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Abstract We study the local behavior of the composition of the aliquot function
s(n) = σ(n) − n and the co-totient function sϕ(n) = n − ϕ(n), where σ is the sum-
of-divisors function and ϕ is the Euler function. In particular, we show that s ◦ sϕ and
sϕ ◦ s are independent in the sense of Erdős, Győry, and Papp.
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1 Introduction

In [5], two arithmetic functions f (n) and g(n) are called independent if for all k ≥ 2
and permutations i1, . . . , ik and j1, . . . , jk of {1, 2, . . . , k}, there exist infinitelymany
n such that
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f (n + i1) < f (n + i2) < · · · < f (n + ik),

g(n + j1) < g(n + j2) < · · · < g(n + jk). (1.1)

In [5], it was shown that the number-of-prime-divisors function, denoted ω, and the
number-of-divisors function, denoted τ , are independent. They also showed that σ ,
the sum-of-divisors function, and ϕ, Euler’s function, are not independent (when
k ≥ 5). In [2], it was shown that ϕ and the Carmichael function λ are independent.
In [8], it was shown that the compositions σ ◦ ϕ and ϕ ◦ σ are independent.

Here, we put
s(n) = σ(n) − n and sϕ(n) = n − ϕ(n).

These functions are well-known in the literature, and the first has an ancient history,
dating to Pythagoras. It is not known if the sets of values of these functions has
an asymptotic density, though recent progress was made in [7]. Due to the result
in [5] that σ and ϕ are not independent, it seems likely that s and sϕ are also not
independent. Our principal result is the following theorem.

Theorem 1 The functions s ◦ sϕ and sϕ ◦ s are independent.

We also show the following result, by somewhat different methods.

Theorem 2 The closure of the set of rationals

{
s(n)

sϕ(n)
: n > 1

}

is the interval [1,∞). The closure of the set of rationals

{
(s ◦ sϕ)(n)

(sϕ ◦ s)(n)
: n composite

}

is [0,∞). The same is true for the rationals (s ◦ s)(n)/(sϕ ◦ sϕ)(n) with n composite.

Note that s(1) = sϕ(1) = 0 and (s ◦ sϕ)(p) = (sϕ ◦ s)(p) = 0 for p prime, and this
is why there are certain values of n excluded in the sets in Theorem 2.

One can also ask about typical behavior; we find it to be markedly different.

Theorem 3 There is a set A of asymptotic density 1 such that

(s ◦ sϕ)(n)

n
∼ s(n)sϕ(n)

n2
∼ (sϕ ◦ s)(n)

n

as n → ∞, n ∈ A . In particular,

lim
n→∞, n∈A

(s ◦ sϕ)(n)

(sϕ ◦ s)(n)
= 1.
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In addition, as n → ∞, n ∈ A ,

(s ◦ s)(n)

n
∼

(
s(n)

n

)2

,
(sϕ ◦ sϕ)(n)

n
∼

(
sϕ(n)

n

)2

.

That s(s(n))/n is normally asymptotic to (s(n)/n)2 is essentially [4, Theorem 5.1
and (5.1)]. Probably s(n)/sϕ(n) has a continuous and strictly increasing distribu-
tion function on [1,∞), but we haven’t been able to show this. The existence of
a distribution function may follow from the methods of [13, Section 3] and [11,
Section 3].

Throughout this paper, we use the Landau symbols O, o and the Vinogradov
symbols �, 	 with their usual meaning. The constants implied by them might
depend on the fixed parameter k. For a set A of integers and a real number t ≥
1, let A (t) = A ∩ [1, t]. The letters p, q run over primes. Our conjecture about
s(n)/sϕ(n) at the end of Sect. 1 was recently proved by [15].

2 The proof of Theorem 1

Let i ≥ 1 be an integer and

fi (t) =
(

σ(i)

i
t − 1

) (
1 − ϕ(i)

i t

)
for real t ≥ 1.

Clearly fi (t) → ∞ as t → ∞ and

f ′
i (t) = σ(i)

i
− ϕ(i)

i t2
> 0 for t > 1,

so fi (t) is increasing for t ≥ 1. Let k ≥ 2,Ck := max{2, fi (2) : 1 ≤ i ≤ k} and con-
sider two permutations i1, . . . , ik and j1, . . . , jk of {1, . . . , k}. Choose real numbers

Ck < α j1 < · · · < α jk ,

and solve the equations

fi (ui ) = αi for ui > 2 and i ∈ {1, . . . , k}.

This is possible because αi > Ck ≥ fi (2). Now choose real numbers

0 < βi1 < βi2 < · · · < βik ≤ 1

and put
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vi = ϕ(i)/ i

1 − βi/αi + (βi/αi )(ϕ(i)/(iui ))
.

Since βi/αi ≤ 1
2 and 0 < ϕ(i)/(iui ) < 1, we have

0 <
ϕ(i)

i
< vi <

ϕ(i)/ i

1 − βi/αi
≤ 2

ϕ(i)

i
≤ 2,

so that for i = 1, . . . , k, we have 0 < vi < ui . Further, the way we have chosen vi
and ui gives

(
σ(i)

i
ui − 1

) (
1 − ϕ(i)

iui

)
= αi , (2.1)

(
σ(i)

i
ui − 1

) (
1 − ϕ(i)

ivi

)
= βi , (2.2)

for all i ∈ {1, . . . , k}.
Let Q be the set of odd primes 3 = q1 < q2 < · · · such that for all 	 ≥ 2, q	 is

the smallest odd prime with q	 
≡ 1 (mod q j ) for any j = 1, . . . , 	 − 1. The first
elements of Q are 3, 5, 17, . . .. Erdős [3] showed that

#Q(t) = (1 + o(1))
t

log t log log t
for t → ∞. (2.3)

In particular, by Abel summation,

∑
a<q<b
q∈Q

1

q
= log log log b − log log log a + o(1) (2.4)

uniformly in b > a and a → ∞. We now let x be large, and put

y := (log log x)4, z := e(log log x)1/2 , ε := (log log x)−1.

By (2.4), it follows easily that

∏
y<q<z
q∈Q

(
1 + 1

q

)
=

(
1

2
+ o(1)

)
log log log x

log log log log x
for x → ∞. (2.5)

We choose pairwise disjoint sets of primes

Qi ⊂ Q ∩ (y, z) for all i ∈ {1, . . . , k}, (2.6)

such that
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∏
q∈Q i

(
1 + 1

q

)
∈ (ui − ε, ui + ε) for all i ∈ {1, . . . , k}. (2.7)

We select subsetsRi ⊆ Qi such that

∏
q∈R i

(
1 + 1

q

)
∈ (vi − ε, vi + ε) for all i ∈ {1, . . . , k}. (2.8)

All this is possible because of (2.5) and because vi < ui for all i ∈ {1, . . . , k}. Put

Qi =
∏
q∈Q i

q and Ri =
∏
q∈R i

q for all i ∈ {1, . . . , k}.

We now choose for each i ∈ {1, . . . , k}, Ui to be the smallest prime such that

Ui ≡ −1 + Ri + 2R2
i (mod R3

i )

Ui ≡ 2 + 2(Qi/Ri )
2 (mod (Qi/Ri )

3) (2.9)

Ui ≡ 2 + 2Q2
j (mod Q3

j ) for all j ∈ {1, . . . , k}\{i}.

Note thatU1, . . . ,Uk are distinct and {U1, . . . ,Uk} is disjoint from⋃k
i=1 Qi because

any prime among the U ’s is larger than any member of
⋃k

i=1 Qi . The congruences
(2.9) put Ui in a certain arithmetic progression modulo (

∏k
i=1 Qi )

3. By a result of
Xylouris [14], we have

Ui 	
(

k∏
i=1

Q3
i

)5

<

(∏
p<z

p

)15

. (2.10)

Finally, let
P =

∏
2k<p<3z2

p/∈⋃k
i=1 Q i

⋃{U1,...,Uk }

p.

Consider the Chinese Remainder Theorem system of congruences:

n ≡ 0 (mod (2k)!P)

n ≡ −i + Q2
i Ui (mod Q3

i U
2
i ) for all i = 1, . . . , k. (2.11)

Congruences (2.11) put n into an arithmetic progression of modulus

M := (2k)!P
k∏

i=1

(Q3
i U

2
i ). (2.12)
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Recalling that implied constants depend on the choice of k, note that from (2.10),

M 	 P

⎛
⎝ k∏

j=1

Qi

⎞
⎠

3 (
k∏

i=1

Ui

)2

	 P

(
k∏

i=1

Qi

)3+30k

<

⎛
⎝ ∏

p<3z2

p

⎞
⎠

(∏
p<z

p

)3+30k

	 e4z
2
, (2.13)

so that M ≤ e(log x)o(1) as x → ∞. Write

n = Mλ + N0,

where 0 < N0 < M is the smallest positive integer in the progression. Then

n + i = Mλ + (i + N0) = i Q2
i Ui (Miλ + Ni ),

where Mi := M

iQ2
i Ui

(2.14)

and Ni := i + N0

i Q2
i Ui

for all i ∈ {1, . . . , k}.

Fix i ∈ {1, . . . , k}. We start by noting that Mi is divisible by all primes p ≤ 3z2,
while the numbers Ni are coprime to all primes p ≤ 3z2 for i ∈ {1, . . . , k}. To justify
this claim, first of all let us note that for large x , we have y > 2k, so all primes in
Qi , all primes dividing P , and all the primes U1, . . . ,Uk are larger than 2k. Then:

(i) Since i ≤ k, we get i2 | (k!)2 | (2k)! | M , so i | Mi .
(ii) If p ∈ (k, 2k), then p | (2k)! and p � i for any ∈ {1, . . . , k}, so p | Mi .
(iii) Since, Q3

i | M , we have Qi | Mi .
(iv) If Ui ≤ 3z2 for some i ∈ {1, . . . , k}, then U 2

i | M , so Ui | Mi .
(v) If p ∈ (2k, 3z2] and p /∈ ⋃k

i=1 Qi ∪ {U1, . . . ,Uk}, then p | P | Mi .

From (i)–(v) above, we get that p | Mi for all p ≤ 3z2.
Similar observations show that Ni is not a multiple of any prime p ≤ 3z2. Indeed,

if p | i , then p2 | i2 | (2k)! | N0, so p does not divide (i + N0)/ i . If p ≤ k does not
divide i , then p divides N0 but not N0 + i , so p � Ni . If p ∈ (k, 2k), then p | N0

and p � i , so p does not divide i + N0, and in particular p � Ni . If p ∈ Qi , then
p2 ‖ i + N0, so p � Ni . Similar arguments show that p does not divide Ni if p is
either in {U1, . . . ,Uk}, or if it divides P .

So, Ni is coprime to all primes p ≤ 3z2 as well as with the primes in {U1, . . . ,Uk}.
In particular,

gcd(Mi , Ni ) = 1.
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Further, Miλ + Ni is neither a multiple of any prime p ≤ 3z2 nor a multiple of any
of the primes in {U1, . . . ,Uk}. Then we have for i = 1, . . . , k,

sϕ(n + i) = (n + i) − ϕ(n + i)

= i Q2
i Ui (Miλ + Ni ) − ϕ(i)Qi (Ui − 1)ϕ(Miλ + Ni )

∏
q∈Q i

(q − 1)

= i Qi Ti , (2.15)

where

Ti := QiUi (Miλ + Ni ) − ϕ(i)(Ui − 1)(ϕ(Miλ + Ni )/ i)
∏
q∈Q i

(q − 1).

Also,

s(n + i) = σ(n + i) − (n + i)

= σ(i)(Ui + 1)σ (Miλ + Ni )
∏
q∈Q i

(q2 + q + 1) − i Q2
i Ui (Miλ + Ni )

= i Ri Si , (2.16)

where

Si = σ(i)((Ui + 1)/Ri )(σ (Miλ + Ni )/ i)
∏
q∈Qi

(q2 + q + 1) − Qi (Qi/Ri )Ui (Miλ + Ni ).

Now we start sieving. Note that if λ ≤ x/M , then Miλ + Ni < n < 2x . Let us
throw away some values of λ ≤ x/M in such a way that at each step we only throw
an amount of λ of order of magnitude

o
( x

M

)
as x → ∞.

There exists an absolute constant c0 such that for every i ∈ {1, . . . , k}, the set �1

of λ ≤ x/M such that ϕ(Miλ + Ni ) or σ(Miλ + Ni ) is not divisible by all numbers
m < c0 log log x/ log log log x is of cardinality 	 x/(M log log x). For ϕ and with-
out the arithmetic progression, this follows from Lemma 2 in [6]. The proof of that
lemma can be adapted in a straightforward way to yield the current result. So, we
ignore λ ∈ �1, and assume from now on that

ϕ(Miλ + Ni ), σ (Miλ + Ni ) are multiples of all numbers m ≤ c0
log log x

log log log x
.

In particular, this implies that Ti , Si are integers.
We eliminate λ ∈ �2, where this set is such that for some i ∈ {1, . . . , k} we have

that Miλ + Ni is a multiple of a prime p > x/M . Assume λ ∈ �2. Then for some
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i ∈ {1, . . . , k} we have that Miλ + Ni = pm, where m < 2M . Fixing m, this puts
λ ≤ x/M into a certain progression modulo m, such that Miλ + Ni ≡ 0 (mod m)

and (Miλ + Ni )/m = p is prime. Thus, the number of λ ≤ x/M satisfying these
conditions is

	 Mim

ϕ(Mim)

x/Mm

log(x/Mm)
	 x log log x

Mm log x
,

using the minimal order of ϕ and (2.13). Summing on m < 2M and on i = 1, . . . , k
and again using (2.13), we have

#�2 	 x logM log log x

M log x
	 xz2 log log x

M log x
	 x

M
√
log x

= o
( x

M

)

as x → ∞.
We eliminate λ ∈ �3 such that Miλ + Ni is not squarefree. So, assume that i ∈

{1, . . . , k} and Miλ + Ni is not squarefree. Thus, some p2 | Miλ + Ni . Assume first
that p2 < x/M . Then the number of such λ ≤ x/M is 	 x/(Mp2). Summing over
all i ∈ {1, . . . , k} and p > 3z2, we get a bound of

	
∑
p>3z2

x

Mp2
	 x

M

∑
p>3z2

1

p2
	 x

Mz2
= o

( x

M

)
as x → ∞. (2.17)

Assume now that p2 > x/M . Since Miλ + Ni < 2x , we have p <
√
2x . Moreover,

each such p gives rise to at most one value of λ ≤ x/M . Thus, the number of choices
of λ in this case is at most π(

√
2x) <

√
x = o(x/M) as x → ∞, by (2.13). We

deduce from (2.17) that

#�3 = o
( x

M

)
as x → ∞.

We eliminate λ ∈ �4 such that for some i ∈ {1, . . . , k},

ω(Miλ + Ni ) ≥ 10 log log x .

For this, write Miλ + Ni = m ′m where the least prime factor of m ′ exceeds the
greatest prime factor of m and m is maximal with m ≤ x/M . Since

√
Miλ + Ni <√

2x < x/M and since Miλ + Ni is squarefree (using λ /∈ �3), it follows that
ω(m) ≥ 1

2ω(Miλ + Ni ). Thus, summing over i = 1, . . . , k,

#�4 	
∑

m≤x/M
m squarefree

ω(m)≥5 log log x

x

Mm
≤ x

M

∑
j≥5 log log x

1

j !

⎛
⎝ ∑

p≤x/M

1

p

⎞
⎠

j

	 x

M(log x)3
,

since the inner sum on p is log log x + O(1). Thus, #�4 = o(x/M) as x → ∞.
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We now eliminate those λ ∈ �5 where for some i = 1, . . . , k, we have a prime
p | Miλ + Ni with ω(p − 1) > 5 log log x . Since λ /∈ �2, we may assume that p ≤
x/M . For a given p with ω(p − 1) > 5 log log x and a given i ∈ {1, . . . , k}, the
number of λ ≤ x/M with Miλ + Ni divisible by p is 	 x/Mp < x/M(p − 1).
Writing p − 1 = m and ignoring that p is prime, we have

#�5 	 x

M

∑
m≤x/M

ω(m)>5 log log x

1

m
≤ x

M

∑
j>5 log log x

1

j !

⎛
⎝ ∑

qa≤x/M

1

qa

⎞
⎠

j

,

where qa runs over prime powers. Since the inner sum is log log x + O(1), we have,
as with the calculation for �4, that #�5 = o(x/M) as x → ∞.

We eliminate λ ∈ �6 such that for some i ∈ {1, . . . , k}, we have that

gcd((Miλ + Ni )Ui , ϕ(Miλ + Ni )) > 1.

Since λ /∈ �3, we have that Miλ + Ni is squarefree. Thus, if for some i ∈ {1, . . . , k},
the number Miλ + Ni and its Euler function are not coprime, then there are primes
p and q with pq | Miλ + Ni and p | q − 1. There are two cases here to consider.
If pq ≤ x/M , then we fix i, p, q and we get that the number of such λ ≤ x/M
is 	 x/Mpq. Summing up this inequality over all q ≡ 1 (mod p) with q ≤ x/M
(using [12, Theorem 1, Remark 1]), then over all p ∈ (3z2, x/M), then over all
i ∈ {1, . . . , k}, we get a bound of

k
x log log x

Mz2
= o

( x

M

)
for x → ∞.

The other case to consider is when pq > x/M . We then write Miλ + Ni = pqm,
wherem < 2M and fixm. Since q > p, we get that p < 2x1/2. So, pm < 4x1/2M <

x/M for large x . Fixing also p, we get that λ ≤ x/M is in a certain arithmetic
progression modulo pm such that pm | Miλ + Ni and (Miλ + Ni )/pm is prime.
The number of such λ is, using the minimal order of ϕ,

	 Mim

ϕ(Mim)

x

Mpm log x
	 x log log x

Mpm log x
.

Summing over p ≤ 2x1/2, m < 2M , i ≤ k, we get an estimate that is

	 x(log log x)2 logM

M log x
= o

( x

M

)
,

as x → ∞, using (2.13). Finally, consider the case that Ui | ϕ(Miλ + Ni ). Then
there is a prime q ≡ 1 (mod Ui ) with q | Miλ + Ni . Again using [12],

∑
1/q 	
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(log log x)/Ui , so the number of such λ ≤ x/M is o(x/M) as x → ∞. Thus, #�6 =
o(x/M) as x → ∞.

We eliminate λ ∈ �7 such that for some i ∈ {1, . . . , k} we have

gcd(Miλ + Ni ,Ui − 1) > 1.

Assume that i ∈ {1, . . . , k} and that there is a prime p | gcd(Miλ + Ni ,Ui − 1).
Then p > 3z2. Fixing p, we have p ≤ x/M becauseλ /∈ �2, therefore, the number of
such λ ≤ x/M is ≤ 1 + x/Mp ≤ 2x/Mp. Summing this over all the prime divisors
p > 3z2 of Ui − 1, we get a bound of

	 xω(Ui − 1)

Mz2
	 x logUi

Mz2 log logUi
	 x logM

Mz2 log logM
	 x

M log logM

where we used the maximal order of ω(m) together with (2.13). Summing this up
over i ∈ {1, . . . , k}, we get

#�7 	 x

M log logM
= o

( x

M

)
as x → ∞.

Now let us look at

Ti = QiUi (Miλ + Ni ) − ϕ(i)(Ui − 1)(ϕ(Miλ + Ni )/ i)ϕ(Qi ).

Note that

gcd(QiUi (Miλ + Ni ), ϕ(i)(Ui − 1)ϕ(Qi )) = 1;
gcd(Ui (Miλ + Ni ), ϕ(Miλ + Ni )) = 1.

Indeed, Qi is coprime to ϕ(Qi ) due to the definition of the setQ. The other relations
follow from the sizes of the primes involved, the definition of Ui , and because λ /∈
�6 ∪ �7. So, it follows that

gcd(QiUi (Miλ + Ni ), ϕ(i)(Ui − 1)(ϕ(Miλ + Ni )/ i)ϕ(Qi )) = Wi ,

where
Wi := gcd(Qi , ϕ(Miλ + Ni )).

We may write
Ti = W ′

i T
′
i ,

where W ′
i is a multiple of Wi and is the largest divisor of Ti supported on the prime

factors of Wi , and where T ′
i is coprime to Wi and its least prime factor exceeds

c0 log log x/ log log log x (because λ /∈ �1).
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We continue with the sieving. We put

Y := exp

(
log x log log log x

log log x

)
,

and eliminate λ ∈ �8 such that for some i ∈ {1, . . . , k} we have that the largest
prime factor P of Miλ + Ni satisfies P ≤ Y . Since the conditions (1.10) for the
main theorem in [1] are fulfilled, we get that

#�8 	 x

M exp(u log u + u log log u)
= o

( x

M

)
as x → ∞,

where u = log(xMi/M)/ log Y = (1 + o(1)) log log x/ log log log x as x → ∞.
We eliminate λ ∈ �9 such that ω(T ′

i ) > 100 log log x . Fix i ∈ {1, . . . , k} and
assume that ω(T ′

i ) > 100 log log x . Write Miλ + Ni = Pm, where Y < P ≤ x/M
andm < 2x/Y . This is possible becauseλ /∈ �2 ∪ �8. Further, P andm are coprime,
and m is squarefree because λ /∈ �3. Substituting Miλ + Ni = Pm into

iTi = i QiUi (Miλ + Ni ) − ϕ(i)(Ui − 1)ϕ(Miλ + Ni )ϕ(Qi ) = iW ′
i T

′
i ,

we get
Ai P + Bi = iW ′

i T
′
i ,

where

Ai = i QiUim − ϕ(i)(Ui − 1)ϕ(m)ϕ(Qi ), Bi = ϕ(i)(Ui − 1)ϕ(m)ϕ(Qi ).

It follows from the definition of T ′
i that T

′
i is coprime to gcd(Ai , Bi ), and so Qi ,m, T ′

i
are pairwise coprime. We consider the prime factors of T ′

i in three ranges:

(i) At least x1/(20 log log x) (the number of such is at most 20 log log x);
(ii) At most x1/(log log x)

2
;

(iii) In the interval I = [x1/(log log x)2 , x1/(20 log log x)].
Suppose that T ′

i has at least 5 log log x prime divisors in the range (ii) above and let τ
be the product of �5 log log x� of them. Then τ < x6/ log log x <

√
Y . The relation τ |

Ai P + Bi with τ coprime to gcd(Ai , Bi ) puts P in a certain arithmetic progression
modulo τ , which for a fixed value of m, puts λ in a particular arithmetic progression
modulo mτ . Ignoring that P is prime and since mτ < 2x/

√
Y < x/M , the number

of such λ ≤ x/M is

	 x

Mmτ
.

http://dx.doi.org/10.1007/978-3-319-68376-8_1
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We now sum over all possible m < 2x/Y and all possible τ , a number which is at
most x/M but has �5 log log x� distinct prime factors. We get

x

M

∑
m≤x

1

m

∑
τ≤x/M

ω(τ)≥5 log log x

1

τ
	 x log x

M

∑
τ≤x/M

ω(τ)≥5 log log x

1

τ
	 x

M(log x)2
= o

( x

M

)
,

as x → ∞, where the last bound follows from the argument above for �4 or �5.
Assume now that T ′

i has at least K := �5 log log log x� prime divisors in I and
let τ ′ be a product of K of them. Then

τ ′ < x5 log log log x/20 log log x <
√
Y .

Thus, for fixed τ ′,m, we have the number of λ ≤ x/M with λ in the particular
class mod mτ ′ and (Miλ + Ni )/m = p prime, is at most the number of primes
p ≤ 2Mi x/(Mm) which are in a fixed congruence class modulo Miτ

′, and this is

	 Miτ
′

ϕ(Miτ ′)
x

Mmτ ′ log((2x)/(Mmτ ′))
	 x log log x

Mmτ ′ log Y
,

using mτ ′ 	 x/
√
Y and (2.13). (We have also used the minimal order of ϕ.) Thus,

by an argument similar to the preceding one we get that the number of such numbers
λ ≤ x/M is

	 x(log log x)2

M log x

∑
m≤x

1

m

∑
τ ′ squarefree

ω(τ ′)=K
p|τ ′⇒p∈I

1

τ ′ 	 x(log log x)2

M

1

K !

⎛
⎝∑

p∈I

1

p

⎞
⎠

K

.

The inner sum is log log log x + O(1), and since 5(log 5 − 1) > 3, the estimate is
o(x/M) as x → ∞. Thus, we get that the number of λ for which there are at least K
prime factors of T ′

i in I is o(x/M) as x → ∞. To summarize, except for a set of λ of
cardinality o(x/M), the number T ′

i has at most 25 log log x + 5 log log log x prime
factors. Thus, �9 has cardinality o(x/M) as x → ∞ and we may assume, therefore,
that ω(T ′

i ) < 100 log log x .
Now we have

(s ◦ sϕ)(n + i) = σ(sϕ(n + i)) − sϕ(n + i)

= σ(i QiW
′
i T

′
i ) − i QiW

′
i T

′
i

= sϕ(n + i)

(
σ(i)

i

σ(QiW ′
i )

QiW ′
i

σ(T ′
i )

T ′
i

− 1

)
.
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Thus,

(s ◦ sϕ)(n + i)

n + i
= (s ◦ sϕ)(n + i)

sϕ(n + i)

sϕ(n + i)

n + i

=
(

σ(i)

i

σ(QiW ′
i )

QiW ′
i

σ(T ′
i )

T ′
i

− 1

)

×
(
1 − ϕ(i)

i

(
1 − 1

Ui

)
ϕ(Qi )

Qi

ϕ(Miλ + Ni )

Miλ + Ni

)
.

So, let us see what we have. Since all primes dividing W ′
i are inQi , it follows that

σ(Qi )

Qi
≤ σ(QiW ′

i )

QiW ′
i

≤ σ(Qi )

Qi
exp

(
O

(∑
q>y

1

q2

))
= (1 + o(1))

σ (Qi )

Qi
,

for x → ∞. Further, since primes dividing T ′
i exceed c0 log log x/ log log log x and

the number of them is < 100 log log x , we get that for large x ,

σ(T ′
i )

T ′
i

= 1 + o(1) as x → ∞.

Since λ /∈ �4, Miλ + Ni has O(log log x) prime factors all larger than 3z2 > y =
(log log x)4, so

ϕ(Miλ + Ni )

Miλ + Ni
= 1 + o(1) as x → ∞.

Finally,

σ(Qi )ϕ(Qi )

Q2
i

=
∏
q∈Q i

(
1 − 1

q2

)
= exp

(
O

(∑
q>y

1

q2

))
= exp

(
O

(
1

y

))
,

which is 1 + o(1) as x → ∞. Summarizing all these observations, we get that

(s ◦ sϕ)(n + i)

n + i
= (1 + o(1))

(
σ(i)

i

σ(Qi )

Qi
− 1

) (
1 − ϕ(i)

i

Qi

σ(Qi )

)

= (1 + o(1)) fi (ui ) = (1 + o(1))αi ,

as x → ∞.
Now we deal with s(n + i) given by formula (2.16). Here, much like in the case

of sϕ(n + i), we have

gcd(QiUi (Miλ + Ni ), σ (i)((Ui + 1)/Ri )σ (Q2
i )) = 1;

gcd(Ui (Miλ + Ni ), σ (Miλ + Ni )) = 1.
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Indeed, because the primes in QiUi (Miλ + Ni ) are all large, they do not divide σ(i).
Similarly, Miλ + Ni is coprime to σ(Q2

i ). We have Ui coprime to σ(Q2
i ) by (2.9).

The fact that all prime factors inQi are congruent to 2 modulo 3, implies they cannot
divide σ(q2) = q2 + q + 1 for any prime q, so Qi is coprime to σ(Q2

i ). Also, the fact
that gcd(Miλ + Ni ,Ui + 1) = 1 can be achieved by removing a set of values of λ

similar to�7 whose cardinality is o(x/M) for x → ∞. As for the second line above,
this is certainly true if we exclude a set of λ similar to �6, namely the set of λ ∈ �10

such that for some i ∈ {1, . . . , k} we have gcd((Miλ + Ni )Ui , σ (Miλ + Ni )) > 1,
a set which by the arguments used to deal with �6 can be proved to have cardinality
o(x/M) as x → ∞. It then follows that

gcd(σ (i)((Ui + 1)/Ri )(σ (Miλ + Ni )/ i)σ (Q2
i ), QiUi (Qi/Ri )(Miλ + Ni ))

= gcd(Q2
i /Ri , σ (Miλ + Ni )) =: Zi ,

say. Writing
Si = Z ′

i S
′
i ,

where Zi | Z ′
i , Z

′
i is the largest divisor of Si supported on the primes from Zi , we have

that S′
i is coprime to Z ′

i and all its prime factors exceed c0 log log x/ log log log x . This
last condition holds since λ /∈ �1. Since Miλ + Ni is squarefree (using λ /∈ �3), we
haveω(Z ′

i ) ≤ ∑
p|Miλ+Ni

ω(p + 1). Eliminating a set of λ’s similar to�5, let’s call it
�11, but for which there exists i ∈ {1, . . . , k} and a prime factor p of Miλ + Ni with
ω(p + 1) > 10 log log x , a set whose cardinality is o(x/M) for x → ∞, we get that
Z ′
i has O((log log x)2) distinct prime factors all of which exceed y = (log log x)4,

so
ϕ(Z ′

i )

Z ′
i

= 1 + O

(
1

log log x

)
. (2.18)

Finally, eliminating a subset ofλ denoted�12 similar to�9 and of cardinality o(x/M)

as x → ∞, we can assume that ω(S′
i ) < 100 log log x . As in the previous case, this

implies that
ϕ(S′

i )

S′
i

= 1 + o(1),

as x → ∞. Thus, using (2.18),

(sϕ ◦ s)(n + i)

s(n + i)
= 1 − ϕ(i Ri Si )

i Ri Si
= 1 − ϕ(i)

i

ϕ(Ri Z ′
i )

Ri Z ′
i

ϕ(S′
i )

S′
i

= (1 + o(1))

(
1 − ϕ(i)

i

ϕ(Ri )

Ri

)
,

= (1 + o(1))

(
1 − ϕ(i)

i

Ri

σ(Ri )

)
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as x → ∞, while

s(n + i)

n + i
= σ(i)

i

(
1 + 1

Ui

)
σ(Miλ + Ni )

Miλ + Ni

∏
q∈Q i

(
1 + 1

q
+ 1

q2

)
− 1

= (1 + o(1))

(
σ(i)

i

σ(Qi )

Qi
− 1

)
.

Thus,

(sϕ ◦ s)(n + i)

n + i
= (1 + o(1))

(
σ(i)

i

σ(Qi )

Qi
− 1

) (
1 − ϕ(i)

i

Ri

σ(Ri )

)

= (1 + o(1))

(
σ(i)

i
ui − 1

) (
1 − ϕ(i)

ivi

)

= (1 + o(1))βi

for i ∈ {1, . . . , k}. Since n + i = (1 + o(1))n, we get that

(s ◦ sϕ)(n + i) = (αi + o(1))n while (sϕ ◦ s)(n) = (βi + o(1))n

as x → ∞. This certainly implies that inequalities (1.1) hold for ( f, g) = (s ◦ sϕ, sϕ ◦
s) and for our large n as x → ∞, which finishes the proof of the theorem.

3 The proof of Theorem 2

For n > 1, let f (n) = s(n)/sϕ(n). Simple arguments show that for a prime p, we
have f (np) > f (n) (one considers the two cases: p | n, p � n). Further f (p) = 1.
Thus, f (n) ≥ 1 for all n > 1.

Let α > 1 be arbitrary. Assume n is squarefree. Then

σ(n)ϕ(n) = n2
∏
p|n

(
1 − 1

p2

)
,

so if n runs over any sequence of squarefree numbers with least prime tending
to infinity, we have σ(n)/n ∼ n/ϕ(n). Since the reciprocal sum of the primes is
divergent, it follows that there is a sequence of squarefree integers n1 < n2 < . . .

such that the least prime factor of ni tends to infinity as i → ∞, and at the same
time, σ(ni )/ni → α. Then

f (ni ) = σ(ni )/ni − 1

1 − ϕ(ni )/ni
→ α − 1

1 − 1/α
= α, as i → ∞.

This proves the first assertion of the theorem.
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We now turn to the second assertion in Theorem 2. If p, q are different primes,
note that

(s ◦ sϕ)(pq)

(sϕ ◦ s)(pq)
= s(p + q − 1)

sϕ(p + q + 1)
.

Thus it suffices to show that the set of limit points of the rationals of the form
s(m − 1)/sϕ(m + 1), where m runs over those numbers that are the sum of two
distinct primes, is [0,∞). If we knew the slightly stronger form of Goldbach’s
conjecture which asserts that all even numbers at least 8 are the sum of two distinct
primes, we could assume that m runs over all even numbers at least 8. It turns out
this slightly stronger form of Goldbach’s conjecture is “almost” true.

Theorem 4 There is a positive constant c such that if x is sufficiently large, the
number of even numbers in [1, x] which are not the sum of two distinct primes is at
most x1−c.

This result is due to Montgomery and Vaughan [9], with later improvements due to
Pintz and others, see [10].

Let α > 0 be an arbitrary real number. Let x be large, let m1 = m1(x) be the
product of all of the oddprimes to y := (log log x)1/2, and letm2 = m2(x) < z := ee

y

be an integer not divisible by any prime p ≤ y and such that σ(m2)/m2 → α + 1
as x → ∞. Now let m ≤ x run over even integers with

m ≡ −1 (mod m1), m ≡ 1 (mod m2). (3.1)

Note that the number of solutions m to x of this system is of magnitude x/m1m2 >

x/z2, which is huge compared with the exceptional set in Theorem 4. Thus, most
of these numbers m are of the form p + q where p, q are distinct primes. We now
show that most of these m also satisfy s(m − 1)/sϕ(m + 1) → α as x → ∞.

It is clear that ϕ(m + 1) = o(m) as x → ∞. Write m − 1 = m2m3 = m ′
2m

′
3,

where m ′
2 is the largest divisor of m − 1 supported on the primes dividing m2. Since

the primes in m − 1 all exceed y, it is clear that

σ(m ′
2)

m ′
2

= (1 + o(1))
σ (m2)

m2
, as x → ∞.

Further, 1 ≤ σ(m ′
3)/m

′
3 ≤ σ(m3)/m3. For m1,m2 fixed, m3 ≤ (x − 1)/m2 runs

through an arithmetic progression with modulus m1. Let g(m) = ∑
p|m 1/p. Since

no integer ≤ x is divisible by two primes p >
√
x ,

∑
m3

g(m3) ≤
∑
m3

1√
x

+
∑

y<p≤√
x

1

p

∑
m3≤(x−1)/m2

p|m3

1.
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The inner sum is 	 x/pm1m2. Thus,

∑
m3

g(m3) 	 x

m1m2y
.

We conclude that the number of choices for m3 with g(m3) > 1/y1/2 is o(x/m1m2)

as x → ∞. Hence there are � x/m1m2 choices of m ≤ x where g(m3) ≤ 1/y1/2.
Applying Theorem 4, we may also assume that these numbers m are the sum of two
distinct primes. But

σ(m3)

m3
	 eg(m3),

so we may assume that σ(m3)/m3 → 1 as x → ∞. Putting the above observations
together, we have for our numbers m that

s(m − 1)

sϕ(m + 1)
= (1 + o(1))(α + 1)m − m

m − o(1)m
= (1 + o(1))α, as x → ∞.

This completes the proof of the second assertion in Theorem 2.
For the last assertion of Theorem 2, we again assume n is of the form pq where

p, q are distinct primes. Then

(s ◦ s)(n)

(sϕ ◦ sϕ)(n)
= s(m + 1)

sϕ(m − 1)
,

where m = p + q. By interchanging “−1” and “1” in the system (3.1), the above
argument allows us to complete the proof of the theorem.

4 The proof of Theorem 3

For an integer n > 20, let a(n) denote the largest divisor of n supported on the
primes to y(n) := log log n/ log log log n. It follows from [7, Lemma 2.1] that on a
set of asymptotic density 1 we have a(n) = a(s(n)) = gcd(n, s(n)). Moreover, the
same proof shows that on a set of asymptotic density 1, we have a(n) = a(sϕ(n)) =
gcd(n, sϕ(n)). Let

h(n) =
∑
p|ns(n)

y(n)<p<(log n)2

1

p
.

We will show that there is a set A of asymptotic density 1 such that

HA (x) :=
∑

n∈(x,2x]∩A
h(n) = o(x) as x → ∞.
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It will follow that there is a subset A ′ of A of asymptotic density 1 on which
h(n) = o(1) as n → ∞.

Let y = y(x), so that

HA (x) ≤
∑

y<p<(log(2x))2

1

p

∑
n∈(x,2x]∩A

p|ns(n)

1.

The contribution to HA (x) from the case p | n is

	
∑

y<p<(log(2x))2

x

p2
	 x

y
= o(x) as x → ∞.

Thus, wemay concentrate on the case p | s(n).Write n = Pm, where P is the largest
prime factor of n. By a well-known result of de Bruijn, the number of n ∈ (x, 2x]
with P ≤ z := x1/ log log x is 	 x/ log x , so we may assume that A captures the
condition P > z. Fixing a value of m ≤ 2x/z and a prime p ∈ (y, (log(2x))2), we
consider those primes P ≤ x/m with p | s(Pm). Discarding the case where P2 | n
as negligible, we have

s(Pm) = Ps(m) + σ(m).

Since a(n) = a(s(n)) = gcd(n, s(n)) may be assumed to hold for members of A ,
we have P � σ(n), so in particular P � σ(m). Thus, having p | s(Pm) puts P in
a residue class mod p. So, ignoring the condition that P is prime, the number of
choices for P ≤ 2x/m is 	 x/mp. Hence

HA (x) 	
∑

y<p<(log x)2

∑
m∈(x/P,2x/P]

x

mp2
	

∑
y<p<(log x)2

x

p2
	 x

y
,

which is o(x) as x → ∞.
By an analogous argument, the same holds if we change s to sϕ . Note also that

for any n ∈ (x, 2x], we have
∑

p≥(log n)2

p|ns(n)sϕ(n)

1

p
	 1

log x
= o(1) as x → ∞.

Thus, there is a setA of asymptotic density 1 such that for n ∈ A , we have a(n) =
a(s(n)) = a(sϕ(n)) and

∑
p>y(n)

p|ns(n)sϕ(n)

1

p
= o(1) as n → ∞.
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For each fixed ε > 0, letAε denote the subset ofA consisting of those numbers n
where ε < s(n)/n < 1/ε. By the continuity of the distribution function for s(n)/n,
the density of A \ Aε tends to 0 as ε → 0. On Aε each of s(n)/n, (s ◦ s)(n)/s(n),
and (s ◦ sϕ)(n)/sϕ(n) is asymptotically equal to s(a(n))/a(n). And, each of sϕ(n)/n,
(sϕ ◦ sϕ)(n)/sϕ(n), and (sϕ ◦ s)(n)/s(n) is asymptotically equal to sϕ(a(n))/a(n).
The various assertions in Theorem 3 now follow.
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