On composite integers n for which $\varphi(n) \mid n-1$

Florian Luca
Instituto de Matemáticas
Universidad Nacional Autonoma de México
C.P. 58089, Morelia, Michoacán, México
fluca@matmor. unam.mx

Carl Pomerance
Department of Mathematics
Dartmouth College
Hanover, NH 03755-3551, USA
carl.pomerance@dartmouth.edu
May 31, 2009

Abstract

Let φ denote Euler's function. Clearly $\varphi(n) \mid n-1$ if $n=1$ or if n is a prime. In 1932, Lehmer asked if any composite numbers n have this property. Improving on some earlier results, we show that the number of composite integers $n \leq x$ with $\varphi(n) \mid n-1$ is at most $x^{1 / 2} /(\log x)^{1 / 2+o(1)}$ as $x \rightarrow \infty$. Key to the proof are some uniform estimates of the distribution of integers n where the largest divisor of $\varphi(n)$ supported on primes from a fixed set is abnormally small. ${ }^{1}$

1 Introduction

Let $\varphi(n)$ be the Euler function of n. Lehmer [6] asked if there exist composite positive integers n such that $\varphi(n) \mid n-1$. In 1977, the second author [8] proved that if one sets

$$
\mathcal{L}(x)=\{n \leq x: \varphi(n) \mid n-1 \text { and } n \text { is composite }\},
$$

then

$$
\# \mathcal{L}(x) \ll x^{1 / 2}(\log x)^{3 / 4} .
$$

[^0]This was followed by subsequent improvements in the exponent of the logarithm, by first replacing the above bound by $x^{1 / 2}(\log x)^{1 / 2}(\log \log x)^{-1 / 2}$ in [9], next by $x^{1 / 2}(\log \log x)^{1 / 2}$ in [2], and recently by $x^{1 / 2}(\log x)^{-\Theta+o(1)}$ as $x \rightarrow \infty$ in [1], where $\Theta=0.129398 \ldots$ is the least positive solution of the transcendental equation

$$
2 \Theta(\log \Theta-1-\log \log 2)=-\log 2 .
$$

Here, we continue this trend and present the following result.
Theorem 1. As $x \rightarrow \infty$, we have

$$
\begin{equation*}
\# \mathcal{L}(x) \leq \frac{x^{1 / 2}}{(\log x)^{1 / 2+o(1)}} \tag{1}
\end{equation*}
$$

The function $o(1)$ appearing in the above exponent is of order of magnitude $O\left((\log \log \log \log x)^{1 / 2} /(\log \log \log x)^{1 / 3}\right)$. As in the previous works on the subject, the above bound is also an upper bound for the cardinality of the set

$$
\mathcal{L}_{a}(x)=\{n \leq x: \varphi(n) \mid n-a \text { and } n \neq a p \text { where } p \nmid a \text { is a prime }\},
$$

where $a \neq 0$ is any fixed integer. In that case, the function $o(1)$ in (1) depends on a.

We point out that in spite of all these improvements, there is still no known composite number n with $\varphi(n) \mid n-1$. It is reasonable to conjecture that $\# \mathcal{L}(x) \leq x^{o(1)}$ as $x \rightarrow \infty$, but we seem to be a long way from improving the exponent $1 / 2$ on x in the upper bound to anything smaller.

While the proof follows the general approach from [1], we add a detailed study of the distribution of those integers n where the contribution to $\varphi(n)$ from primes in a given set \mathcal{Q} is below normal. Such results (see Proposition 1 in the case when \mathcal{Q} is a small set and Proposition 2 in the case when \mathcal{Q} is large) can be viewed as a generalization of the Hardy-Ramanujan estimates for the distribution of integers with fewer than the normal number of prime factors, which integers usually have the 2-part of $\varphi(n)$ smaller than normal. Hopefully these propositions will have some independent interest.

We use the symbols O, o and \ll, > with their usual meaning. We also use p and q for prime numbers. For a positive integer n, we use $\omega(n)$ for the number of primes that divide n. For a prime q and a positive integer n we write $v_{q}(n)$ for the exponent of q in the factorization of n; that is, $q^{v_{q}(n)} \| n$.

2 Some auxiliary results

It follows from the Hardy-Ramanujan inequality that

$$
\begin{align*}
& \#\{n \leq t: \omega(n) \geq \lambda \log \log t\} \ll \frac{e^{\lambda} t}{(\log t)^{1+\lambda \log (\lambda / e)}}, \\
& \#\{n \leq t: \omega(n) \leq \lambda \log \log t\} \ll \frac{t}{(\log t)^{1+\lambda \log (\lambda / e)}} \tag{2}
\end{align*}
$$

hold uniformly for all $\lambda \geq 1$, and $0<\lambda \leq 1$, respectively. (For λ fixed, a somewhat stronger estimate is known, see Erdős and Nicolas [5, Prop. 3].) These estimates played key roles in the proof in [1].

Since all prime divisors of a positive integer n with at most one possible exception are odd, the bound (2) gives us that the inequality

$$
\begin{equation*}
\#\left\{n \leq t: v_{2}(\varphi(n)) \leq \lambda \log \log t\right\} \ll \frac{t}{(\log t)^{1+\lambda \log (\lambda / e)}} \tag{3}
\end{equation*}
$$

holds for all t uniformly in $\lambda \in(0,1]$. While the above inequality is correct, it does not capture the full contribution to $v_{2}(\varphi(n))$ arising from primes p with $p-1$ a multiple of 4,8 , or a larger power of 2 .

In this section, we prove a stronger and more general inequality than (3). Let $\mathcal{Q} \subset[1, M]$ be a set of primes. Put

$$
F_{\mathcal{Q}}(n):=\prod_{q \in \mathcal{Q}} q^{v_{q}(\varphi(n))}
$$

for the \mathcal{Q}-part of $\varphi(n)$. In analogy with (2) and (3), for $\lambda>0$ put

$$
\mathcal{B}_{\mathcal{Q}, \lambda}(t):=\left\{n \leq t: F_{\mathcal{Q}}(n) \leq(\log t)^{\lambda}\right\} .
$$

Our first result addresses the cardinality of $\mathcal{B}_{\mathcal{Q}, \lambda}(t)$. Letting

$$
c_{\mathcal{Q}}(s):=\prod_{q \in \mathcal{Q}}\left(\frac{q-2}{q-1}+\frac{1}{q^{s+1}-1}\right),
$$

we have the following inequality.
Proposition 1. For $\mathcal{Q} \subset[1, M]$ a set of primes, the estimate

$$
\begin{equation*}
\# \mathcal{B}_{\mathcal{Q}, \lambda}(t) \leq \frac{t}{(\log t)^{1-\lambda s-c_{\mathcal{Q}}(s)}} \exp \left(O\left((\log M)^{3}\right)\right) \tag{4}
\end{equation*}
$$

holds uniformly in $\mathcal{Q}, M \geq 2, \lambda>0, s \geq 0$, and $t \geq 2$.

Note that we are free to choose the number $s \geq 0$ above. Obviously, when \mathcal{Q} and λ are given we would like to choose s in such a way that $\lambda s+c_{\mathcal{Q}}(s)$ is minimal. Before proving Proposition 1, let us give an application.

Take $\mathcal{Q}=\{2\}$. We have $F_{\{2\}}(n)=2^{v_{2}(\varphi(n))}$ and $c_{\{2\}}(s)=1 /\left(2^{s+1}-1\right)$. To find the minimum of $\lambda s+c_{\{2\}}(s)$ as a function of s, we take its derivative with respect to s and set it to equal zero getting

$$
\lambda=\frac{2^{s+1} \log 2}{\left(2^{s+1}-1\right)^{2}} .
$$

Putting $x=2^{s+1}$, we get the quadratic equation

$$
(x-1)^{2}=\frac{\log 2}{\lambda} x,
$$

whose solutions are

$$
x_{\lambda}=1+\frac{\log 2}{2 \lambda} \pm \sqrt{\frac{\log 2}{\lambda}+\frac{(\log 2)^{2}}{4 \lambda^{2}}} .
$$

The one with the negative sign leads to a solution $x_{\lambda}<1$, which is impossible because $x=2^{s+1} \geq 2$. Thus, we must pick the solution x_{λ} with the positive sign whose corresponding s equals

$$
s=\frac{1}{\log 2} \log \left(1+\frac{\log 2}{2 \lambda}+\sqrt{\frac{\log 2}{\lambda}+\frac{(\log 2)^{2}}{4 \lambda^{2}}}\right)-1 .
$$

This number is non-negative only when $\lambda \in(0,2 \log 2]$. The above calculation applied to $\lambda \log 2$ implies the following improvement of (3).

Corollary 1. Given any $\lambda \in(0,2]$, we have the estimate

$$
\begin{align*}
\#\left\{n \leq t: v_{2}(\varphi(n)) \leq\right. & \lambda \log \log t\}=\# \mathcal{B}_{\{2\}, \lambda \log 2}(t) \\
& \ll \frac{t}{(\log t)^{1+\lambda \log 2-\lambda \log \left(1+\frac{1+\sqrt{4 \lambda+1}}{2 \lambda}\right)-\frac{2 \lambda}{1+\sqrt{4 \lambda+1}}} .} . \tag{5}
\end{align*}
$$

When \mathcal{Q} contains more than one element, finding the optimal value of s amounts to solving a polynomial-like equation but with transcendental exponents. In this case one may solve for s via numerical methods.

Taking say $\lambda=1 / 2$ in (3), we get the value $0.1534264097 \cdots$ for the exponent of the logarithm, while taking $\lambda=1 / 2$ in (5), we get the value $0.3220692380 \cdots$ for the exponent of the logarithm.

If one goes through the arguments from [1] and replaces inequality (3) by the inequality (5), then one gets that with λ the solution of the equation

$$
1+\lambda \log 2-\lambda \log \left(1+\frac{1+\sqrt{4 \lambda+1}}{2 \lambda}\right)-\frac{2 \lambda}{1+\sqrt{4 \lambda+1}}=\lambda \log 2
$$

the inequality $\# \mathcal{L}(x) \leq x /(\log x)^{\Theta+o(1)}$ holds as $x \rightarrow \infty$, where $\Theta=$ $\lambda(\log 2) / 2$. Calculation reveals that $\lambda=0.4815450284 \cdots$, so that $\Theta=$ $0.1668907893 \cdots$, which is already better than the main result from [1]. The improvement to $\Theta=1 / 2$ in our Theorem 1 arises by allowing more primes into the set \mathcal{Q}.

Now that we have hopefully convinced the reader of the usefulness of Proposition 1, let's get to its proof.

Proof. We need the following theorem which appears in [10, III, sec. 3.5].
Lemma 1. Let f be a multiplicative function such that $f(n) \geq 0$ for all n, and such that there exist numbers A and B such that for all $x>1$ both inequalities

$$
\begin{equation*}
\sum_{p \leq x} f(p) \log p \leq A x \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{p} \sum_{\alpha \geq 2} \frac{f\left(p^{\alpha}\right)}{p^{\alpha}} \log \left(p^{\alpha}\right) \leq B \tag{7}
\end{equation*}
$$

hold. Then, for $x>1$, we have

$$
\sum_{n \leq x} f(n) \leq(A+B+1) \frac{x}{\log x} \sum_{n \leq x} \frac{f(n)}{n}
$$

We apply Lemma 1 to the multiplicative function $F_{\mathcal{Q}}(n)^{-s}$ whose range is in the set $(0,1]$. Clearly, the estimates (6) and (7) hold with some absolute constants A and B independent of \mathcal{Q} or s. Since $F_{\mathcal{Q}}(n)^{-s} \leq 1$,

$$
\begin{aligned}
\sum_{n \leq t} \frac{1}{F_{\mathcal{Q}}(n)^{s}} & \ll \frac{t}{\log t} \prod_{p \leq t}\left(1+\frac{1}{F_{\mathcal{Q}}(p)^{s} p}+\frac{1}{F_{\mathcal{Q}}\left(p^{2}\right)^{s} p^{2}}+\cdots\right) \\
& \leq \frac{t}{\log t} \prod_{p \leq t}\left(1+\frac{1}{F_{\mathcal{Q}}(p)^{s} p}+O\left(\frac{1}{p^{2}}\right)\right) \\
& \ll \frac{t}{\log t} \exp \left(\sum_{p \leq t} \frac{1}{F_{\mathcal{Q}}(p)^{s} p}\right)
\end{aligned}
$$

We now compute the sum within the above exponential. Let $\mathcal{M}_{\mathcal{Q}}$ be the set of all positive integers m whose prime factors are contained in \mathcal{Q}. Then

$$
\sum_{p \leq t} \frac{1}{F_{\mathcal{Q}}(p)^{s} p}=\sum_{m \in \mathcal{M}_{\mathcal{Q}}} \frac{1}{m^{s}} \sum_{\substack{p \leq t \\ F_{\mathcal{Q}}(p)=m}} \frac{1}{p}
$$

Given $m \in \mathcal{M}_{\mathcal{Q}}$, then p is a prime such that $F_{\mathcal{Q}}(p)=m$ precisely when $m \mid p-1$ and $(p-1) / m$ is coprime to $Q:=\prod_{q \in \mathcal{Q}} q$. We use the following estimate:

$$
\begin{equation*}
\sum_{\substack{p \leq t \\(\bmod \ell)}} \frac{1}{p}=\frac{\log \log t}{\varphi(\ell)}+O\left(\frac{\log \ell}{\ell}\right) \tag{8}
\end{equation*}
$$

(see [7] for example). For each $m \in \mathcal{M}_{\mathcal{Q}}$, we have, by the Principle of Inclusion and Exclusion, that

$$
\sum_{\substack{p \leq t \\ F_{\mathcal{Q}}(p)=m}} \frac{1}{p}=\sum_{d \mid Q} \mu(d) \sum_{\substack{p \leq t \\ p \equiv 1}} \frac{1}{p} .
$$

Using estimate (8) we get that

$$
\sum_{\substack{p \leq t \\ F_{\mathcal{Q}}(p)=m}} \frac{1}{p}=(\log \log t) \sum_{d \mid Q} \frac{\mu(d)}{\varphi(m d)}+O\left(\sum_{d \mid Q} \frac{\log (m d)}{m d}\right) .
$$

Certainly,

$$
\sum_{d \mid Q} \frac{\log (d m)}{d m} \leq \frac{1}{m} \sum_{d \mid Q} \frac{\log d}{d}+\frac{\log m}{m} \sum_{d \mid Q} \frac{1}{d} \ll \frac{(\log M)^{2}+(\log m) \log M}{m}
$$

We thus get that

$$
\begin{aligned}
\sum_{p \leq t} \frac{1}{F_{\mathcal{Q}}(p)^{s} p} & =(\log \log t) \sum_{\substack{m \in \mathcal{M}_{\mathcal{Q}} \\
d \mid Q}} \frac{\mu(d)}{m^{s} \varphi(m d)} \\
& +O\left(\sum_{m \in \mathcal{M}_{\mathcal{Q}}} \frac{(\log M)^{2}+(\log m) \log M}{m}\right)
\end{aligned}
$$

Observe that the error term is $O\left((\log M)^{3}\right)$. Thus,

$$
\begin{equation*}
\sum_{p \leq t} \frac{1}{F_{\mathcal{Q}}(p)^{s} p}=(\log \log t) \sum_{\substack{m \in \mathcal{M}_{\mathcal{Q}} \\ d \mid Q}} \frac{\mu(d)}{m^{s} \varphi(m d)}+O\left((\log M)^{3}\right) \tag{9}
\end{equation*}
$$

The double sum above is a multiplicative function of the parameter Q (where \mathcal{Q} is the set of Q 's prime factors). Its value when $Q=q$ is a prime is

$$
1-\frac{1}{q}+\sum_{\alpha \geq 1}\left(\frac{1}{q^{\alpha s} \varphi\left(q^{\alpha}\right)}-\frac{1}{q^{\alpha s} \varphi\left(q^{\alpha+1}\right)}\right)=\frac{q-2}{q-1}+\frac{1}{q^{s+1}-1}
$$

so that the main term in (9) above is our familiar $c_{\mathcal{Q}}(s)$ multiplied by $\log \log t$. We have shown that

$$
\sum_{n \leq t} \frac{1}{F_{\mathcal{Q}}(n)^{s}} \ll \frac{t}{\log t} \exp \left(c_{\mathcal{Q}}(s) \log \log t+O\left((\log M)^{3}\right)\right)
$$

Since $s \geq 0$, we deduce immediately that

$$
\begin{aligned}
\# \mathcal{B}_{\mathcal{Q}, \lambda}(t) & \leq \frac{t}{\log t} \exp \left(\left(\lambda s+c_{\mathcal{Q}}(s)\right) \log \log t+O\left((\log M)^{3}\right)\right) \\
& =\frac{t}{(\log t)^{1-\lambda s-c_{\mathcal{Q}}(s)}} \exp \left(O\left((\log M)^{3}\right)\right)
\end{aligned}
$$

which is what we wanted to prove.
For a specific set \mathcal{Q} of primes that one has in mind, one can use Proposition 1 with a choice of s that minimizes the estimate for $\# \mathcal{B}_{\mathcal{Q}, \lambda}(t)$ as we did above in the case $\mathcal{Q}=\{2\}$. It turns out that to prove Theorem 1 , we will want to take choices for \mathcal{Q} as large sets of primes and λ far below its "normal" value, in which case we will push up against a best-possible estimate $\# \mathcal{B}_{\mathcal{Q}, \lambda}(t) \leq t /(\log t)^{1+o(1)}$. In this case it is not necessary to choose the absolute optimal s, merely a "pretty good" value.

For \mathcal{Q} a finite set of primes, let

$$
T_{\mathcal{Q}}=\exp \left(\sum_{q \in \mathcal{Q}} \frac{1}{q}\right)
$$

We now prove the following consequence of Proposition 1.
Proposition 2. Suppose that $\mathcal{Q} \subset[1, M]$ is a set of primes with $0<R \leq 1$, where $R:=\lambda(\log \log M) / T_{\mathcal{Q}}$. We have, uniformly for $t \geq 2$,

$$
\begin{equation*}
\# \mathcal{B}_{\mathcal{Q}, \lambda}(t) \leq \frac{t}{(\log t)^{1+O\left(R^{1 / 2}\right)}} \exp \left(O\left((\log M)^{3}\right)\right) \tag{10}
\end{equation*}
$$

Proof. We shall apply Proposition 1 with s chosen as the number

$$
s=R^{1 / 2} / \lambda
$$

Thus, the term $-\lambda s$ in the exponent on $\log t$ in (4) is absorbed into the O-estimate in (10). It remains to show that $c_{\mathcal{Q}}(s)$ is likewise majorized.

We have

$$
\begin{equation*}
c_{\mathcal{Q}}(s) \leq \prod_{\substack{q \in \mathcal{Q} \\ q>2}}\left(\frac{q-2}{q-1}\right) \exp \left(\sum_{\substack{q \in \mathcal{Q} \\ q>2}} \frac{q-1}{(q-2)\left(q^{1+s}-1\right)}\right) \tag{11}
\end{equation*}
$$

The product satisfies

$$
\begin{equation*}
\prod_{\substack{q \in \mathcal{Q} \\ q>2}}\left(\frac{q-2}{q-1}\right)=\exp \left(-\sum_{\substack{q \in \mathcal{Q} \\ q>2}} \frac{1}{q}+O(1)\right) \ll T_{\mathcal{Q}}^{-1} \tag{12}
\end{equation*}
$$

We have

$$
\sum_{\substack{q \in \mathcal{Q} \\ q \leq \exp \left(R^{1 / 2} T_{\mathcal{Q}}\right)}} \frac{q-1}{(q-2)\left(q^{1+s}-1\right)} \leq \sum_{\substack{q \in \mathcal{Q} \\ 2<q \leq \exp \left(R^{1 / 2} T_{\mathcal{Q}}\right)}} \frac{1}{q-2}
$$

Also,

$$
\begin{aligned}
\sum_{\substack{q \in \mathcal{Q} \\
\exp \left(R^{1 / 2} T_{\mathcal{Q}}\right)}} \frac{q-1}{(q-2)\left(q^{1+s}-1\right)} & \leq \exp \left(-s R^{1 / 2} T_{\mathcal{Q}}\right) \sum_{\substack{q \in \mathcal{Q} \\
q>2}} \frac{q-1}{(q-2)\left(q-q^{-s}\right)} \\
& \ll \exp \left(-s R^{1 / 2} T_{\mathcal{Q}}\right) \log \log M .
\end{aligned}
$$

Since $s R^{1 / 2} T_{\mathcal{Q}}=\log \log M$, we have from these calculations that

$$
\sum_{\substack{q \in \mathcal{Q} \\ q>2}} \frac{q-1}{(q-2)\left(q^{1+s}-1\right)} \leq \log \left(R^{1 / 2} T_{\mathcal{Q}}\right)+O(1)
$$

so that with (11) and (12), we get

$$
c_{\mathcal{Q}}(s) \ll T_{\mathcal{Q}}^{-1} \exp \left(\log \left(R^{1 / 2} T_{\mathcal{Q}}\right)\right)=R^{1 / 2}
$$

Thus, we may also absorb $c_{\mathcal{Q}}(s)$ into the O-estimate in the exponent on $\log t$ in (10), completing the proof of the proposition.

Finally, we shall need an upper bound on the number of $n \leq t$ whose Euler function is coprime to the primes $q \in \mathcal{Q}$ for \mathcal{Q} a set of odd primes with $\mathcal{Q} \subset[1, M]$. For such a set of primes, put again $Q:=\prod_{q \in \mathcal{Q}} q$, let

$$
\mathcal{S}_{\mathcal{Q}}(t)=\{n \leq t: \operatorname{gcd}(\varphi(n), Q)=1\},
$$

and let

$$
g_{\mathcal{Q}}=\prod_{q \in \mathcal{Q}} \frac{q-2}{q-1} .
$$

Lemma 2. Let $t, M \geq 2$ and let $\mathcal{Q} \subset[1, M]$ be a set of odd primes. We have the uniform estimate

$$
\# \mathcal{S}_{\mathcal{Q}}(t) \leq \frac{t}{(\log t)^{1-g_{\mathcal{Q}}}} \exp \left(O\left((\log M)^{2}\right)\right)
$$

Proof. Writing $f(n)$ for the characteristic function of the numbers n having $\varphi(n)$ coprime to Q, Lemma 1 applied to $f(n)$ shows that

$$
\begin{aligned}
\# \mathcal{S}_{\mathcal{Q}}(t) & \ll \frac{t}{\log t} \prod_{\substack{p \leq t \\
(p(p-1), Q)=1}}\left(1+\frac{1}{p-1}\right) \prod_{\substack{p \leq t \\
(p(p-1), Q)=p}}\left(1+\frac{1}{p}\right) \\
& \ll \frac{t}{\log t} \exp \left(\sum_{\substack{p \leq t \\
(p-1, Q)=1}} \frac{1}{p}\right) .
\end{aligned}
$$

The Principle of Inclusion and Exclusion together with estimate (8) shows that

$$
\begin{aligned}
\sum_{\substack{p \leq t \\
(p-1, Q)=1}} \frac{1}{p} & =\sum_{d \mid Q} \mu(d) \sum_{p \equiv 1}^{p \leq t} \\
& \frac{1}{p} \\
& =(\log \log t) \sum_{d \mid Q} \frac{\mu(d)}{\varphi(d)}+O\left(\sum_{d \mid Q} \frac{\log d}{d}\right) \\
& =(\log \log t) \prod_{q \in \mathcal{Q}}\left(1-\frac{1}{q-1}\right)+O\left((\log M)^{2}\right) \\
& =g_{\mathcal{Q}} \log \log t+O\left((\log M)^{2}\right)
\end{aligned}
$$

The desired conclusion about $\# \mathcal{S}_{\mathcal{Q}}(t)$ now follows.

3 The Proof of Theorem 1

Let x be large and let $\mathcal{D}(x)=\mathcal{L}(x) \cap(x / 2, x]$. It suffices to show that inequality (1) holds with the left hand side replaced by $\# \mathcal{D}(x)$, since afterwards the resulting inequality will follow from the obvious fact that

$$
\# \mathcal{L}(x) \leq \sum_{0 \leq k \leq\lfloor(\log x) /(\log 2)\rfloor} \# \mathcal{D}\left(x / 2^{k}\right)
$$

If $n \in \mathcal{D}(x)$, we have that n is squarefree. Let $K=\omega(n)$ be the number of prime factors of n. In [1], it was shown that the inequality $K<20 \log \log x$ holds with at most $O\left(x^{1 / 2} / \log x\right)$ exceptional numbers n, which is acceptable for us. So, we shall assume that $K<20 \log \log x$.

A result of the second author from [8] shows that n has a divisor d such that $d \in[y /(2 K), y]$, where we take $y:=x^{1 / 2} /(\log x)^{1 / 2}$. We let $m=n / d$ be the corresponding cofactor. Clearly,

$$
d \in\left[\frac{y}{2 K}, y\right], \quad m \in\left[\frac{y \log x}{2}, 2 K y \log x\right]
$$

In the remainder of the proof we take

$$
M=\log \log x
$$

and assume that x is large enough that $M \geq 3$. We let D be any odd divisor of $\prod_{q \leq M} q$ and study the contribution to $\mathcal{D}(x)$ of those n having

$$
D=\operatorname{gcd}\left(n, \prod_{q \leq M} q\right)
$$

Let \mathcal{Q}_{D} be the set of prime factors of D and let $\overline{\mathcal{Q}}_{D}$ be the set of primes $q \leq M$ not dividing D. Observe that $(n, \varphi(n))=1$, so that $(m, \varphi(m))=1$. In particular, $\left(\varphi(m), \prod_{q \in \mathcal{Q}_{D}} q\right)=1$. We distinguish 3 possibly overlapping cases:

1. $\sum_{q \in \mathcal{Q}_{D}} 1 / q \geq(1 / 3) \log \log M$;
2. $\sum_{q \in \overline{\mathcal{Q}}_{D}} 1 / q \geq(2 / 3) \log \log M$ and $F_{\overline{\mathcal{Q}}_{D}}(m) \leq(1 / 2) \log x$;
3. $F_{\overline{\mathcal{Q}}_{D}}(m)>(1 / 2) \log x$.

Since $\sum_{q \leq M} 1 / q>\log \log M$ for all sufficiently large values of x, these 3 cases cover all possibilities.

In case 1 , we have $g_{\mathcal{Q}_{D}} \ll(\log M)^{-1 / 3}$, so that by Lemma 2 the number of possibilities for $m \leq 2 K y \log x$ is

$$
\leq \frac{K y(\log x) \exp \left(O\left((\log M)^{2}\right)\right)}{(\log x)^{1+O\left((\log M)^{-1 / 3}\right)}}=y \exp \left(O\left(M /(\log M)^{1 / 3}\right)\right) .
$$

Since $d m \equiv 1(\bmod \varphi(d) \varphi(m))$, it follows that $d \leq x / m$ is uniquely determined modulo $\varphi(m)$, and since $m \varphi(m)>x$ for large values of x, we get that m determines n uniquely.

In case 2 , we use Proposition 2 with $t=2 K y \log x$ and $\lambda=1$. Note that $T_{\overline{\mathcal{Q}}_{D}} \geq(\log M)^{2 / 3}$. We get that the number of possibilities for m, and hence for n, is at most

$$
\frac{K y(\log x) \exp \left(O\left((\log M)^{3}\right)\right)}{(\log x)^{1+O\left((\log \log M)^{1 / 2} /(\log M)^{1 / 3}\right)}}=y \exp \left(O\left(\frac{M(\log \log M)^{1 / 2}}{(\log M)^{1 / 3}}\right)\right) .
$$

Assume next that $F_{\overline{\mathcal{Q}}_{D}}(m)>(1 / 2) \log x$. In particular, there exists a divisor ℓ of $\varphi(m)$ in the interval $[(\log x) /(2 M),(\log x) / 2]$ with each prime factor of ℓ in $[1, M]$. Let us fix this number ℓ. The number of choices for ℓ is at most $\psi(\log x, M)$, where $\psi(X, Y)$ denotes the number of integers in $[1, X]$ composed of primes in [1, Y]. Using a result of Erdős [4] (see also [3]) that $\psi(X, \log X) \leq 4^{(1+o(1))(\log X) / \log \log X}$ as $X \rightarrow \infty$, we have

$$
\psi(\log x, M) \leq \exp (O(M / \log M))
$$

Let us fix also d. Then the congruence $d m \equiv 1(\bmod \varphi(d) \varphi(m))$ puts $m \leq$ x / d in a congruence class modulo $\varphi(d) \ell$. Thus, the number of choices for m is at most $1+x /(d \varphi(d) \ell)$. Summing over $d \in[y /(2 K), y]$, we have for this ℓ that the number of possibilities for m, hence for n, is

$$
\leq \sum_{d \in[y /(2 K), y]}\left(1+\frac{x}{d \varphi(d) \ell}\right) \ll y+\frac{K x}{y \ell} \leq(2 K M+1) y \ll M^{2} y .
$$

Multiplying by the number of choices for ℓ we get a contribution of at most $y \exp (O(M / \log M))$ choices for m, hence for n, in this case.

Thus, we have at most $y \exp \left(O\left(M(\log \log M)^{1 / 2} /(\log M)^{1 / 3}\right)\right)$ choices for $n \in \mathcal{D}(x)$ in each case. This bound is to be multiplied by the number of odd D with $D \mid Q$, which is $2^{\pi(M)-1} \ll \exp (M / \log M)$. We therefore have

$$
\# \mathcal{D}(x) \leq \frac{x^{1 / 2}}{(\log x)^{1 / 2+o(1)}}
$$

where $o(1)$ here has the order $O\left((\log \log \log \log x)^{1 / 2} /(\log \log \log x)^{1 / 3}\right)$. This concludes our proof.

Acknowledgments. This paper was written while the first author was visiting Dartmouth College; he thanks the Mathematics Department for its hospitality. The work of the first author was supported in part by projects PAPIIT 100508 and SEP-CONACyT 79685, and that of the second author by NSF grant DMS-0703850.

References

[1] W. D. Banks, A. M. Güloglu and C. W. Nevans, 'On the congruence $n \equiv a(\bmod \varphi(n))^{\prime}$, INTEGERS $8(2008)$, \#A59.
[2] W. D. Banks and F. Luca, 'Composite integers n for which $\varphi(n) \mid$ $n-1$ ', Acta Math. Sinica 23 (2007), 1915-1918.
[3] N. G. de Bruijn, 'On the number of positive integers $\leq x$ and free of prime factors > y. II', Nederl. Akad. Wetensch. Proc. Ser. A $69=$ Indag. Math. 28 (1966) 239-247.
[4] P. Erdős, 'Problem and solution No. 1361', Wisk. Opgaven 21 (1963), 133-135.
[5] P. Erdős and J.-L. Nicolas, 'Sur la fonction: nombre de facteurs premiers de N^{\prime}, L'Enseignement Math. 27 (1981), 3-27.
[6] D. H. Lehmer, 'On Euler's totient function', Bull. Amer. Math. Soc. 38 (1932), 745-757.
[7] C. Pomerance, 'On the distribution of amicable numbers', J. reine angew. Math. 293/294 (1977), 217-222.
[8] C. Pomerance, 'On composite n for which $\varphi(n) \mid n-1$, II', Pacific J. Math. 69 (1977), 177-186.
[9] Z. Shan, 'On composite n for which $\varphi(n) \mid n-1$ ', J. China Univ. Sci. Tech. 15 (1985), 109-112.
[10] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Univ. Press, 1995.

[^0]: ${ }^{1}$ MSC numbers 11A25, 11N25

