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Abstract

Let z(N) be the order of appearance of N in the Fibonacci se-
quence. This is the smallest positive integer k such that N divides
the kth Fibonacci number. We show that each of the 6 total possible
orderings among z(N), z(N + 1), z(N + 2) appears infinitely often.
We also show that for each nonzero even integer c and many odd inte-
gers c the equation z(N) = z(N + c) has infinitely many solutions N ,
but the set of solutions has asymptotic density zero. The proofs use a
result of Corvaja and Zannier on the height of a rational function at
S-unit points as well as sieve methods.
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1 Introduction

Let {Fk}k≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fk+2 =
Fk+1 + Fk for all k ≥ 0. For a positive integer n we put z(n) for the index
of appearance of n in the Fibonacci sequence which is the minimal positive
integer k such that n | Fk. It is known that this always exists. Furthermore,
n | Fk if and only if z(n) | k. Here, we look at the local behavior of the
function z(n). We do not expect the function z(n) to exhibit some prescribed
monotonicity pattern. Rather we expect it to behave randomly on intervals of
fixed length with an arbitrary starting point. Thus, we propose the following
conjecture.

Conjecture 1. For all integers k ≥ 2 and all permutations σ ∈ Sk, there
exist infinitely many N such that

z(N + σ(1)) < z(N + σ(2)) < · · · < z(N + σ(k)). (1)

It is clear that the validity of Conjecture 1 for k implies the validity of it for
smaller values of k. Our main result is the following:

Theorem 1. Conjecture 1 holds for k = 3.

Some partial results in the spirit of Theorem 1 appear in [6]. One may also
ask about values of N such that z(N) = z(N +1). Or z(N) = z(N +2). For
a nonzero integer c put

Nc := {N : z(N) = z(N + c)}. (2)

Theorem 2. For each nonzero even integer c and for each odd integer c with
3 ∤ z(c), the set Nc is infinite.

In particular, each one of the equalities z(N) = z(N+1) and z(N) = z(N+2)
holds infinitely often. This answers a question from [5]. (In fact, z(N) =
z(N + c) holds infinitely often for each positive c up to 16.)

Even if the set Nc is infinite, one does not expect it to be too thick. We
make this precise in the next result. For a positive real number x and a set
A of positive integers we write A(x) = A∩ [1, x].
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Theorem 3. The estimate

#Nc(x) = Oc

(

x

(log x)2

)

(3)

holds for all nonzero c.

We believe that in fact #Nc(x) is of order x/(log x)
2, and in the last section

of the paper we make some comments about this. Note that Theorem 3
implies that the sum of the reciprocals of the members of Nc is finite.

Analogues of our theorems hold in the more general setting of binary recur-
rent sequences (un) with u0 = 0, u1 = 1 and with the roots of the associated
characteristic polynomial being quadratic units but not roots of unity. In
addition, Theorem 3 holds in a still more general setting, for example the
estimation of the number of odd integers n ≤ x for which the multiplicative
order of 2 (mod n) is equal to the multiplicative order of 2 (mod n + 2).

2 Notations, Terminology and Some Prelim-

inary Results

We write {Lk}k≥0 for the Lucas companion of the Fibonacci sequence which
is given by L0 = 2, L1 = 1 and Lk+2 = Lk+1 + Lk for all k ≥ 0. Writing
(α, β) := ((1 +

√
5)/2, (1 −

√
5)/2) for the two roots of the characteristic

equation x2 − x − 1 = 0, the Binet formulas for the Fibonacci and Lucas
numbers are

Fk =
αk − βk

α− β
and Lk = αk + βk for all k ≥ 0. (4)

Both sequences {Fk}k≥0 and {Lk}k≥0 can be extended to negative indices
either allowing k to be negative in the Binet formula (4), or by extending the
recurrence relation for the Fibonacci and Lucas numbers to negative indices.
Once this is done, we have F−k = (−1)k−1Fk and L−k = (−1)kLk for all
positive integers k. There are many formulas relating the Fibonacci and
Lucas numbers such as F2k = FkLk which holds for all integers k and

Fu + (−1)(u−v)/2Fv = F(u+v)/2L(u−v)/2 when u ≡ v (mod 2).
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We will apply this last relation in the following special cases:

Fu + εFv = F(u+εv)/2L(u−εv)/2 if u ≡ v ≡ 0 (mod 4), ε ∈ {±1}, (5)

and
F2u + (−1)uε = Fu−εLu+ε for all u. (6)

We shall also use classical divisibility properties of the Fibonacci and Lucas
numbers. We summarize them in the following lemma.

Lemma 2. Let u and v be positive integers and d := gcd(u, v). Then

(i) gcd(Fu, Fv) = Fd;

(ii) gcd(Lu, Lv) = Ld if both u/d and v/d are odd; else, gcd(Lu, Lv) is 2 or
1 according to whether 3 | d or not, respectively;

(iii) gcd(Fu, Lv) = Ld if u/d is even and v/d is odd; else, gcd(Fu, Lv) is 2
or 1 according to whether 3 | d or not, respectively.

We shall also use the Primitive Divisor Theorem of Carmichael [2], which
states that if n 6∈ {1, 2, 6, 12}, then there is a prime factor p of Fn having
z(p) = n. Finally we use the fact that for all positive integers a, b we have

lcm[z(a), z(b)] = z(lcm[a, b]).

Throughout the paper, we use the Landau symbols O and o as well as the
Vinogradov symbols ≪, ≫ and ≍ with their regular meaning. The constants
implied by them might depend on some parameters to be fixed throughout
the proofs like a, or c, or k, etc. We use p, q and P, Q with or without
subscripts for prime numbers.

3 On the index of appearance of shifts of Fi-

bonacci numbers

Here, we prove the following result.
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Proposition 3. Let a ∈ Z be such that |a| is not a Fibonacci number. Then

lim
n→∞

z(Fn + a)

n2
= ∞.

Proof. Put m := z(Fn + a). Then Fn + a | Fm. Assume that n > 0 satisfies
Fn−2 > |a|. Since |a| ≥ 4, it follows that n ≥ 7. Then

Fn + a > Fn − Fn−2 = Fn−1, (7)

so m > n − 1. If m = n, then estimate (7) shows that Fn + a is a divisor
of Fn which exceeds Fn−1 = (Fn−1/Fn)Fn > Fn/2. But then we must have
Fn + a = Fn, which is false. So, m > n.

Assume that m ≤ Kn2 for some fixed K. We need to show that there are
only finitely many possibilities for n. Write

m = qn+ r, where 1 ≤ q := ⌊m/n⌋ ≤ Kn, and 0 ≤ r ≤ n− 1.
(8)

We fix the parity of n. That is, we assume that n ≡ c (mod 2), where
c ∈ {0, 1}. Observe that, by formula (4),

Fn + a =
αn − βn

√
5

+ a =
α−n

√
5

(

α2n +
√
5aαn − (−1)c

)

=
α−n

√
5
(αn − z1) (α

n − z2) , (9)

where

z1, z2 :=
−
√
5a±

√

5a2 + 4(−1)c

2
.

Write 5a2 + 4(−1)c =: db2, where d is squarefree. It is clear that d > 0.
Since all positive integer solutions (x, y) of the equation x2 − 5y2 = ±4 are
of the form (x, y) = (Lk, Fk) for some k ≥ 1, and |a| is not a Fibonacci
number, it follows that d > 1. It is clear that d is coprime to 5. Putting
K := Q(

√
5,
√
d), we get that K is real and of degree 4 over Q. The field K

is also normal and its Galois group G is Z/2Z × Z/2Z. It is also clear that
z1 and α are multiplicatively independent. Indeed, to see this observe that
α ∈ Q(

√
5) and z21 ∈ Q(

√
5d). Thus, if for some integers (r, s) not both zero

we would have αr = z2s1 , then this number is in Q(
√
5)∩Q(

√
5d) = Q. Since
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αr ∈ Q implies that r = 0, and the relation αr = z2s1 with r = 0 implies that
s = 0, we get that r = s = 0, which is a contradiction.

Let Γ be the multiplicative group generated inside K by {−1, α, z1}. Since
z1z2 = (−1)c+1, Γ contains z2. Put u1 := αnz−1

1 . Since z1 is a unit, observe
that u1 is an algebraic integer and u1 − 1 is associated to αn − z1. Since
(Fn + a)/((αn − z1)/

√
5) is an algebraic integer and

Fn + a | Fm | F2m = β2mα4m − 1√
5

,

we get that αn − z1 | α4m − 1, leading to u1 − 1 | α4m − 1. We thus get the
two relations

αnz−1
1 ≡ 1 (mod u1 − 1), and α4m ≡ 1 (mod u1 − 1). (10)

Here and in what follows, we use the standard convention that two algebraic
integers γ and δ are congruent modulo a nonzero algebraic integer η if (γ −
δ)/η is an algebraic integer. Using formula (8) to replace 4m by 4nq + 4r in
the second congruence in (10), and using also the first congruence in (10) to
replace αn by z1 modulo u1 − 1, we get the congruence

α4rz4q1 ≡ 1 (mod u1 − 1). (11)

Put v1 := α4rz4q1 . Here is a proof that u1 and v1 are multiplicatively in-
dependent. Since α and z1 are multiplicatively independent, the equation
(αnz−1

1 )a = (α4rz4q1 )b with integers a, b forces an = 4rb and −a = 4qb, so
either a = b = 0 or qr < 0, the second option being false. To summarize,
u1 − 1 | v1 − 1 and u1 and v1 are multiplicatively independent elements of Γ.

We now apply Corollary 1 in [3] to our situation. More precisely, inequality
(1.3) in [3] says that for all δ > 0, the inequality

∑

µ∈MK

log− (max{|u1 − 1|µ, |v1 − 1|µ}) > −δmax{h(u1), h(v1)} (12)

holds with finitely many exceptions in the pair (u1, v1). Here, log−(•) =
min{0, log(•)}, MK is the set of valuations of K, for µ ∈ MK, |•|µ means
the corresponding normalized absolute value such that the product formula
holds, and h(•) is the Weil height (the definition of which is shown in (19)
later in this proof). The normalized absolute values |•|µ for us are as follows:
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(i) If µ is finite, then it corresponds to some prime ideal π in K of norm
(number of elements of the residue field) equal to pf for some prime
p and some f ∈ {1, 2, 4}. Then |•|µ = p−(f/4)ordπ(•), where ordπ(•) is
the exponent at which π appears in the prime ideal factorization of the
fractional ideal generated by the nonzero element • inside K.

(ii) If µ is infinite, then it corresponds to some element σ ∈ G, and then
|•|µ = |σ(•)|1/4.

Since for us finitely many exceptions (u1, v1) means finitely many values for
n, we assume that n is sufficiently large such that inequality (12) holds.

Let us see what estimate (12) means for us. Since u1 − 1 | v1 − 1 and both
u1 − 1 and v1 − 1 are algebraic integers, it follows that

log− (max{|u1 − 1|µ, |v1 − 1|µ}) = log |u1 − 1|µ for finite µ ∈ MK. (13)

For the remaining four infinite valuations µ, let us notice that the term
corresponding to µ in the left-hand side of (12) is 0 unless both |u1−1|µ and
|v1 − 1|µ are in (0, 1). In this case,

|u1−1|µ = |σ(α)nσ(z1)−1−1|1/4 and |v1−1|µ = |σ(α)4rσ(z1)4q−1|1/4,

where σ is the element of G corresponding to µ. Using the multiplicative in-
dependence of α and z1 and Baker’s theory of lower bounds for nonzero linear
forms in logarithms of algebraic numbers (see [7], for example), inequality
(8) implies that

log− (max{|u1 − 1|µ, |v1 − 1|µ}) = O(logK + log n), for infinite µ ∈ MK,
(14)

where the constant implied by the above O–symbol depends on a. We may
assume that n > K (because K is fixed), and then omit the term logK in
the right–hand side of estimates (14).

Inserting estimates (13) and (14) into (12), we get for some fixed κ (depending
on a),

∑

µ∈MK

µ finite

log |u1 − 1|µ + κ logn > −δmax{h(u), h(v)}. (15)
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By the product formula, the main term in the left–hand side in estimate (15)
is

−
∑

µ∈MK

µ infinite

log |u1 − 1|µ = −1

4
log |NK/Q(u1 − 1)|,

where NK/Q(•) is the norm map from K to Q. Hence, estimate (15) implies
that

1

4
log |NK/Q(u1 − 1)| − κ log n < δmax{h(u1), h(v1)}. (16)

We now repeat the argument with u2 := αnz−1
2 − 1, which is associated to

αn − z2. Putting v2 := α4rz4q2 , the same argument gives that inequality (16)
holds with u1 and v1 replaced by u2 and v2, respectively. Summing them up,
and adjusting κ if necessary, we get

1

4
log
∣

∣NK/Q ((u1 − 1)(u2 − 1))
∣

∣− κ logn

< 2δmax{h(u1), h(v1), h(u2), h(v2)}. (17)

By formula (9), we get easily that

∣

∣NK/Q ((u1 − 1)(u2 − 1))
∣

∣ = 25(Fn + a)4 > 25F 4
n−1 > 25α4n−12 > α4n−6,

(18)
where we used the fact that the inequality Fk > αk−2 holds for all k ≥
3. Finally, recall that if η is an algebraic number of degree d of minimal
polynomial

F (X) := a0

d
∏

j=1

(X − η(j))

over Z[X ], then

h(η) :=
1

d

(

log a0 +
d
∑

j=1

log(max{1, |η(j)|})
)

. (19)

Taking η := ui for i = 1, 2, all its conjugates are of the form σ(α)nσ(zi)
−1

for some element σ ∈ G. Thus,

log(max{1, |η(j)|}) = O(n),
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for all j = 1, . . . , 4, implying that h(ui) = O(n) for i = 1, 2. In the case of
h(vi) for i = 1, 2, the number n must be replaced by q+ r, which is bounded
above by (K + 1)n ≤ 2Kn. Hence, we get

max{h(u1), h(u2), h(v1), h(v2)} = O(Kn), (20)

where the constant implied by the above O–symbol depends on a. Inserting
estimates (18) and (20) into estimate (17), we get

n logα− κ log n = O(Kδn).

We divide the above estimate by n to get

logα = O(Kδ),

that is,
logα < c1Kδ

holds for all n sufficiently large with some positive constant c1 depending on
a. Hence, K > c2δ

−1, where c2 := c−1
1 logα. Thus, the inequality K > c2δ

−1

holds for all large n, and we get the desired conclusion because δ > 0 was
arbitrary.

When |a| is a Fibonacci number, one can show that

lim inf
n→∞

z(Fn + a)

n2
= O(1), (21)

so Proposition 3 can be seen as a characterization of the Fibonacci numbers.
The proof of estimate (21) is based on the analogs of relation (5) for pairs of
indices (u, v) which are congruent modulo 2. See the next two sections for
some arguments in this style.

4 The Proof of Theorem 1

Of the six possible patterns among z(N), z(N + 1), z(N + 2), we distin-
guish slopes (the monotonic patterns), peaks (the patterns with a maximum
in the middle), and valleys (the patterns with a minimum in the middle),
respectively.
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4.1 Slopes

We start with N := Fn/Fk, where k and n are positive integers such that
12 | k | n. Put ℓ := n/k. We also assume that k | ℓ. It is clear that z(N) | n.
By the Primitive Divisor Theorem, there exists a prime p | Fn with z(p) = n.
Thus, p | N , therefore z(N) = n.

Next, let ε ∈ {±1}. Then, by (5),

N + ε =
Fn + εFk

Fk
=

F(n+εk)/2L(n−εk)/2

Fk
=

(

Fk(ℓ+ε)/2

Fk/2

)(

Lk(ℓ−ε)/2

Lk/2

)

. (22)

Since ℓ− ε ≥ 5 is coprime to 6 (in particular, it is odd), it follows by Lemma
2 that both factors in the right–hand side above are integers. The first factor
divides Fk(ℓ+ε)/2 so its index of appearance is a divisor of k(ℓ+ ε)/2. By the
Primitive Divisor Theorem once again, its index of appearance is precisely
k(ℓ + ε)/2. The second factor divides Fk(ℓ−ε), and again by the Primitive
Divisor Theorem, its index of appearance equals k(ℓ − ε). Hence, z(N + ε)
must be a multiple of

lcm

[

k(ℓ+ ε)

2
, k(ℓ− ε)

]

= k(ℓ2 − 1) =
n2 − k2

k
.

Here we have used that k is coprime to ℓ2−1. To see that z(N +ε) is exactly
the above number, it suffices to note that the two factors in the right side of
(22) are coprime, which follows from gcd(Fk(ℓ+ε)/2, Lk(ℓ−ε)/2) = 2 by (iii) of
Lemma 2 and both Lk(ℓ−ε)/2 and Lk/2 are 2 (mod 4) (using Lm ≡ 2 (mod 4)
when 6 | m). Hence, z(N + ε) = (n2 − k2)/k.

Next, note that

N + 2ε =
Fn + 2εFk

Fk

.

Let m := z(N + 2ε). We then get that

Fn + 2εFk | FkFm | FkFkm | FkFkm,

where for the last divisibility relation we used repeatedly the fact that if p is
any prime and pj | Fr, then pjFr | Fpjr. Hence,

kFkm ≥ z(Fn + 2εFk),
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leading to

z(N + 2ε) ≥ z(Fn + 2εFk)

kFk
. (23)

Since 2Fk is not a Fibonacci number for k ≥ 4 (in fact, Fk+1 < 2Fk < Fk+2

for all k ≥ 3), it follows that for a fixed k, the right–hand side in estimate (23)
above is larger than n2 for all n sufficiently large by Proposition 3. Hence,
for large n, our construction gives

z(N + 2ε) > n2 >
n2 − k2

k
= z(N + ε) > n = z(N),

which completes this part of the argument.

4.2 Peaks

This construction is quite similar to the previous one, so we shall only sketch
it. We again take 12 | k | ℓ and n := kℓ. Put N := 2Fn/Fk = Fn/(Fk/2).
Again by the Primitive Divisor Theorem, z(N) = n.

For ε ∈ {±1},
N + ε =

Fn + εFk/2

Fk/2
.

Since k ≥ 12, Fk/2 is not a Fibonacci number, therefore Proposition 3
implies, as in the concluding part of the argument from Section 4.1, that
z(N + ε) > n2 for all fixed k and large n.

Also, by (5), we have

N + 2ε =
Fn + εFk

Fk/2
=

F(n+εk)/2L(n−εk)/2

Fk/2
=

(

Fk(ℓ+ε)/2

Fk/2/2

)(

Lk(ℓ−ε)/2

Lk/2

)

. (24)

Both factors on the right hand side above are integers. By the Primitive
Divisor Theorem, the index of appearance of the first factor is k(ℓ + ε)/2,
and the index of appearance of the second factor is k(ℓ−ε). These two factors
in (24) are coprime by the same argument as in Section 4.1. This fact and the
calculation of z(N + ε) from Section 4.1 shows that z(N +2ε) = (n2−k2)/k.
We now get easily that

z(N + ε) > n2 >
n2 − k2

k
= z(N + 2ε) > n = z(N),
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which finishes this part of the argument.

4.3 Valleys

We again take 12 | k | ℓ and n := kℓ. Let ε ∈ {±1}, and put

N :=
Fn + 1

Fk − ε
=

(

F(n−2)/2

F(k+2ε)/2

)(

L(n+2)/2

L(k−2ε)/2

)

, (25)

where we used (6). Fix k and let ℓ satisfy the following congruence:

ℓ ≡ −ε (mod k2/4− 1). (26)

Since k is a multiple of 4, the congruence (26) is compatible with ℓ ≡ 0
(mod k), so there are infinitely many solutions by the Chinese Remainder
Lemma. For such solutions ℓ and n = kℓ, we have that

n = kℓ ≡ ∓2εℓ ≡ ±2 (mod k/2± ε),

so that both (n− 2)/(k + 2ε) and (n + 2)/(k − 2ε) are odd integers. Thus,
the two factors appearing in the right side of (25) are integers by Lemma
2, and so N is an integer. By the Primitive Divisor Theorem, the index of
appearance of the first factor in the right–hand side of (25) is (n− 2)/2 for
large n, and the index of appearance of the second factor is n + 2. Since
(n− 2)/2 and n + 2 are coprime, we get that z(N) = (n2 − 4)/2.

Now by (5) and (6)

N + ε =
Fn + εFk

Fk − ε
=

F(n+εk)/2L(n−εk)/2

F(k+2ε)/2L(k−2ε)/2

=
Fk(ℓ+ε)/2Lk(ℓ−ε)/2

Fk/2+εLk/2−ε

. (27)

The index of appearance of Fk(ℓ+ε)/2 is k(ℓ+ε)/2. If n is sufficiently large, then
by the Primitive Divisor Theorem, a primitive prime factor of Fk(ℓ+ε)/2 will
not divide Fk−2Fk+2, which is a multiple of the denominator F(k+2ε)/2L(k−2ε)/2

appearing in the right side in (27), and so it will divide N + ε. The same is
true about the primitive prime factors of Lk(ℓ−ε)/2. Hence, by the arguments
from Section 4.1, z(N +ε) is a multiple of (n2−k2)/k. By Lemma 2, the gcd
of the two factors in the numerator of the right side of (27) is 2, so z(N + ε)
is a divisor of 2(n2 − k2)/k.
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Finally,

N + 2ε =
Fn + 2εFk − 1

Fk − ε
.

Put m := z(N+2ε). Then Fn+2εFk−1 | (Fk−ε)Fm = F(k+2ε)/2L(k−2ε)/2Fm,
so that

Fn + 2εFk − 1 | Fk−2Fk+2Fm | Fk2−4F(k2−4)m | F(k2−4)Fk2−4
m. (28)

In the above calculation, we used the fact that

gcd(Fk+2, Fk−2) = Fgcd(k+2,k−2) = F2 = 1.

For large k, the number |2εFk + 1| = 2Fk ± 1 is not a Fibonacci number. In
fact, Fk+1 < 2Fk − 1 < 2Fk + 1 < Fk+2 for all k ≥ 5. Hence, by Proposition
3 and divisibilities (28), we get that

m ≥ z(Fn + 2εFk − 1)

(k2 − 4)Fk2−4

> n2

for all sufficiently large n once k is fixed. Thus, we have

z(N + 2ε) > n2 >
n2 − 4

2
= z(N) > 2

(n2 − k2)

k
≥ z(N + ε),

which completes the analysis for this last case.

This proves Theorem 1.

5 The Proof of Theorem 2

This is very similar to the proof of Theorem 1. We may assume that c is
positive.

Assume that c is even. Here, we let k be a multiple of 12 such that c/2 | Fk/2.
For this, it is enough that 24z(c/2) | k. We let n := kℓ with a large ℓ ≡ 0
(mod k) and put

N :=
Fn

Fk/(c/2)
− c

2
.
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Then

N =
Fn − Fk

Fk/(c/2)
=

(

Fk(ℓ−1)/2

Fk/2/(c/2)

)(

Lk(ℓ+1)/2

Lk/2

)

, (29)

where we used (5). By Lemma 2, both factors in the right–hand side of
formula (29) above are integers. By the Primitive Divisor Theorem, for large
ℓ the index of appearance of the first factor is k(ℓ − 1)/2 and the index of
appearance of the second factor is k(ℓ+1). Since ℓ is even, so ℓ± 1 are odd,
and k is a multiple of 3, it follows by Lemma 2 that the greatest common
divisor of Fk(ℓ−1)/2 and Lk(ℓ+1)/2 is 2. Since 6 | k/2, we get that 2‖Lk/2

and 2‖Lk(ℓ+1)/2, so, in particular, the second factor in the right–hand side of
formula (29) is odd. Hence, these two factors are in fact coprime, showing
that

z(N) = lcm

[

k(ℓ− 1)

2
, k(ℓ+ 1)

]

= k(ℓ2 − 1) =
n2 − k2

k
. (30)

Similarly,

N + c =
Fn

(Fk/(c/2))
+

c

2
=

Fn + Fk

Fk/(c/2)
=

(

Fk(ℓ+1)/2

Fk/2/(c/2)

)(

Lk(ℓ−1)/2

Lk/2

)

. (31)

Proceeding as above, we get that the two numbers appearing in the right–
hand side of (31) are integers. Also, for large ℓ, by the Primitive Divisor
Theorem, their order of appearances are k(ℓ+1)/2 and k(ℓ−1), respectively.
Also, the second factor in (31) is odd, so these two factors are in fact coprime
by Lemma 2. Thus,

z(N + c) = lcm

[

k(ℓ+ 1)

2
, k(ℓ− 1)

]

= k(ℓ2 − 1) =
n2 − k2

k
= z(N), (32)

which is what we wanted.

To complete the proof we assume that c is odd and 3 ∤ z(c). We take k a
multiple of 4z(c) but not of 3, we take ℓ a multiple of k with ℓ ≡ 1 (mod 3),
and we take n = kℓ. Note that Fn is odd. We put

N :=
Fn

2(Fk/c)
− c

2
=

Fn − Fk

2Fk/c
=

(

Fk(ℓ−1)/2

2Fk/2/c

)(

Lk(ℓ+1)/2

Lk/2

)

, (33)

Since ℓ ≡ 1 (mod 3) and ℓ is even, the two factors on the right side of (33)
are integers. By the Primitive Divisor Theorem, for large ℓ the order of

14



appearance of the first factor is k(ℓ − 1)/2 and the order of appearance of
the second factor is k(ℓ + 1). Finally, by Lemma 2 and the fact that the
second factor in (33) is odd, we get that these two factors are coprime. The
conclusion now is that formula (30) holds. Now clearly,

N + c =
Fn

2Fk/c
+

c

2
=

Fn + Fk

2Fk/c

=

(

Fk(ℓ+1)/2

Fk/2/c

)(

Lk(ℓ−1)/2

2Lk/2

)

. (34)

A similar argument shows that the two factors appearing in the right side of
formula (34) are coprime integers and of order of appearance k(ℓ+ 1)/2 and
k(ℓ− 1), respectively. Hence, formula (32) holds, concluding the proof.

6 The Proof of Theorem 3

Let P (N) be the largest prime factor of N with the convention that P (1) = 1.
For 2 ≤ y ≤ z, we put

Ψ(x; y) := {N ≤ x : P (N) ≤ y}.

Numbers N with P (N) ≤ y are called y–smooth numbers. One of our main
tools is the estimate

Ψ(t; t1/v) =
t

exp((1 + o(1))v log v)
whenever t1/v > (log t)2 (35)

(see [1]). Here, by o(1) we mean that v tends to infinity, and also t together
with it by the inequality in the right–hand side of (35). We only present
the argument for c = 1, since the argument for the general case follows by
typographic changes.

We let x be large. We let u := u(x) be some function of x which tends to
infinity with x to be made more precise later. We put y := x1/u.

We let
A1(x) := {N ≤ x : P (N) ≤ y}. (36)

By estimate (35), we have

#A1(x) ≤ Ψ(x; x1/u) =
x

exp((1 + o(1))u logu)
as u → ∞, (37)
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where we need to assume that

u ≤ log x

2 log log x
, (38)

which we do.

From now on, we assume N 6∈ A1(x). Thus, N = Pa with some prime P > y.

Let P := {p : z(p) < p1/3}. Let us find an upper bound for #P(t). Say t is
large and let P(t) = {p1, . . . , ps}. Then

2#P(t) ≤ p1 · · · ps ≤
∏

m<t1/3

Fm < α
∑

m<t1/3
m < αt2/3 < 2t

2/3

.

Here, we used the fact that Fk < αk for all k ≥ 1. Thus,

#P(t) < t2/3. (39)

Let
A2(x) := {N ≤ x : N = Pa, P > y but P ∈ P}. (40)

Assume that N = Pa ∈ A2(x), where P > y is in P. Fix a. Observe that
a ≤ x/P < x/y. Then P < x/a is an element in P(x/a), a set with at most
(x/a)2/3 elements by estimate (39). Hence,

#A2(x) ≤
∑

a<x/y

(x

a

)2/3

≪ x2/3

∫ x/y

1

dt

t2/3
≪ x

y1/3
. (41)

From now on, we assume that N 6∈ A1(x) ∪A2(x). Thus, whenever N = Pa
with P > y, then z(P ) > P 1/3 > y1/3.

Put z := y1/(3u) = x1/(3u2) and let

A3(x) := {N ≤ x : N = Pa, P > y and P (z(P )) ≤ z}. (42)

Assume that N ∈ A3(x). Write again N = Pa with P > y and let d := z(P ).
Then for large x, P is also large, in particular larger than 5, and so the
congruence P ≡ ±1 (mod d) holds. The sign is +1 or −1 according to
whether P is congruent to ±1 (mod 5) or ±2 (mod 5), respectively. Fixing
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P , the number a can be chosen in at most x/P ways. We now fix d and
sum up the above bound over the primes P ≤ x which are congruent to ±1
(mod d), obtaining a contribution of at most

∑

P≤x
P≡±1 (mod d)

x

P
≪ x log log x

φ(d)
≪ x(log log x)2

d
, (43)

where in the above estimates we used the Brun–Titchmarsch theorem con-
cerning the number of primes P ≤ x in the arithmetic progressions ±1 mod-
ulo d, as well as the minimal order φ(d)/d ≫ 1/(log log x) of the Euler
function φ(d) in the interval [1, x]. Now we sum up the bounds from in-
equality (43) over all the d’s observing that for our N we have d > y1/3 and
P (d) ≤ z ≤ d1/u. Thus, by the Abel summation formula and inequalities
(43), we get

#A3(x) < x(log log x)2
∑

y1/3≤d≤x
P (d)≤d1/u

1

d
≪ x(log log x)2

∫ x

y1/3

dΨ(t, t1/u)

t

≪ x(log log x)2
(

Ψ(x, x1/u)

x
+

∫ x

y1/3

Ψ(t, t1/u)

t2
dt

)

. (44)

We assume that the following inequality

y1/(3u) > (log y)2

holds, which is equivalent to

log x

3u2
> 2 log log x− 2 log u− log 3. (45)

Then estimates (35) hold for t ∈ [y1/3, x], and inserting them into estimate
(44) gives

#A3(x) ≪ x(log log x)2

exp((1 + o(1))u logu)

(

1 +

∫ x

y1/3

dt

t

)

≪ x(log x)(log log x)2

exp((1 + o(1))u logu)
=

x

exp((1 + o(1))u logu)
(46)

as x → ∞, where the last estimate holds provided that

log log x = o(u) as x → ∞, (47)
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which we assume. From now on, we assume that N 6∈ A1(x)∪A2(x)∪A3(x).

Suppose that N ∈ N1(x). Write N = Pa where P > y and z(P ) > z. There
exists a prime number q > z such that q | z(P ) | z(N) = z(N + 1). Thus,
either q2 | N + 1, or there is a prime Q | N + 1 such that q | z(Q).

Let
A4(x) := {N ≤ x : q2 | N + 1 for some q > z}. (48)

Fixing q, the number of N ≤ x such that q2 | N + 1 is ⌊(x+1)/q2⌋ ≤ 2x/q2.
Summing up these bounds over all such q, we get

#A4(x) ≤
∑

z<q

2x

q2
≪ x

∫ ∞

z

dt

t2
≪ x

z
. (49)

From now on, N ∈ N1(x)\ (A1(x) ∪A2(x) ∪A3(x) ∪A4(x)). Then N = Pa
and N + 1 = Qb, where both z(P ) and z(Q) are multiples of a prime q > z.

Let

A5(x) := {N ≤ x : N = Pa, gcd(z(P ), a) is divisible by a prime q > z}.
(50)

Fix P and q. Then the number of N ≤ x divisible by Pq is ⌊x/(Pq)⌋ ≤ x/Pq.
We now sum up over all primes P such that P ≡ ±1 (mod q), and then over
all the primes q > z, obtaining that

#A5(x) ≤
∑

q>z

∑

P≤x
P≡±1 (mod q)

x

Pq
= x

∑

q>z

1

q

∑

P≤x
P≡±1 (mod q)

1

P

≪ x
∑

q>z

log log x

qφ(q)
≪ x(log log x)

∑

q>z

1

q2
≪ x(log log x)

∫ ∞

z

dt

t2

≪ x log log x

z
. (51)

In the above estimates, we used again the Brun–Titchmarsch estimate con-
cerning the number of primes P ≤ x in the arithmetic progressions ±1 mod-
ulo d. From now on, we assume that neither N nor N + 1 belong to A5(x).
Thus, for us, q is coprime to ab.

We now look at various possibilities among P, Q, a and b.
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Let
#A6(x) :=

{

N ∈ N1(x)\
(

∪5
i=1Ai(x)

)

: PQ < xz1/2
}

. (52)

Fixing P and Q, N is determined by the congruences

N ≡ 0 (mod P ) and N ≡ −1 (mod Q).

The number of such solutions N ≤ x is at most x/PQ + 1 ≤ 2xz1/2/PQ.
Summing this bound up over all pairs of primes (P,Q) such that P ≡ ±1
(mod q) and Q ≡ ±1 (mod q) for some prime q > z, and then over all the
primes q > z, we get

#A6(x) ≤
∑

q>z

∑

P≤x, Q≤x
P≡±1 (mod q)
Q≡±1 (mod q)

2xz1/2

PQ
≪ xz1/2

∑

q>z









∑

P≤x
P≡±1 (mod q)

1

P









2

≪ xz1/2
∑

q>z

(log log x)2

φ(q)2
≪ x(log log x)2z1/2

∑

q>z

1

q2

≪ x(log log x)2

z1/2
. (53)

From now on, we assume that N 6∈ ∪6
i=1Ai(x). Thus, since N(N + 1) ≤

x(x+ 1) < 2x2 but PQ ≥ xz1/2, it follows that ab < 2x/z1/2. Let (u0, v0) be
the solution (u, v) in positive integers with u minimal of the linear equation

ua− vb = −1.

We then have that P = u0+ bt and Q = v0+at for some nonnegative integer
t ≤ x/ab. Put P ≡ ε (mod q) and Q ≡ η (mod q), where ε, η ∈ {±1}.
Reducing relation aP − bQ = −1 modulo q, we get

εa− ηb+ 1 ≡ 0 (mod q).

The above relation is meaningful in the sense that it signals q as a divisor of
εa− ηb+ 1 only when this expression is not zero. So, let us put

#A7(x) := {N ∈ N1(x)\
(

∪6
i=1Ai(x)

)

: εa− ηb+ 1 6= 0}. (54)

To bound the cardinality of A7(x), let us look at the triples (a, b, q). Observe
that since q does not divide b, we have that P = u0 + bt ≡ ε (mod q), which
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leads to t ≡ (ε− u0)b
−1 (mod q). Thus, t ≤ x/(ab) is in a certain arithmetic

progression modulo q. The number of such choices is at most 1 if qab > x,
and at most 2x/(qab) if qab ≤ x. Well, fixing the pair (a, b), q is a prime
factor of some nonzero expression of the form εa − ηb + 1 for ε, η ∈ {±1},
therefore there are at most O(log x) choices for q. Since ab < 2x/z1/2, it
follows that the number of pairs (a, b) is

∑

m≤2x/z1/2 τ(m), where τ(•) is the
number of divisors function. Thus, in the case qab > x, a set of possibilities
which we denote by A7,1(x), the number of such possibilities is at most

#A7,1(x) ≪ log x
∑

m≤2x/z1/2

τ(m) ≪ x(log x)2

z1/2
. (55)

In case qab ≤ x, the set of possibilities which we denote by A7,2(x), then
for a fixed pair (a, b), the number of possibilities is ≤ 2x/(qab). Now q > z
and there are O(log x) choices for q, so summing up over the possibilities for
q when the pair (a, b) is fixed, we get a contribution of O(x(log x)/(zab)).
Summing this up over all possible pairs (a, b), we get that the number of
possibilities of this type is at most

#A7,2(x) ≪
x log x

z

∑

m≤x

τ(m)

m
≪ x(log x)3

z
. (56)

Summing up inequalities (55) and (56), we get

#A7(x) ≤ #A7,1(x) + #A7,2(x) ≪
x(log x)3

z1/2
. (57)

We now look at the N ’s that are left. Then εa − ηb = −1, so ε = η and
b = a + ε. Then N ≡ 0 (mod a) and N ≡ −1 (mod a + ε). The number
of possibilities for such N ≤ x is at most x/(a(a + ε)) + 1 ≤ 2x/(a(a + ε)),
where the last inequality follows because ab = a(a + ε) < 2x/z1/2 < x. In
the above, and in what follows, we need to assume that a ≥ 2 when ε = −1.
Thus, putting

#A8(x) := {N ∈ N1(x)\
(

∪7
i=1Ai(x)

)

: a > z1/2}, (58)

we have that

#A8(x) ≤
∑

ε∈{1,2}

∑

a>z1/2

x

a(a + ε)
≪ x

∑

a>z1/2

1

a2
≪ x

∫ ∞

z1/2

dt

t2
≪ x

z1/2
. (59)
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Let A9(x) be the set of the remaining N . We have (u0, v0) = (ε, ε). Thus,
we need to count the number of t ≤ x/(a(a+ ε)) such that

P = ε+ (a + ε)t and Q = ε+ at

are simultaneously prime for ε ∈ {±1}. By the Brun–sieve, for fixed a, the
number of such possibilities is at most

≪
∑

ε∈{±1}

(

1

a(a+ ε)

)

x

(log(x/(a(a + ε))))2

(

a(a+ ε)

φ(a(a+ ε))

)2

≪ x(log log(a + 2))2

a2(log x)2
, (60)

where in the above we used the minimal order φ(d)/d ≫ 1/ log log(d+2) for
all d ≥ 1 of the Euler function φ(d), as well as the fact x/(a(a + ε)) > x1/3,
which follows for large x because a + 1 < 2z < x1/3 (note that u tends to
infinity). Summing up over all possible values of a, we get that

#A9(x) ≪
x

(log x)2

∑

a≥1

(log log(a+ 2))2

a2
≪ x

(log x)2
. (61)

To optimize our arguments, we choose u such that

log(z1/2) = u log u.

With this choice, we get (1/6) log x = u3 log u, which we solve and get

u = (c3 + o(1))

(

log x

log log x

)1/3

, as x → ∞,

where c3 := 2−1/3. With this choice, the inequalities (38), (45) and (47) are
satisfied, and the upper bounds (37) (41), (46), (49), (51), (53), (57) and
(59) give that

#

(

8
⋃

i=1

Ai(x)

)

≤ x

exp((c4 + o(1))(log x)1/3(log log x)2/3)
as x → ∞,

(62)
where c4 := c3/3. Using also (61), we get that

#N1(x) ≪
x

(log x)2
. (63)
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7 Comments

Regarding Theorem 3, its proof shows that we have achieved more than we
needed. Our argument separates the members of N1 into two categories: we
say N ∈ N1 is regular if it is of the form Pa with P prime, N + 1 = Qb
with Q prime, and a, b are consecutive integers. Otherwise we say N ∈ N1 is
special. We showed in (62) that the number of special values of N ∈ N1(x)
is at most

x exp
(

−(c4 + o(1))(log x)1/3(log log x)2/3
)

as x → ∞,

and in (63) we showed that the number of regular values of N ∈ N1(x) is
O(x/(log x)2). This type of separation into two types of solutions might be
compared with [4], where the equation φ(N) = φ(N + c) is considered.

As in [4] we believe our estimation of O(x/(log x)2) for #N1(x) has a match-
ing lower bound of the same magnitude. Here is our heuristic argument for
this assertion. Consider the case a = 1, b = 2, so that N = P is a regular
member of N1 and N + 1 = 2Q. Then

P = 2Q− 1.

Choose

Q ≡ 1 (mod 10), Q ≡ 1 (mod 3), Q 6≡ 1 (mod 9).

Then z(P ) | P − 1, z(Q) | Q− 1. Assume that

z(P ) =
P − 1

2
and z(Q) =

Q− 1

3
.

Then

z(N) = z(P ) =
P − 1

2
,

and

z(N + 1) = z(2Q) = lcm[z(2), z(Q)] = lcm

[

3,
Q− 1

3

]

= Q− 1 =
P − 1

2
.

Hence, if all the above conditions are fulfilled, then indeed we get a solution
to z(N) = z(N+1). The Bateman–Horn conjectures imply that there should
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be (c5 + o(1))x/(log x)2 primes Q ≤ x such that P = 2Q − 1 is also prime
as x → ∞, where c5 is some positive constant. The Extended Riemann-
Hypothesis together with the Chebotarev Density Theorem yield that there
should be a positive proportion of primes P ≡ 1 (mod 10) such that z(P ) =
(P − 1)/2, and also a positive proportion of primes Q ≡ 1 (mod 30), but
Q 6≡ 1 (mod 9), such that z(Q) = (Q− 1)/3. Thus, it could be the fact that
for large x there are at least c6x/(log x)

2 pairs of primes (P,Q) fulfilling all
the above conditions, where c6 is some positive constant, suggesting that in
fact #N1(x) is of order x/(log x)

2. A search up to 106, revealed 10 primes P
with the above properties namely

90121, 223441, 329761, 494761, 583801, 649801, 692521, 950161,

990841, 996601.

If the number of solutions is of order x/(log x)2 we might expect about 65 new
solutions to 107, and in fact we found more than this, namely 85 new solu-
tions. This seems to support the heuristic that the number of such examples
should be proportional to x/(log x)2 as x tends to infinity.
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