On composite integers n for which $\varphi(n) \mid n - 1$

FLORIAN LUCA
Instituto de Matemáticas
Universidad Nacional Autonoma de México
C.P. 58089, Morelia, Michoacán, México
fluca@matmor.unam.mx

CARL POMERANCE
Department of Mathematics
Dartmouth College
Hanover, NH 03755-3551, USA
carl.pomerance@dartmouth.edu

May 31, 2009

Abstract

Let φ denote Euler's function. Clearly $\varphi(n) \mid n - 1$ if $n = 1$ or if n is a prime. In 1932, Lehmer asked if any composite numbers n have this property. Improving on some earlier results, we show that the number of composite integers $n \leq x$ with $\varphi(n) \mid n - 1$ is at most $x^{1/2}/(\log x)^{1/2+o(1)}$ as $x \to \infty$. Key to the proof are some uniform estimates of the distribution of integers n where the largest divisor of $\varphi(n)$ supported on primes from a fixed set is abnormally small. \footnote{MSC numbers 11A25, 11N25}

1 Introduction

Let $\varphi(n)$ be the Euler function of n. Lehmer [6] asked if there exist composite positive integers n such that $\varphi(n) \mid n - 1$. In 1977, the second author [8] proved that if one sets

$$L(x) = \{n \leq x : \varphi(n) \mid n - 1 \text{ and } n \text{ is composite}\},$$

then

$$\#L(x) \ll x^{1/2}(\log x)^{3/4}.$$
This was followed by subsequent improvements in the exponent of the logarithm, by first replacing the above bound by $x^{1/2} \log x^{1/2} (\log \log x)^{-1/2}$ in [9], next by $x^{1/2} (\log \log x)^{1/2}$ in [2], and recently by $x^{1/2} (\log x)^{-\Theta + o(1)}$ as $x \to \infty$ in [1], where $\Theta = 0.129398 \ldots$ is the least positive solution of the transcendental equation
\[
2\Theta (\log \Theta - 1 - \log \log 2) = -\log 2.
\]

Here, we continue this trend and present the following result.

Theorem 1. As $x \to \infty$, we have
\[
\# \mathcal{L}(x) \leq \frac{x^{1/2}}{(\log x)^{1/2 + o(1)}}. \tag{1}
\]

The function $o(1)$ appearing in the above exponent is of order of magnitude $O((\log \log \log \log x)^{-1/2})$. As in the previous works on the subject, the above bound is also an upper bound for the cardinality of the set
\[
\mathcal{L}_a(x) = \{ n \leq x : \varphi(n) \mid n - a \text{ and } n \neq ap \text{ where } p \nmid a \text{ is a prime} \},
\]
where $a \neq 0$ is any fixed integer. In that case, the function $o(1)$ in (1) depends on a.

We point out that in spite of all these improvements, there is still no known composite number n with $\varphi(n) \mid n - 1$. It is reasonable to conjecture that $\# \mathcal{L}(x) \leq x^{o(1)}$ as $x \to \infty$, but we seem to be a long way from improving the exponent $1/2$ on x in the upper bound to anything smaller.

While the proof follows the general approach from [1], we add a detailed study of the distribution of those integers n where the contribution to $\varphi(n)$ from primes in a given set \mathcal{Q} is below normal. Such results (see Proposition 1 in the case when \mathcal{Q} is a small set and Proposition 2 in the case when \mathcal{Q} is large) can be viewed as a generalization of the Hardy–Ramanujan estimates for the distribution of integers with fewer than the normal number of prime factors, which integers usually have the 2-part of $\varphi(n)$ smaller than normal. Hopefully these propositions will have some independent interest.

We use the symbols O, o and \ll, \gg with their usual meaning. We also use p and q for prime numbers. For a positive integer n, we use $\omega(n)$ for the number of primes that divide n. For a prime q and a positive integer n we write $v_q(n)$ for the exponent of q in the factorization of n; that is, $q^{v_q(n)} \mid n$.

2
2 Some auxiliary results

It follows from the Hardy–Ramanujan inequality that
\[
\#\{n \leq t : \omega(n) \geq \lambda \log \log t\} \ll \frac{e^{\lambda t}}{(\log t)^{1+\lambda \log(\lambda/e)}},
\]
\[
\#\{n \leq t : \omega(n) \leq \lambda \log \log t\} \ll \frac{t}{(\log t)^{1+\lambda \log(\lambda/e)}}
\]
(2)
hold uniformly for all \(\lambda \geq 1 \), and \(0 < \lambda \leq 1 \), respectively. (For \(\lambda \) fixed, a somewhat stronger estimate is known, see Erdős and Nicolas [5, Prop. 3].) These estimates played key roles in the proof in [1].

Since all prime divisors of a positive integer \(n \) with at most one possible exception are odd, the bound (2) gives us that the inequality
\[
\#\{n \leq t : v_2(\varphi(n)) \leq \lambda \log \log t\} \ll \frac{t}{(\log t)^{1+\lambda \log(\lambda/e)}}
\]
(3)
holds for all \(t \) uniformly in \(\lambda \in (0,1] \). While the above inequality is correct, it does not capture the full contribution to \(v_2(\varphi(n)) \) arising from primes \(p \) with \(p - 1 \) a multiple of 4, 8, or a larger power of 2.

In this section, we prove a stronger and more general inequality than (3). Let \(Q \subset [1,M] \) be a set of primes. Put
\[
F_Q(n) := \prod_{q \in Q} q^{v_q(\varphi(n))}
\]
for the \(Q \)-part of \(\varphi(n) \). In analogy with (2) and (3), for \(\lambda > 0 \) put
\[
B_{Q,\lambda}(t) := \{n \leq t : F_Q(n) \leq (\log t)^{\lambda}\}.
\]
Our first result addresses the cardinality of \(B_{Q,\lambda}(t) \). Letting
\[
c_Q(s) := \prod_{q \in Q} \left(\frac{q - 2}{q - 1} + \frac{1}{q^{s+1} - 1} \right),
\]
we have the following inequality.

Proposition 1. For \(Q \subset [1,M] \) a set of primes, the estimate
\[
\#B_{Q,\lambda}(t) \leq \frac{t}{(\log t)^{1-\lambda s-c_Q(s)}} \exp\left(O((\log M)^2)\right)
\]
(4)
holds uniformly in \(Q \), \(M \geq 2 \), \(\lambda > 0 \), \(s \geq 0 \), and \(t \geq 2 \).
Note that we are free to choose the number \(s \geq 0 \) above. Obviously, when \(Q \) and \(\lambda \) are given we would like to choose \(s \) in such a way that \(\lambda s + c_Q(s) \) is minimal. Before proving Proposition 1, let us give an application.

Take \(Q = \{2\} \). We have \(F_{\{2\}}(n) = 2^{v_2(\varphi(n))} \) and \(c_{\{2\}}(s) = 1/(2^{s+1} - 1) \). To find the minimum of \(\lambda s + c_{\{2\}}(s) \) as a function of \(s \), we take its derivative with respect to \(s \) and set it to equal zero getting

\[
\lambda = \frac{2^{s+1} \log 2}{(2^{s+1} - 1)^2}.
\]

Putting \(x = 2^{s+1} \), we get the quadratic equation

\[
(x - 1)^2 = \frac{\log 2}{\lambda} x,
\]

whose solutions are

\[
x_\lambda = 1 + \frac{\log 2}{2\lambda} \pm \sqrt{\frac{\log 2}{\lambda} + \frac{(\log 2)^2}{4\lambda^2}}.
\]

The one with the negative sign leads to a solution \(x_\lambda < 1 \), which is impossible because \(x = 2^{s+1} \geq 2 \). Thus, we must pick the solution \(x_\lambda \) with the positive sign whose corresponding \(s \) equals

\[
s = \frac{1}{\log 2} \log \left(1 + \frac{\log 2}{2\lambda} + \sqrt{\frac{\log 2}{\lambda} + \frac{(\log 2)^2}{4\lambda^2}} \right) - 1.
\]

This number is non-negative only when \(\lambda \in (0, 2 \log 2] \). The above calculation applied to \(\lambda \log 2 \) implies the following improvement of (3).

Corollary 1. Given any \(\lambda \in (0, 2] \), we have the estimate

\[
\# \{ n \leq t : v_2(\varphi(n)) \leq \lambda \log \log t \} = \# B_{\{2\}, \lambda \log 2}(t) \ll \frac{t}{(\log t)^{1+\lambda \log 2 - \lambda \log \left(1 + \frac{1+1/2^{\lambda+1}}{2\lambda} \right)} - \frac{2\lambda}{1+\sqrt{4\lambda+1}}}. \tag{5}
\]

When \(Q \) contains more than one element, finding the optimal value of \(s \) amounts to solving a polynomial-like equation but with transcendental exponents. In this case one may solve for \(s \) via numerical methods.

Taking say \(\lambda = 1/2 \) in (3), we get the value 0.1534264097\ldots for the exponent of the logarithm, while taking \(\lambda = 1/2 \) in (5), we get the value 0.3220692380\ldots for the exponent of the logarithm.
If one goes through the arguments from [1] and replaces inequality (3) by the inequality (5), then one gets that with λ the solution of the equation

$$1 + \lambda \log 2 - \lambda \log \left(1 + \frac{1 + \sqrt{4\lambda + 1}}{2\lambda}\right) - \frac{2\lambda}{1 + \sqrt{4\lambda + 1}} = \lambda \log 2,$$

the inequality $\#\mathcal{L}(x) \leq x/(\log x)^{\Theta + o(1)}$ holds as $x \to \infty$, where $\Theta = \lambda(\log 2)/2$. Calculation reveals that $\lambda = 0.4815450284\ldots$, so that $\Theta = 0.1668907893\ldots$, which is already better than the main result from [1]. The improvement to $\Theta = 1/2$ in our Theorem 1 arises by allowing more primes into the set \mathcal{Q}.

Now that we have hopefully convinced the reader of the usefulness of Proposition 1, let’s get to its proof.

Proof. We need the following theorem which appears in [10, III, sec. 3.5].

Lemma 1. Let f be a multiplicative function such that $f(n) \geq 0$ for all n, and such that there exist numbers A and B such that for all $x > 1$ both inequalities

$$\sum_{p \leq x} f(p) \log p \leq Ax \tag{6}$$

and

$$\sum_p \sum_{\alpha \geq 2} \frac{f(p^\alpha)}{p^\alpha \log(p^\alpha)} \leq B \tag{7}$$

hold. Then, for $x > 1$, we have

$$\sum_{n \leq x} f(n) \leq (A + B + 1) \frac{x}{\log x} \sum_{n \leq x} \frac{f(n)}{n}. \tag{8}$$

We apply Lemma 1 to the multiplicative function $F_{\mathcal{Q}}(n)^{-s}$ whose range is in the set $(0, 1]$. Clearly, the estimates (6) and (7) hold with some absolute constants A and B independent of \mathcal{Q} or s. Since $F_{\mathcal{Q}}(n)^{-s} \leq 1$,

$$\sum_{n \leq t} \frac{1}{F_{\mathcal{Q}}(n)^s} \ll \frac{t}{\log t} \prod_{p \leq t} \left(1 + \frac{1}{F_{\mathcal{Q}}(p)^s p} + \frac{1}{F_{\mathcal{Q}}(p^2)^s p^2} + \cdots \right) \leq \frac{t}{\log t} \prod_{p \leq t} \left(1 + \frac{1}{F_{\mathcal{Q}}(p)^s p} + O \left(\frac{1}{p^2}\right)\right) \ll \frac{t}{\log t} \exp \left(\sum_{p \leq t} \frac{1}{F_{\mathcal{Q}}(p)^s p}\right). \tag{9}$$
We now compute the sum within the above exponential. Let \mathcal{M}_Q be the set of all positive integers m whose prime factors are contained in Q. Then
\[
\sum_{p \leq t} \frac{1}{F_Q(p)^s p} = \sum_{m \in \mathcal{M}_Q} \frac{1}{m^s} \sum_{p \leq t_{F_Q(p)=m}} \frac{1}{p}.
\]
Given $m \in \mathcal{M}_Q$, then p is a prime such that $F_Q(p) = m$ precisely when $m \mid p - 1$ and $(p - 1)/m$ is coprime to $Q := \prod_{q \in Q} q$. We use the following estimate:
\[
\sum_{p \leq t \pmod{\ell}} \frac{1}{p} = \frac{\log \log t}{\varphi(\ell)} + O\left(\frac{\log \ell}{\ell}\right),
\]
(see [7] for example). For each $m \in \mathcal{M}_Q$, we have, by the Principle of Inclusion and Exclusion, that
\[
\sum_{p \leq t_{F_Q(p)=m}} \frac{1}{p} = \sum_{d \mid Q} \mu(d) \sum_{p \equiv 1 \pmod{md}} \frac{1}{p}.
\]
Using estimate (8) we get that
\[
\sum_{p \leq t_{F_Q(p)=m}} \frac{1}{p} = (\log \log t) \sum_{d \mid Q} \frac{\mu(d)}{\varphi(md)} + O\left(\sum_{d \mid Q} \frac{\log(md)}{md}\right).
\]
Certainly,
\[
\sum_{d \mid Q} \frac{\log(md)}{dm} \leq \frac{1}{m} \sum_{d \mid Q} \frac{\log d}{d} + \frac{\log m}{m} \sum_{d \mid Q} \frac{1}{d} \ll \frac{(\log M)^2 + (\log m) \log M}{m}.
\]
We thus get that
\[
\sum_{p \leq t_{F_Q(p)^s p}} = \frac{1}{F_Q(p)^s p} = (\log \log t) \sum_{m \in \mathcal{M}_Q} \frac{\mu(d)}{m^s \varphi(md)} + O\left(\sum_{m \in \mathcal{M}_Q} \frac{(\log M)^2 + (\log m) \log M}{m}\right).
\]
Observe that the error term is $O((\log M)^3)$. Thus,
\[
\sum_{p \leq t_{F_Q(p)^s p}} = (\log \log t) \sum_{m \in \mathcal{M}_Q} \frac{\mu(d)}{m^s \varphi(md)} + O((\log M)^3).
\]
The double sum above is a multiplicative function of the parameter Q (where Q is the set of Q’s prime factors). Its value when $Q = q$ is a prime is

$$1 - \frac{1}{q} + \sum_{\alpha \geq 1} \left(\frac{1}{q^{\alpha s} \varphi(q^\alpha)} - \frac{1}{q^{\alpha s} \varphi(q^{\alpha+1})} \right) = \frac{q-2}{q-1} + \frac{1}{q^s+1 - 1},$$

so that the main term in (9) above is our familiar $c_Q(s)$ multiplied by $\log \log t$. We have shown that

$$\sum_{n \leq t} \frac{1}{F_Q(n)^s} \ll \frac{t}{\log t} \exp \left(c_Q(s) \log \log t + O((\log M)^3) \right).$$

Since $s \geq 0$, we deduce immediately that

$$\#B_{Q,\lambda}(t) \leq \frac{t}{\log t} \exp \left((\lambda s + c_Q(s)) \log \log t + O((\log M)^3) \right) = \frac{t}{(\log t)^{1-\lambda s-c_Q(s)}} \exp \left(O((\log M)^3) \right),$$

which is what we wanted to prove.

For a specific set Q of primes that one has in mind, one can use Proposition 1 with a choice of s that minimizes the estimate for $\#B_{Q,\lambda}(t)$ as we did above in the case $Q = \{2\}$. It turns out that to prove Theorem 1, we will want to take choices for Q as large sets of primes and λ far below its “normal” value, in which case we will push up against a best-possible estimate $\#B_{Q,\lambda}(t) \leq t/(\log t)^{1+o(1)}$. In this case it is not necessary to choose the absolute optimal s, merely a “pretty good” value.

For Q a finite set of primes, let

$$T_Q = \exp \left(\sum_{q \in Q} \frac{1}{q} \right).$$

We now prove the following consequence of Proposition 1.

Proposition 2. Suppose that $Q \subseteq [1, M]$ is a set of primes with $0 < R \leq 1$, where $R := \lambda(\log \log M)/T_Q$. We have, uniformly for $t \geq 2$,

$$\#B_{Q,\lambda}(t) \leq \frac{t}{(\log t)^{1+O(R^{1/2})}} \exp \left(O((\log M)^3) \right).$$

(10)
Proof. We shall apply Proposition 1 with \(s \) chosen as the number
\[
 s = R^{1/2}/\lambda.
\]
Thus, the term \(-\lambda s\) in the exponent on \(\log t \) in (4) is absorbed into the \(O \)-estimate in (10). It remains to show that \(c_Q(s) \) is likewise majorized.

We have
\[
 c_Q(s) \leq \prod_{q \in Q \atop q > 2} \frac{q - 2}{q - 1} \exp \left(\sum_{q \in Q \atop q > 2} \frac{q - 1}{(q - 2)(q^{1+s} - 1)} \right). \tag{11}
\]
The product satisfies
\[
 \prod_{q \in Q \atop q > 2} \frac{q - 2}{q - 1} = \exp \left(- \sum_{q \in Q \atop q > 2} \frac{1}{q} + O(1) \right) \ll T_Q^{-1}. \tag{12}
\]
We have
\[
 \sum_{q \in Q \atop 2 < q \leq \exp(R^{1/2}T_Q)} \frac{q - 1}{(q - 2)(q^{1+s} - 1)} \leq \sum_{q \in Q \atop 2 < q \leq \exp(R^{1/2}T_Q)} \frac{1}{q - 2} \leq \log(R^{1/2}T_Q) + O(1).
\]
Also,
\[
 \sum_{q \in Q \atop q > \exp(R^{1/2}T_Q)} \frac{q - 1}{(q - 2)(q^{1+s} - 1)} \leq \exp(-sR^{1/2}T_Q) \sum_{q \in Q \atop q > 2} \frac{q - 1}{(q - 2)(q - q^{-s})} \ll \exp(-sR^{1/2}T_Q) \log \log M.
\]
Since \(sR^{1/2}T_Q = \log \log M \), we have from these calculations that
\[
 \sum_{q \in Q \atop q > 2} \frac{q - 1}{(q - 2)(q^{1+s} - 1)} \leq \log(R^{1/2}T_Q) + O(1),
\]
so that with (11) and (12), we get
\[
 c_Q(s) \ll T_Q^{-1} \exp \left(\log(R^{1/2}T_Q) \right) = R^{1/2}.
\]
Thus, we may also absorb \(c_Q(s) \) into the \(O \)-estimate in the exponent on \(\log t \) in (10), completing the proof of the proposition. \(\square \)
Finally, we shall need an upper bound on the number of \(n \leq t \) whose Euler function is coprime to the primes \(q \in Q \) for \(Q \) a set of odd primes with \(Q \subseteq [1, M] \). For such a set of primes, put again \(Q := \prod_{q \in Q} q \), let
\[
S_Q(t) = \{ n \leq t : \gcd(\varphi(n), Q) = 1 \},
\]
and let
\[
g_Q = \prod_{q \in Q} \frac{q - 2}{q - 1}.
\]

Lemma 2. Let \(t, M \geq 2 \) and let \(Q \subseteq [1, M] \) be a set of odd primes. We have the uniform estimate
\[
\# S_Q(t) \leq \frac{t}{(\log t)^{1-g_Q}} \exp \left(O((\log M)^2) \right).
\]

Proof. Writing \(f(n) \) for the characteristic function of the numbers \(n \) having \(\varphi(n) \) coprime to \(Q \), Lemma 1 applied to \(f(n) \) shows that
\[
\# S_Q(t) \ll \frac{t}{\log t} \prod_{p \leq t} \left(\prod_{(p(p-1),Q)=1} \left(1 + \frac{1}{p-1} \right) \right) \prod_{p \leq t} \left(1 + \frac{1}{p} \right)
\]
\[
\ll \frac{t}{\log t} \exp \left(\sum_{p \leq t} \frac{1}{p} \right).
\]

The Principle of Inclusion and Exclusion together with estimate (8) shows that
\[
\sum_{p \leq t} \frac{1}{p} = \sum_{d|Q} \mu(d) \sum_{\substack{p \leq t \\ p \equiv 1 \pmod{d}}} \frac{1}{p}
\]
\[
= (\log \log t) \sum_{d|Q} \frac{\mu(d)}{\varphi(d)} + O \left(\sum_{d|Q} \frac{\log d}{d} \right)
\]
\[
= (\log \log t) \prod_{q \in Q} \left(1 - \frac{1}{q-1} \right) + O((\log M)^2)
\]
\[
= g_Q \log \log t + O((\log M)^2).
\]

The desired conclusion about \(\# S_Q(t) \) now follows. \(\square \)
3 The Proof of Theorem 1

Let x be large and let $\mathcal{D}(x) = \mathcal{L}(x) \cap (x/2, x]$. It suffices to show that inequality (1) holds with the left hand side replaced by $\# \mathcal{D}(x)$, since afterwards the resulting inequality will follow from the obvious fact that

$$\# \mathcal{L}(x) \leq \sum_{0 \leq k \leq (\log x)/(\log 2)} \# \mathcal{D}(x/2^k).$$

If $n \in \mathcal{D}(x)$, we have that n is squarefree. Let $K = \omega(n)$ be the number of prime factors of n. In [1], it was shown that the inequality $K < 20 \log \log x$ holds with at most $O(x^{1/2}/\log x)$ exceptional numbers n, which is acceptable for us. So, we shall assume that $K < 20 \log \log x$.

A result of the second author from [8] shows that n has a divisor d such that $d \in [y/(2K), y]$, where we take $y := x^{1/2}/(\log x)^{1/2}$. We let $m = n/d$ be the corresponding cofactor. Clearly,

$$d \in \left[\frac{y}{2K}, y\right], \quad m \in \left[\frac{y \log x}{2}, 2K y \log x\right].$$

In the remainder of the proof we take

$$M = \log \log x$$

and assume that x is large enough that $M \geq 3$. We let D be any odd divisor of $\prod_{q \leq M} q$ and study the contribution to $\mathcal{D}(x)$ of those n having

$$D = \gcd(n, \prod_{q \leq M} q).$$

Let \mathcal{Q}_D be the set of prime factors of D and let $\hat{\mathcal{Q}}_D$ be the set of primes $q \leq M$ not dividing D. Observe that $(n, \varphi(n)) = 1$, so that $(m, \varphi(m)) = 1$. In particular, $(\varphi(m), \prod_{q \in \mathcal{Q}_D} q) = 1$. We distinguish 3 possibly overlapping cases:

1. $\sum_{q \in \mathcal{Q}_D} 1/q \geq (1/3) \log \log M$;
2. $\sum_{q \in \mathcal{Q}_D} 1/q \geq (2/3) \log \log M$ and $F_{\hat{\mathcal{Q}}_D}(m) \leq (1/2) \log x$;
3. $F_{\hat{\mathcal{Q}}_D}(m) > (1/2) \log x$.

10
Since $\sum_{q \leq M} 1/q > \log \log M$ for all sufficiently large values of x, these 3 cases cover all possibilities.

In case 1, we have $g_{Q,D} \ll (\log M)^{-1/3}$, so that by Lemma 2 the number of possibilities for $m \leq 2Ky\log x$ is

$$\leq \frac{K_y(\log x) \exp(O((\log M)^2))}{(\log x)^{1+O((\log M)^{-1/3})}} = y \exp\left(O(M/(\log M)^{1/3})\right).$$

Since $dm \equiv 1 \pmod{\varphi(d)\varphi(m)}$, it follows that $d \leq x/m$ is uniquely determined modulo $\varphi(m)$, and since $m\varphi(m) > x$ for large values of x, we get that m determines n uniquely.

In case 2, we use Proposition 2 with $t = 2Ky\log x$ and $\lambda = 1$. Note that $T_{Q,D} \geq (\log M)^{2/3}$. We get that the number of possibilities for m, and hence for n, is at most

$$\frac{K_y(\log x) \exp(O((\log M)^3))}{(\log x)^{1+O((\log M)^{1/3}/(\log M)^{1/3})}} = y \exp\left(O\left(\frac{M(\log \log M)^{1/2}}{(\log M)^{1/3}}\right)\right).$$

Assume next that $F_{Q,D}(m) > (1/2)\log x$. In particular, there exists a divisor ℓ of $\varphi(m)$ in the interval $[(\log x)/(2M), (\log x)/2]$ with each prime factor of ℓ in $[1, M]$. Let us fix this number ℓ. The number of choices for ℓ is at most $\psi(\log x, M)$, where $\psi(X,Y)$ denotes the number of integers in $[1, X]$ composed of primes in $[1, Y]$. Using a result of Erdős [4] (see also [3]) that $\psi(X, \log X) \leq 4(1+o(1))(\log X)/\log \log X$ as $X \to \infty$, we have

$$\psi(\log x, M) \leq \exp(O(M/\log M)).$$

Let us fix also d. Then the congruence $dm \equiv 1 \pmod{\varphi(d)\varphi(m)}$ puts $m \leq x/d$ in a congruence class modulo $\varphi(d)\ell$. Thus, the number of choices for ℓ is at most $1 + x/(d\varphi(d)\ell)$. Summing over $\ell \in [y/(2K), y]$, we have for this ℓ that the number of possibilities for m, hence for n, is

$$\leq \sum_{\ell \in [y/(2K), y]} \left(1 + \frac{x}{d\varphi(d)\ell}\right) \ll y + \frac{Kx}{y\ell} \leq (2KM + 1)y \ll M^2 y.$$

Multiplying by the number of choices for ℓ we get a contribution of at most $y \exp(O(M/\log M))$ choices for m, hence for n, in this case.

Thus, we have at most $y \exp\left(O\left(M(\log \log M)^{1/2}/(\log M)^{1/3}\right)\right)$ choices for $n \in \mathcal{D}(x)$ in each case. This bound is to be multiplied by the number of odd D with $D \mid Q$, which is $2^\varphi(M)^{-1} \ll \exp(M/\log M)$. We therefore have

$$\#\mathcal{D}(x) \leq \frac{x^{1/2}}{(\log x)^{1/2+o(1)}},$$

11
where \(o(1)\) here has the order \(O((\log \log \log x)^{1/2}/(\log \log \log x)^{1/3})\). This concludes our proof.

Acknowledgments. This paper was written while the first author was visiting Dartmouth College; he thanks the Mathematics Department for its hospitality. The work of the first author was supported in part by projects PAPIIT 100508 and SEP-CONACyT 79685, and that of the second author by NSF grant DMS-0703850.

References

