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Abstract

Answering a question of Erdős, we show that a positive proportion
of even numbers are in the form s(n), where s(n) = σ(n) − n, the
sum of proper divisors of n.

1 Introduction

For a positive integer n, let s(n) = σ(n) − n, the sum of the proper divi-

sors of n. The function s has been studied since antiquity; it may be the

first function ever defined by mathematicians. Beginning with Pythagoras,

we have looked for cycles in the dynamical system formed when iterating

s. There are still a number of unsolved problems connected with this dy-

namical system: Are there infinitely many cycles? Examples of cycles are

6 → 6 and 220 → 284 → 220; about 12 million are known. Does the set
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of numbers involved in some cycle have asymptotic density 0? We know

the upper density is bounded above by about 0.002. Is there an unbounded

orbit? The least starting value in question is n = 276. (For references on

these questions, see [KPP].)

Perhaps a more basic question with the function s is to identify its image:

What numbers are of the form s(n)? Note that if p, q are different primes

then s(pq) = p + q + 1. Not many even numbers are of this form, but

a slightly stronger version of Goldbach’s conjecture (every even number

starting with 8 is the sum of two different primes) implies that every odd

number starting with 9 is in the range of s. Since s(2) = 1, s(4) = 3, and

s(8) = 7, while s(n) = 5 has no solutions, it then follows from this slightly

stronger Goldbach conjecture that every odd number except 5 is in the

range of s. Moreover, this slightly stronger form of Goldbach’s conjecture

is known to be usually true. There are many papers in this line, a recent

survey is [P].

So, almost all odd numbers (in the sense of asymptotic density) are of

the form s(n). In a short, beautiful paper, Erdős [E73] looked at the even

values of s, showing that a positive proportion of even numbers are missed.

He raised the issue of whether the asymptotic density of even values exists,

saying that it is not even known if the lower density is positive. Similar

questions are asked for the function sϕ(n) := n − ϕ(n), where ϕ is Euler’s

function. Again, almost all odd numbers are attained by sϕ, but even less is

known about even values, compared with s(n). In fact, the Erdős argument

(that s misses a positive proportion of even values) fails for sϕ.

These thoughts were put in a more general context in [EGPS]. There the

following conjecture is formulated.

Conjecture 1.1. If A is a set of natural numbers of asymptotic density 0,

then s−1(A) also has asymptotic density 0.

If this is true, one consequence would be that the set of even values of

s does not have density 0. Indeed, if A is the set of even numbers in the

range of s, then

s−1(A) = {n even : n, n/2 not squares} ∪ {n2 : n odd},

so s−1(A) has asymptotic density 1
2
. Thus, if Conjecture 1.1 is true, then A

does not have asymptotic density 0.

In this paper we prove the following theorem.

Theorem 1.2. The set of even numbers of the form s(n) for some integer

n has positive lower density.
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With a few superficial changes the proof of Theorem 1.2 can be adapted

to show the following more general result: For any two fixed positive integers

a, b, a positive proportion of numbers in the residue class a (mod b) are of

the form s(n). Since asymptotically all odd numbers are of the form s(n),

this result has new content only in the case that a, b are both even.

Essentially the same proof will show that numbers of the form sϕ(n)

contain a positive proportion of all even numbers (or any residue class).

It is hoped that the methods in this paper can be of help in proving

Conjecture 1.1.

It seems likely that the asymptotic density of even numbers in the range

of s exists. In some numerical work in [PY] it appears that the even numbers

in the range have density about 1
3

and the density of even numbers missing

is about 1
6
. In [CZ] it is shown that the lower density of the set of even

numbers missing from the range is more than 0.06. The proof of Theorem

1.2 that we present is effective, but we have made no effort towards finding

some explicit lower bound for the lower density of even values of s.

2 Notation and lemmas

We have the letters p, q, r, π, with or without dashes or subscripts represent-

ing prime numbers. We let τ(n) denote the number of positive divisors of

n. We say a positive integer n is deficient if s(n) < n. We let P (n) denote

the largest prime factor of n when n > 1, and we let P (1) = 1. We say a

positive integer n is z-smooth if P (n) ≤ z. For each prime p and natural

number n, we let vp(n) denote the exponent of p in the prime factorization

of n. For each large number n, let

y = y(n) = log log n/ log log log n.

Lemma 2.1. On a set of asymptotic density 1 we have

(1) p2a | σ(n) for every prime power pa ≤ y,

(2) P (gcd(n, σ(n))) ≤ y,

(3) σ(n)/ gcd(n, σ(n)) is divisible by every prime p ≤ y,

(4) and every prime factor of s(n)/ gcd(n, σ(n)) exceeds y.

Proof. (1) Let x be large, let y = y(x), and let d be an integer with 1 <

d ≤ y. The integers n ≤ x with d2 | σ(n) include all n ≤ x which are
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precisely divisible (i.e., divisible to just the first power) by two different

primes p1, p2 in the residue class −1 (mod d). The complementary set where

d2 - σ(n) is contained in the union of the set of those n ≤ x divisible by

the square of a prime p > y and the set of those n ≤ x which are not

divisible by two different primes p ≡ −1 (mod d) with p ∈ (y,
√
x). The

number of n ≤ x divisible by the square of a prime p > y is at most

x
∑

p>y 1/p2 � x/(y log y), so these numbers are negligible. Let Pd(y,
√
x)

denote the set of primes p ≡ −1 (mod d) with p ∈ (y,
√
x). Note that the

prime number theorem for residue classes implies that∑
p∈Pd(y,

√
x)

1

p
=

log(log x/ log y)

ϕ(d)
+O(1),

uniformly for d ≤ y. The number of n ≤ x which are not divisible by 2

different primes in Pd(y,
√
x) is, by the sieve (see [HR, Theorem 2.2]),

� x

1 +
∑

p∈Pd(y,
√
x)

1

p

 ∏
p∈Pd(y,

√
x)

(
1− 1

p

)

� x log log x

ϕ(d)
exp

(
− log(log x/ log y)

ϕ(d)

)
≤ x log log x

ϕ(d)
exp

(
− log(log x/ log y)

d

)

�


x

ϕ(d)
, if 1

2
y < d ≤ y,

x

ϕ(d) log log x
, if d ≤ 1

2
y.

Letting d run over primes and powers of primes, we see that the number of

integers n ≤ x which do not have the property in (1) is � x/ log y = o(x)

as x→∞.

(2) In [ELP, Theorem 8], it is shown that on a set of asymptotic den-

sity 1, gcd(n, ϕ(n)) is the largest divisor of n supported on the primes at

most log log n. Virtually the same proof establishes the analogous result for

gcd(n, σ(n)), so that for almost all n, gcd(n, ϕ(n)) = gcd(n, σ(n)). (Also see

[E56, EGPS, KS, Pol].) That the assertion (2) usually holds, it suffices to

note that the number of n ≤ x divisible by a prime in (y, log log x] is o(x)

as x→∞.

(3) Let y = y(x), where x is large. This assertion will follow from (1) for

n ≤ x if for each prime power pa with pa ≤ y < pa+1, we have p2a - n. But,

the number of n ≤ x which fail to have this condition is at most

x
∑
p≤y

1

y
� x

log y
.
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(4) For this part, we have seen that we may assume that for each prime

p ≤ y, we have vp(σ(n)) > vp(n). Thus, vp(s(n)) = vp(n) = vp(gcd(n, σ(n))

for such primes p.

Lemma 2.2. But for a set of integers n of asymptotic density 0, if we have

P (n) > n7/9, then for each prime π ∈ (y, n10/27] we have π2 - s(n).

Proof. We assume that n ∈ (x, 2x] and that n = pm where p = P (n) > x7/9.

Let y = y(x) and say π2 | s(n) where y < π ≤ (2x)10/27. We have

s(n) = ps(m) + σ(m) ≡ 0 (mod π2).

Thus, if π | s(m), then π | σ(m), so that π | m. By part (2) of Lemma 2.1

this occurs only for o(x) choices for n, so assume that π - s(m). The above

congruence thus places p in a residuce class Rπ,m (mod π2) determined by

π and m. Further, π2m ≤ (2x)20/27m < 4x47/27/p < 4x26/27. Using the

Brun–Titchmarsh inequality, the number of n in this situation is at most∑
y<π≤(2x)10/27

∑
m<4x26/27/π2

∑
p≤2x/m

p≡Rπ,m (mod π2)

1 �
∑
π

∑
m

x

mπ2 log(x/mπ2)

�
∑
π

x log x

π2 log x
� x

y log y
.

This last expression is o(x) as x→∞.

Lemma 2.3. The set of deficient numbers n for which s(n) is non-deficient

has asymptotic density 0.

This result follows from [EGPS, Theorem 5.1] and the continuity of the

distribution function for σ(n)/n.

Lemma 2.4. As n tends to infinity through a set of asymptotic density 1

we have τ(s(n)) = (log n)log 2+o(1).

This result follows from the estimates in [T]. We remark that our proof

does not depend on this lemma, we could have used the weaker inequality

τ(s(n)) ≤ no(1) which holds for all n as n → ∞, but we thought it good

to highlight some other recent research concerning the statistical study of

s(n).

Lemma 2.5. On a set of integers n of asymptotic density 1 we have∑
r|σ(n)

r>(log logn)2

1

r
≤ 1.

This follows by the method of proof of [DL, Lemma 5].
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3 Proof of the theorem

In this section we prove Theorem 1.2.

Proof. We identify a set of integers A such that every member of s(A) is

even and s(A) has positive lower density. We shall pile on a number of

conditions for A to satisfy. For our initial choice for A, we take the set of

even deficient numbers. This set has a positive density, see [K]. Let x be

large; we study A(x) := A∩ [1, x]. We assume that each member n of A(x)

is of the form

n = pm, p ∈
( x

2m
,
x

m

]
, m = q` = qrk,

k ≤ x1/60, r ∈ (x1/15, x1/12], q ∈ (x7/20, x11/30].

So n = pm = pq` = pqrk. Note that n,m, `, k are all even deficient numbers,

each running through a positive proportion of numbers to their respective

bounds: n ≤ x, m ≤ x7/15, ` ≤ x1/10, and k ≤ x1/60. We assume that each

of these 4 variables satisfy the properties in the lemmas. We also assume

that k has no prime factors in (y(k), y(x)].

Let y = y(x). Say δ > 0 is such that #A(x) ≥ δx for all large x. For

each y-smooth integer d, let Ad(x) denote the subset of A(x) consisting

of those members n with largest y-smooth divisor equal to d. By standard

results on smooth numbers (see [dB]), there is some constant c such that

the reciprocal sum of those y-smooth numbers d > yc is less than 1
3
δ log y.

Note that if d ≤ yc is y-smooth, then the number of integers n ≤ x with

greatest y-smooth divisor equal to d is

(3.1) (1 + o(1))
x

d

∏
p≤y

(
1− 1

p

)
= (1 + o(1))

x

eγd log y

uniformly as x → ∞. Let D denote the set of y-smooth numbers d ≤ yc

with

#Ad(x) ≥ δ

6

x

d log y
.

We have from (3.1) that for large x,

(3.2)
∑
d∈D

#Ad(x) ≤ x

log y

∑
d∈D

1

d
,

and, by definition,∑
P (d)≤y
d≤yc
d 6∈D

#Ad(x) <
δ

6

x

log y

∑
P (d)≤y

1

d
= (1 + o(1))

δ

6
eγx.
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Using
∑

d≤yc, P (d)≤y #Ad(x) > 2
3
δx, we thus have, for x large,∑

P (d)≤y
d≤yc
d6∈D

#Ad(x) <
1

3
δx,

∑
d∈D

#Ad(x) >
1

3
δx,

which, with the upper bound (3.2) just seen for this last sum, gives

(3.3)
∑
d∈D

1

d
>

1

3
δ log y.

For d ∈ D and a positive integer u, let Rd(u) denote the number of

representations of u in the form s(n) for n ∈ Ad(x). By the definition of D,∑
u

Rd(u) = #Ad(x)� x

d log y

uniformly for all d ∈ D. Note too that if d 6= d′, then we cannot have both

Rd(u), Rd′(u) > 0. Indeed, by Lemma 2.1, if Rd(u) > 0, then d is the largest

y-smooth divisor of u.

We will show that

(3.4)
∑
u

Rd(u)2 � x

d log y

uniformly for each d ∈ D, so that from Cauchy’s inequality, it will follow,

using (3.3), that

#s(A(x)) =
∑
d∈D

#s(Ad(x)) ≥
∑
d∈D

(
∑

uRd(u))2∑
uRd(u)2

�
∑
d∈D

x

d log y
� x.

The sum
∑

uRd(u)2 counts solutions to s(n) = s(n′) for n, n′ ∈ Ad(x),

with n = pm, n′ = p′m′. We have

(3.5) ps(m) + σ(m) = p′s(m′) + σ(m′).

Suppose that m = m′. Since m > 1 (which implies that s(m) > 0), we

deduce that p = p′. This situation contributes
∑

uRd(u) to
∑

uRd(u)2,

which is easily seen to be� x/(d log y). Thus, we may assume that m 6= m′.

By Lemma 2.1, we have gcd(m,σ(m)) = gcd(m′, σ(m′)) = d, so that

d | (s(m), s(m′)). Write gcd(s(m), s(m′)) = dh. By Lemma 2.1, every prime

factor of h exceeds y.

We have from (3.5),

(3.6) p
s(m)

dh
− p′ s(m

′)

dh
=
σ(m′)− σ(m)

dh
.
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For fixed m,m′, we count the number of pairs of primes p, p′ that satisfy

this equation. Note that σ(m) 6= σ(m′), since if they would be equal, we

would then get from (3.5) that ps(m) = p′s(m′), and since

min{p, p′} > max{m,m′} > max{s(m), s(m′)},

we would get that s(m) = s(m′), so m = m′, which is false. Let u, u′ be

the integral solution of the linear equation (3.6) in p, p′ with u > 0 and

minimal. Then

p = u+
s(m′)

dh
t and p′ = u′ +

s(m)

dh
t

are both primes and 0 ≤ t ≤ (x/m)/(s(m′)/dh) = xdh/(ms(m′)). Let

A =
s(m)

dh
× s(m′)

dh
× |σ(m)− σ(m′)|

dh
=: A1A2A3, say.

By the sieve ([HR, Theorem 2.2]), the number of such p ≤ x/m is

(3.7)

� xdh

ms(m′)(log(xdh/ms(m′)))2
A

ϕ(A)
� xdh

mm′(log x)2
A1

ϕ(A1)

A2

ϕ(A2)

A3

ϕ(A3)
,

where the second inequality follows because ms(m′) ≤ mm′ ≤ x14/15 and

s(m′)� m′. Since s(m)/(dh) and s(m′)/(dh) are deficient, it follows that

A1

ϕ(A1)
� 1,

A2

ϕ(A2)
� 1

However, A3/ϕ(A3) is not small. In fact, by Lemma 2.1, we may assume

that A3 is divisible by all primes ≤ y = y(x), so log y � A3/ϕ(A3) �
log log x. Write A3 = A3,1A3,2A3,3, where A3,1 is the largest divisor with

P (A3,1) ≤ (log log x)2 and A3,2 is the largest divisor of what remains with

P (A3,2) ≤ log x. Since A3 has O(log x/ log log x) distinct prime factors, it

follows that A3,3/ϕ(A3,3) ∼ 1 as x→∞ and so

(3.8)
A1A2A3

ϕ(A1)ϕ(A2)ϕ(A3)
� A3

ϕ(A3)
� A3,2

ϕ(A3,2)
log y.

Let A′3,2 be the largest divisor of A3,2 which is coprime to σ(m). By Lemma

2.5, we may assume that A3,2/ϕ(A3,2)� A′3,2/ϕ(A′3,2). From (3.7), we now

have the problem of showing that for d ∈ D,

(3.9)
x log y

(log x)2

∑
m,m′

dhA′3,2
mm′ϕ(A′3,2)

� x

d log y
,

where dh = gcd(s(m), s(m′)).
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3.1 h > x10/33

We first sum over m,m′ with h > x10/33, showing that the contribution to

(3.9) is small. With m = q` and h | s(m), we have

(3.10) s(m) = qs(`) + σ(`) ≡ 0 (mod h).

In addition, h and σ(`) are coprime. Indeed, if some prime π | gcd(h, σ(`)),

then π = q or π | s(`). In the latter case, π | `, so π | n. But π | σ(`)

implies that π | σ(n), so we have a contradiction to our assumption that

the properties in Lemma 2.1 hold. If π = q, since π | σ(`), we again get

π | gcd(n, σ(n)), a contradiction. So, given h, ` we have from (3.10) that q

is in a fixed coprime residue class modulo h; say

q ≡ ah,` (mod h).

Similarly, we have m′ = q′`′ and q′ ≡ ah,`′ (mod h).

Since h | gcd(s(m), s(m′)), (3.5) implies that h | σ(m) − σ(m′), so that

m ≡ m′ (mod h). With (3.10) we get that

`σ(`)

s(`)
≡ −q` = −m ≡ −m′ = −q′`′ ≡ `′σ(`′)

s(`′)
(mod h),

which implies

(3.11) s(`′)`σ(`)− s(`)`′σ(`′) ≡ 0 (mod h).

The absolute value of the left-hand side is < 2 max{`3, `′3} < 2x3/10. Thus,

for h > x10/33, then it must be the case that the integer in the left-hand

side of the above congruence must be the zero integer. We thus get that

(3.12)
`σ(`)

s(`)
=
`′σ(`′)

s(`′)
, or equivalently,

`2

s(`)
+ ` =

`′2

s(`′)
+ `′.

For us, gcd(`, s(`)) = gcd(`′, s(`′)) = d. Further, by property (3) in Lemma

2.1, d rad(d) | gcd(σ(`), σ(`′)), where rad(d) is the largest squarefree divisor

of d. Hence, gcd(`2, s(`)) = d and the same is true for gcd(`′2, s(`′)). Putting

` = dλ, `′ = dλ′, we get that

dλ2

s(`)/d
− dλ′2

s(`′)/d
= `− `′,

and the two fractions appearing in the left-hand side above are reduced.

So, their denominators must be equal, that is, s(`)/d = s(`′)/d, therefore

s(`) = s(`′). Now equation (3.12) gives

`2 + `s(`) = `′2 + `′s(`),
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and since the function t2 + ts(`) is increasing in t, this gives ` = `′. Thus, in

the case h > x10/33, we must have ` = `′ and the congruence classes ah,`, ah,`′

of q and q′ modulo h are the same.

Summing the expression in (3.9) over m,m′ where h | gcd(s(m), s(m′)),

h > x10/33, and using the maximal order of A′3,2/ϕ(A′3,2) , we have

dx log log x

(log x)2

∑
m,m′,h

h

mm′
=
dx log log x

(log x)2

∑
q,q′,`,h

h

qq′`2
.

Since ` = `′ and m 6= m′, we have q 6= q′; assume that q > q′. Since

q ≡ q′ ≡ ah,` (mod h), the sum of 1/q above is O((log x)/h), even forgetting

that q is prime. Thus, the above sum reduces to

dx log log x

log x

∑
q′,`,h

1

q′`2
≤ dx log log x

log x

∑
q′,`

τ(s(q′`))

q′`2
≤ x(log x)O(1)

∑
q′,`

1

q′`2
,

by Lemma 2.4. Now
∑

1/q′ � 1 and
∑

1/`2 � x−1/10, so we have the

estimate

x9/10(log x)O(1) = O

(
x

d log y

)
,

which is consistent with (3.9).

3.2 h ≤ x10/33

We now consider values of h with h ≤ x10/33. Since s(m′) is deficient,

s(m′)/ϕ(s(m′)) � 1, so that A′3,2/ϕ(A′3,2) � A′′3,2/ϕ(A′′3,2), where A′′3,2 is

the largest divisor of A′3,2 coprime to s(m′). Fix m′, h with h | s(m′) and

consider numbers m that can arise. As noted before,

m ≡ σ(m) ≡ σ(m′) ≡ m′ (mod h).

Since h | s(m), gcd(m,σ(m)) = d, we have gcd(m,h) = gcd(σ(m), h) = 1.

Recall that m = qrk. Thus, the above congruences, rewritten as

qrk ≡ (q + 1)(r + 1)σ(k) ≡ m′ (mod h),

determine u := qr (mod h) and v := q + r (mod h), when k,m′ are given.

Since P (m) > m7/9 it follows from Lemma 2.2 that we may assume that

any prime π with π2 | s(m) satisfies π2 > m20/27. But we have m > x5/12,

so m20/27 > x25/81 > x10/33 ≥ h. All this goes to show that we may assume

that h is squarefree, which in turn implies that the number of solutions to

the congruence x2 − vx + u ≡ 0 (mod h) is at most τ(h). That is, there
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are at most τ(h) pairs a, b (mod h) such that we have q ≡ a (mod h) and

r ≡ b (mod h). Let Sh,k denote the set of pairs a, b that arise for m′, h, k.

For m′, h, k, and the pair a, b in Sh,k all given, define

fm′,h,k,a,b(qr) = f(qr) =
∑

π|σ(kqr)−σ(m′)
(log log x)2<π≤log x

π -hσ(kqr)

1

π
,

where π runs over primes. Note that if f(qr) ≤ 1, then A′′3,2/ϕ(A′′3,2) � 1.

Say k, r are given and π | σ(kqr)− σ(m′) and π - σ(kqr). Since

qσ(kr) = −σ(kr) + σ(kqr) ≡ −σ(kr) + σ(m′) (mod π),

if kr, π are fixed, then q is in a residue class modulo π, say cπ,kr (mod π).

To summarize, with m′, h, kr, a, b fixed, if m = kqr has π | A′′3,2, we have

q ≡ cπ,kr (mod π), q ≡ a (mod h), r ≡ b (mod h). Since π - h, the two

congruences for q may be combined to put q in a single residue class modulo

πh. Thus, using q > x7/20, h ≤ x10/33, π ≤ log x, and the Brun–Titchmarsh

inequality,

∑
qr

f(qr)

qr
�
∑
π

1

π

∑
r

1

r

∑
q

1

q
�
∑
π

1

πϕ(πh)

∑
r

1

r
�
∑
π

1

π2h

∑
r

1

r
.

To estimate
∑

r
1
r

we consider two ranges for h. Since r ≡ b (mod h), we

have

∑
r

1

r
�


log x

x1/20
, if h > x1/20,

1

h
, if h ≤ x1/20.

Here, we are using that r ∈ (x1/15, x1/12], a trivial estimate when h > x1/20,

and the Brun–Titchmarsh inequality with partial summation (as well as

ϕ(h)� h) in the second case. Thus,

(3.13)
∑
qr

f(qr)

qr
�


log x

hx1/20
, if h > x1/20,

1

h2(log log x)2
, if h ≤ x1/20.

The expression in (3.9) for h ≤ x10/33 can be dealt with as follows.

Fix m′, h. Since A′3,2/ϕ(A′3,2) � 1 or log log x/ log y depending on whether
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f(qr) ≤ 1 or f(qr) > 1,

x log y

(log x)2

∑
m

dhA′3,2
mm′ϕ(A′3,2)

� x log y

(log x)2
dh

m′

∑
k

1

k

∑
Sh,k

 ∑
f(qr)≤1

1

qr
+
∑

f(qr)>1

log log x

qr log y


≤ x log y

(log x)2
dh

m′

∑
k

1

k

∑
Sh,k

∑
qr

(
1

qr
+
f(qr) log log x

qr log y

)
.(3.14)

First assume that x1/20 < h ≤ x10/33. By (3.13) we have∑
qr

(
1

qr
+
f(qr) log log x

qr log y

)
� log x log log x

hx1/20 log y
.

Thus, (3.14) and
∑

k 1/k � (log x)/d log y imply that

x log y

(log x)2

∑
m

dhA′3,2
mm′ϕ(A′3,2)

� x log y

(log x)2
dh

m′

∑
k

1

k

τ(h) log x log log x

hx1/20 log y

� x log y

(log x)2
dh

m′
log x

d log y

τ(h) log x log log x

hx1/20 log y

=
x19/20 log log x

log y

τ(h)

m′
.

Now we sum over choices for m′, h. We have∑
h|s(m′)

τ(h) ≤ τ(s(m′))2 ≤ (log x)1.4,

using Lemma 2.4. Further,
∑

m′ 1/m′ � (log x)/d log y. Thus, the sum in

(3.9) is at most (x19/20/d)(log x)O(1) when x1/20 < h < x10/33, which is

certainly consistent with the inequality in (3.9).

It remains to consider the case h ≤ x1/20. By (3.13), we have∑
qr

(
1

qr
+
f(qr) log log x

qr log y

)
� 1

h2
+

log log x

h2 log y(log log x)2
� 1

h2
.

Thus, from (3.14) and
∑

k 1/k � (log x)/d log y,

x log y

(log x)2

∑
m

dhA′3,2
mm′ϕ(A′3,2)

� x log y

(log x)2
dh

m′

∑
k

1

k

τ(h)

h2
� x

log x

τ(h)

hm′
.

Now h | s(m′) and we are assuming that s(m′) is deficient. Thus,∑
h

τ(h)

h
≤

(∑
h

1

h

)2

< 4.

So, summing the previous expression over h,m′ we get an estimate which

is � x/d log y. This completes the proof of (3.9) and the theorem.
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