≤ x : ϕ(n) | n− 1 and n is composite},

then
#L(x) � x1/2(log x)3/4.

1MSC numbers 11A25, 11N25
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This was followed by subsequent improvements in the exponent of the log-
arithm, by first replacing the above bound by x1/2(log x)1/2(log log x)−1/2

in [9], next by x1/2(log log x)1/2 in [2], and recently by x1/2(log x)−Θ+o(1) as
x → ∞ in [1], where Θ = 0.129398 . . . is the least positive solution of the
transcendental equation

2Θ(log Θ − 1 − log log 2) = − log 2.

Here, we continue this trend and present the following result.

Theorem 1. As x→ ∞, we have

#L(x) ≤ x1/2

(log x)1/2+o(1)
. (1)

The function o(1) appearing in the above exponent is of order of magni-
tude O((log log log log x)1/2/(log log log x)1/3). As in the previous works on
the subject, the above bound is also an upper bound for the cardinality of
the set

La(x) = {n ≤ x : ϕ(n) | n− a and n 6= ap where p - a is a prime},

where a 6= 0 is any fixed integer. In that case, the function o(1) in (1)
depends on a.

We point out that in spite of all these improvements, there is still no
known composite number n with ϕ(n) | n− 1. It is reasonable to conjecture
that #L(x) ≤ xo(1) as x→ ∞, but we seem to be a long way from improving
the exponent 1/2 on x in the upper bound to anything smaller.

While the proof follows the general approach from [1], we add a detailed
study of the distribution of those integers n where the contribution to ϕ(n)
from primes in a given set Q is below normal. Such results (see Proposition
1 in the case when Q is a small set and Proposition 2 in the case when Q is
large) can be viewed as a generalization of the Hardy–Ramanujan estimates
for the distribution of integers with fewer than the normal number of prime
factors, which integers usually have the 2-part of ϕ(n) smaller than normal.
Hopefully these propositions will have some independent interest.

We use the symbols O, o and �, � with their usual meaning. We also
use p and q for prime numbers. For a positive integer n, we use ω(n) for the
number of primes that divide n. For a prime q and a positive integer n we
write vq(n) for the exponent of q in the factorization of n; that is, qvq(n)‖n.

2



2 Some auxiliary results

It follows from the Hardy–Ramanujan inequality that

#{n ≤ t : ω(n) ≥ λ log log t} � eλt

(log t)1+λ log(λ/e)
,

#{n ≤ t : ω(n) ≤ λ log log t} � t

(log t)1+λ log(λ/e)
(2)

hold uniformly for all λ ≥ 1, and 0 < λ ≤ 1, respectively. (For λ fixed, a
somewhat stronger estimate is known, see Erdős and Nicolas [5, Prop. 3].)
These estimates played key roles in the proof in [1].

Since all prime divisors of a positive integer n with at most one possible
exception are odd, the bound (2) gives us that the inequality

#{n ≤ t : v2(ϕ(n)) ≤ λ log log t} � t

(log t)1+λ log(λ/e)
(3)

holds for all t uniformly in λ ∈ (0, 1]. While the above inequality is correct,
it does not capture the full contribution to v2(ϕ(n)) arising from primes p
with p− 1 a multiple of 4, 8, or a larger power of 2.

In this section, we prove a stronger and more general inequality than
(3). Let Q ⊂ [1,M ] be a set of primes. Put

FQ(n) :=
∏

q∈Q

qvq(ϕ(n))

for the Q-part of ϕ(n). In analogy with (2) and (3), for λ > 0 put

BQ,λ(t) := {n ≤ t : FQ(n) ≤ (log t)λ}.

Our first result addresses the cardinality of BQ,λ(t). Letting

cQ(s) :=
∏

q∈Q

(

q − 2

q − 1
+

1

qs+1 − 1

)

,

we have the following inequality.

Proposition 1. For Q ⊂ [1,M ] a set of primes, the estimate

#BQ,λ(t) ≤ t

(log t)1−λs−cQ(s)
exp

(

O((logM)3)
)

(4)

holds uniformly in Q, M ≥ 2, λ > 0, s ≥ 0, and t ≥ 2.
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Note that we are free to choose the number s ≥ 0 above. Obviously, when
Q and λ are given we would like to choose s in such a way that λs+ cQ(s)
is minimal. Before proving Proposition 1, let us give an application.

Take Q = {2}. We have F{2}(n) = 2v2(ϕ(n)) and c{2}(s) = 1/(2s+1 − 1).
To find the minimum of λs+c{2}(s) as a function of s, we take its derivative
with respect to s and set it to equal zero getting

λ =
2s+1 log 2

(2s+1 − 1)2
.

Putting x = 2s+1, we get the quadratic equation

(x− 1)2 =
log 2

λ
x,

whose solutions are

xλ = 1 +
log 2

2λ
±
√

log 2

λ
+

(log 2)2

4λ2
.

The one with the negative sign leads to a solution xλ < 1, which is impossible
because x = 2s+1 ≥ 2. Thus, we must pick the solution xλ with the positive
sign whose corresponding s equals

s =
1

log 2
log

(

1 +
log 2

2λ
+

√

log 2

λ
+

(log 2)2

4λ2

)

− 1.

This number is non-negative only when λ ∈ (0, 2 log 2]. The above calcula-
tion applied to λ log 2 implies the following improvement of (3).

Corollary 1. Given any λ ∈ (0, 2], we have the estimate

#{n ≤ t : v2(ϕ(n)) ≤λ log log t} = #B{2},λ log 2(t)

� t

(log t)
1+λ log 2−λ log

“

1+ 1+
√

4λ+1

2λ

”

− 2λ
1+

√
4λ+1

. (5)

When Q contains more than one element, finding the optimal value of
s amounts to solving a polynomial-like equation but with transcendental
exponents. In this case one may solve for s via numerical methods.

Taking say λ = 1/2 in (3), we get the value 0.1534264097 · · · for the
exponent of the logarithm, while taking λ = 1/2 in (5), we get the value
0.3220692380 · · · for the exponent of the logarithm.
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If one goes through the arguments from [1] and replaces inequality (3)
by the inequality (5), then one gets that with λ the solution of the equation

1 + λ log 2 − λ log

(

1 +
1 +

√
4λ+ 1

2λ

)

− 2λ

1 +
√

4λ+ 1
= λ log 2,

the inequality #L(x) ≤ x/(log x)Θ+o(1) holds as x → ∞, where Θ =
λ(log 2)/2. Calculation reveals that λ = 0.4815450284 · · · , so that Θ =
0.1668907893 · · · , which is already better than the main result from [1].
The improvement to Θ = 1/2 in our Theorem 1 arises by allowing more
primes into the set Q.

Now that we have hopefully convinced the reader of the usefulness of
Proposition 1, let’s get to its proof.

Proof. We need the following theorem which appears in [10, III, sec. 3.5].

Lemma 1. Let f be a multiplicative function such that f(n) ≥ 0 for all

n, and such that there exist numbers A and B such that for all x > 1 both

inequalities
∑

p≤x

f(p) log p ≤ Ax (6)

and
∑

p

∑

α≥2

f(pα)

pα
log(pα) ≤ B (7)

hold. Then, for x > 1, we have

∑

n≤x

f(n) ≤ (A+B + 1)
x

log x

∑

n≤x

f(n)

n
.

We apply Lemma 1 to the multiplicative function FQ(n)−s whose range
is in the set (0, 1]. Clearly, the estimates (6) and (7) hold with some absolute
constants A and B independent of Q or s. Since FQ(n)−s ≤ 1,

∑

n≤t

1

FQ(n)s
� t

log t

∏

p≤t

(

1 +
1

FQ(p)sp
+

1

FQ(p2)sp2
+ · · ·

)

≤ t

log t

∏

p≤t

(

1 +
1

FQ(p)sp
+O

(

1

p2

))

� t

log t
exp





∑

p≤t

1

FQ(p)sp



 .
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We now compute the sum within the above exponential. Let MQ be the set
of all positive integers m whose prime factors are contained in Q. Then

∑

p≤t

1

FQ(p)sp
=

∑

m∈MQ

1

ms

∑

p≤t
FQ(p)=m

1

p
.

Given m ∈ MQ, then p is a prime such that FQ(p) = m precisely when
m | p − 1 and (p − 1)/m is coprime to Q :=

∏

q∈Q q. We use the following
estimate:

∑

p≤t
p≡1 (mod `)

1

p
=

log log t

ϕ(`)
+O

(

log `

`

)

, (8)

(see [7] for example). For each m ∈ MQ, we have, by the Principle of
Inclusion and Exclusion, that

∑

p≤t
FQ(p)=m

1

p
=
∑

d|Q

µ(d)
∑

p≤t
p≡1 (mod md)

1

p
.

Using estimate (8) we get that

∑

p≤t
FQ(p)=m

1

p
= (log log t)

∑

d|Q

µ(d)

ϕ(md)
+O





∑

d|Q

log(md)

md



 .

Certainly,

∑

d|Q

log(dm)

dm
≤ 1

m

∑

d|Q

log d

d
+

logm

m

∑

d|Q

1

d
� (logM)2 + (logm) logM

m
.

We thus get that

∑

p≤t

1

FQ(p)sp
= (log log t)

∑

m∈MQ
d|Q

µ(d)

msϕ(md)

+ O





∑

m∈MQ

(logM)2 + (logm) logM

m



 .

Observe that the error term is O((logM)3). Thus,

∑

p≤t

1

FQ(p)sp
= (log log t)

∑

m∈MQ
d|Q

µ(d)

msϕ(md)
+O((logM)3). (9)
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The double sum above is a multiplicative function of the parameter Q (where
Q is the set of Q’s prime factors). Its value when Q = q is a prime is

1 − 1

q
+
∑

α≥1

(

1

qαsϕ(qα)
− 1

qαsϕ(qα+1)

)

=
q − 2

q − 1
+

1

qs+1 − 1
,

so that the main term in (9) above is our familiar cQ(s) multiplied by
log log t. We have shown that

∑

n≤t

1

FQ(n)s
� t

log t
exp

(

cQ(s) log log t+O((logM)3)
)

.

Since s ≥ 0, we deduce immediately that

#BQ,λ(t) ≤ t

log t
exp

(

(λs+ cQ(s)) log log t+O((logM)3)
)

=
t

(log t)1−λs−cQ(s)
exp

(

O((logM)3)
)

,

which is what we wanted to prove.

For a specific set Q of primes that one has in mind, one can use Propo-
sition 1 with a choice of s that minimizes the estimate for #BQ,λ(t) as we
did above in the case Q = {2}. It turns out that to prove Theorem 1, we
will want to take choices for Q as large sets of primes and λ far below its
“normal” value, in which case we will push up against a best-possible esti-
mate #BQ,λ(t) ≤ t/(log t)1+o(1). In this case it is not necessary to choose
the absolute optimal s, merely a “pretty good” value.

For Q a finite set of primes, let

TQ = exp





∑

q∈Q

1

q



 .

We now prove the following consequence of Proposition 1.

Proposition 2. Suppose that Q ⊂ [1,M ] is a set of primes with 0 < R ≤ 1,
where R := λ(log logM)/TQ. We have, uniformly for t ≥ 2,

#BQ,λ(t) ≤ t

(log t)1+O(R1/2)
exp

(

O((logM)3)
)

. (10)
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Proof. We shall apply Proposition 1 with s chosen as the number

s = R1/2/λ.

Thus, the term −λs in the exponent on log t in (4) is absorbed into the
O-estimate in (10). It remains to show that cQ(s) is likewise majorized.

We have

cQ(s) ≤
∏

q∈Q
q>2

(

q − 2

q − 1

)

exp









∑

q∈Q
q>2

q − 1

(q − 2)(q1+s − 1)









. (11)

The product satisfies

∏

q∈Q
q>2

(

q − 2

q − 1

)

= exp









−
∑

q∈Q
q>2

1

q
+O(1)









� T−1
Q . (12)

We have
∑

q∈Q
2<q≤exp(R1/2TQ)

q − 1

(q − 2)(q1+s − 1)
≤

∑

q∈Q
2<q≤exp(R1/2TQ)

1

q − 2

≤ log(R1/2TQ) +O(1).

Also,

∑

q∈Q
q>exp(R1/2TQ)

q − 1

(q − 2)(q1+s − 1)
≤ exp(−sR1/2TQ)

∑

q∈Q
q>2

q − 1

(q − 2)(q − q−s)

� exp(−sR1/2TQ) log logM.

Since sR1/2TQ = log logM , we have from these calculations that

∑

q∈Q
q>2

q − 1

(q − 2)(q1+s − 1)
≤ log(R1/2TQ) +O(1),

so that with (11) and (12), we get

cQ(s) � T−1
Q exp

(

log(R1/2TQ)
)

= R1/2.

Thus, we may also absorb cQ(s) into the O-estimate in the exponent on log t
in (10), completing the proof of the proposition.
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Finally, we shall need an upper bound on the number of n ≤ t whose
Euler function is coprime to the primes q ∈ Q for Q a set of odd primes with
Q ⊂ [1,M ]. For such a set of primes, put again Q :=

∏

q∈Q q, let

SQ(t) = {n ≤ t : gcd(ϕ(n), Q) = 1},

and let

gQ =
∏

q∈Q

q − 2

q − 1
.

Lemma 2. Let t,M ≥ 2 and let Q ⊂ [1,M ] be a set of odd primes. We

have the uniform estimate

#SQ(t) ≤ t

(log t)1−gQ
exp

(

O((logM)2)
)

.

Proof. Writing f(n) for the characteristic function of the numbers n having
ϕ(n) coprime to Q, Lemma 1 applied to f(n) shows that

#SQ(t) � t

log t

∏

p≤t
(p(p−1),Q)=1

(

1 +
1

p− 1

)

∏

p≤t
(p(p−1),Q)=p

(

1 +
1

p

)

� t

log t
exp









∑

p≤t
(p−1,Q)=1

1

p









.

The Principle of Inclusion and Exclusion together with estimate (8) shows
that

∑

p≤t
(p−1,Q)=1

1

p
=

∑

d|Q

µ(d)
∑

p≤t
p≡1 (mod d)

1

p

= (log log t)
∑

d|Q

µ(d)

ϕ(d)
+O





∑

d|Q

log d

d





= (log log t)
∏

q∈Q

(

1 − 1

q − 1

)

+O((logM)2)

= gQ log log t+O((logM)2).

The desired conclusion about #SQ(t) now follows.
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3 The Proof of Theorem 1

Let x be large and let D(x) = L(x)∩(x/2, x]. It suffices to show that inequal-
ity (1) holds with the left hand side replaced by #D(x), since afterwards
the resulting inequality will follow from the obvious fact that

#L(x) ≤
∑

0≤k≤b(log x)/(log 2)c

#D(x/2k).

If n ∈ D(x), we have that n is squarefree. Let K = ω(n) be the number of
prime factors of n. In [1], it was shown that the inequality K < 20 log log x
holds with at most O(x1/2/ log x) exceptional numbers n, which is acceptable
for us. So, we shall assume that K < 20 log log x.

A result of the second author from [8] shows that n has a divisor d such
that d ∈ [y/(2K), y], where we take y := x1/2/(log x)1/2. We let m = n/d
be the corresponding cofactor. Clearly,

d ∈
[ y

2K
, y
]

, m ∈
[

y log x

2
, 2Ky log x

]

.

In the remainder of the proof we take

M = log log x

and assume that x is large enough that M ≥ 3. We let D be any odd divisor
of
∏

q≤M q and study the contribution to D(x) of those n having

D = gcd(n,
∏

q≤M

q).

Let QD be the set of prime factors of D and let Q̄D be the set of primes
q ≤M not dividing D. Observe that (n, ϕ(n)) = 1, so that (m,ϕ(m)) = 1.
In particular, (ϕ(m),

∏

q∈QD
q) = 1. We distinguish 3 possibly overlapping

cases:

1.
∑

q∈QD
1/q ≥ (1/3) log logM ;

2.
∑

q∈Q̄D
1/q ≥ (2/3) log logM and FQ̄D

(m) ≤ (1/2) log x;

3. FQ̄D
(m) > (1/2) log x.
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Since
∑

q≤M 1/q > log logM for all sufficiently large values of x, these 3
cases cover all possibilities.

In case 1, we have gQD
� (logM)−1/3, so that by Lemma 2 the number

of possibilities for m ≤ 2Ky log x is

≤ Ky(log x) exp
(

O((logM)2)
)

(log x)1+O((log M)−1/3)
= y exp

(

O(M/(logM)1/3)
)

.

Since dm ≡ 1 (mod ϕ(d)ϕ(m)), it follows that d ≤ x/m is uniquely deter-
mined modulo ϕ(m), and since mϕ(m) > x for large values of x, we get that
m determines n uniquely.

In case 2, we use Proposition 2 with t = 2Ky log x and λ = 1. Note that
TQ̄D

≥ (logM)2/3. We get that the number of possibilities for m, and hence
for n, is at most

Ky(log x) exp
(

O((logM)3)
)

(log x)1+O((log log M)1/2/(log M)1/3)
= y exp

(

O

(

M(log logM)1/2

(logM)1/3

))

.

Assume next that FQ̄D
(m) > (1/2) log x. In particular, there exists a

divisor ` of ϕ(m) in the interval [(log x)/(2M), (log x)/2] with each prime
factor of ` in [1,M ]. Let us fix this number `. The number of choices for
` is at most ψ(log x,M), where ψ(X,Y ) denotes the number of integers in
[1, X] composed of primes in [1, Y ]. Using a result of Erdős [4] (see also [3])
that ψ(X, logX) ≤ 4(1+o(1))(log X)/ log log X as X → ∞, we have

ψ(log x,M) ≤ exp(O(M/ logM)).

Let us fix also d. Then the congruence dm ≡ 1 (mod ϕ(d)ϕ(m)) puts m ≤
x/d in a congruence class modulo ϕ(d)`. Thus, the number of choices for m
is at most 1 + x/(dϕ(d)`). Summing over d ∈ [y/(2K), y], we have for this
` that the number of possibilities for m, hence for n, is

≤
∑

d∈[y/(2K),y]

(

1 +
x

dϕ(d)`

)

� y +
Kx

y`
≤ (2KM + 1)y �M 2y.

Multiplying by the number of choices for ` we get a contribution of at most
y exp(O(M/ logM)) choices for m, hence for n, in this case.

Thus, we have at most y exp
(

O
(

M(log logM)1/2/(logM)1/3
))

choices
for n ∈ D(x) in each case. This bound is to be multiplied by the number of
odd D with D | Q, which is 2π(M)−1 � exp(M/ logM). We therefore have

#D(x) ≤ x1/2

(log x)1/2+o(1)
,
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where o(1) here has the order O((log log log log x)1/2/(log log log x)1/3). This
concludes our proof.
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