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Abstract. Given r ∈ N, define the function Sr : N→ Q by

Sr(n) =
n∑

k=0

k

k + r

(
n

k

)
.

In 2015, the second author conjectured that there are infinitely many r ∈ N
such that Sr(n) is nonintegral for all n ≥ 1, and proved that Sr(n) is not an
integer for r ∈ {2, 3, 4} and for all n ≥ 1. In 2016, Florian Luca and the second
author raised the stronger conjecture that for any r ≥ 1, Sr(n) is nonintegral
for all n ≥ 1. They proved that Sr(n) is nonintegral for r ∈ {5, 6} and that
Sr(n) is not an integer for any r ≥ 2 and 1 ≤ n ≤ r − 1. In particular, for
all r ≥ 2, Sr(n) is nonintegral for at least r − 1 values of n. In 2018, the
fourth author gave sufficient conditions for the nonintegrality of Sr(n) for all
n ≥ 1, and derived an algorithm to sometimes determine such nonintegrality;
along the way he proved that Sr(n) is nonintegral for r ∈ {7, 8, 9, 10} and for
all n ≥ 1. By improving this algorithm we prove the conjecture for r ≤ 22.
Our principal result is that Sr(n) is usually nonintegral in that the upper
asymptotic density of the set of integers n with Sr(n) integral decays faster
than any fixed power of r−1 as r grows.

1. Introduction

In 2014, Marcel Chirit,ă [2] asked to show that
n∑
k=0

k

k + 1

(
n

k

)
is nonintegral for

all integers n ≥ 1. This is true and one can prove it as follows: the given sum is
equal to 2n− 2n+1−1

n+1 and 2n+1−1
n+1 is never an integer due to the fact that for every

integer r ≥ 2, 2r 6≡ 1 (mod r). Given r ∈ N, define the function Sr : N → Q

by Sr(n) =
n∑
k=0

k

k + r

(
n

k

)
. Motivated by [2], the second author [4] raised the

question whether there are infinitely many r ∈ N such that Sr(n) is nonintegral
for all n ≥ 1, and proved that Sr(n) is not an integer for r ∈ {2, 3, 4} and for all
n ≥ 1. These results also hinge on the fact that for r ≥ 2, 2r 6≡ 1 (mod r).

In 2016, Florian Luca and the second author [5] conjectured that for any r ≥ 2,
Sr(n) is always nonintegral for all n ≥ 1. They proved that Sr(n) is nonintegral
for r ∈ {5, 6} and that Sr(n) is not an integer for any r ≥ 2 and 1 ≤ n ≤ r−1. In
particular, for all r ≥ 2, Sr(n) is nonintegral for at least r−1 values of n. The proof
of this fact relies heavily on the following theorem of Sylvester [3]: every product of
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k consecutive integers larger than k is divisible by a prime larger than k. In 2018,
the fourth author [9] gave sufficient conditions for the nonintegrality of Sr(n) for
all n ≥ 1, and derived an algorithm to sometimes determine such nonintegrality;
along the way he proved that Sr(n) is nonintegral for r ∈ {7, 8, 9, 10} and for all
n ≥ 1.

Our first result is a simplified version of [9, Theorem 4.1].

Theorem 1.1. Given an integer r ≥ 2, the sum Sr(n) is nonintegral for all n ∈ N
if the following condition holds. With mr the product of all primes up to r, each
integer n ∈ {1, . . . ,mr} satisfies at least one of the following:

(1) There exists i ∈ {1, . . . , r} such that gcd(n+ i,mr) = 1.
(2) There exist i, j ∈ {1, . . . , r} such that gcd(n+ i,mr) = gcd(n+ j,mr) = 2

and 0 < |i− j| < 8.

We discuss the more complicated version of this result from [9] in Section 5.
With our simpler criterion, plus some other ideas presented below, we are able to
prove the following result.

Theorem 1.2. For 1 ≤ r ≤ 22 we have Sr(n) nonintegral for all n ∈ N.

We also prove the following result.

Theorem 1.3. For each k > 0 there exists a constant ck > 0, such that for each
integer r > 1, the upper asymptotic density of {n ∈ N : Sr(n) ∈ N} is at most
ck/r

k.

The proof uses a theorem by Montgomery-Vaughan [6].
This paper is organized as follows. In Section 2 we give the necessary prelim-

inaries. In Section 3 we prove Theorems 1.1 and 1.2, in Section 4 we prove 1.3,
and in Section 5 we discuss the original version of Theorem 1.1 from [9].

2. Preliminaries

Throughout this section, for a prime p and an integer u with p - u, we shall let
ordp u denote the least positive integer k such that uk ≡ 1 (mod p).

Lemma 2.1. Suppose that p is an odd prime dividing n ∈ N and p | 2n − 1. If a
is the largest divisor of n composed of primes smaller than p, we have p | 2a − 1.

Proof. Since ordp 2 | p− 1, all of the primes dividing ordp 2 are smaller than p. If
p | 2n − 1, then ordp 2 | n, so that ordp 2 | a. �

Let φ denote Euler’s function from elementary number theory.

Definition 2.2. Let q ∈ N and let α ≥ 1 be a real number. Following [6], we
define

Vα(q) =
φ(q)∑
i=1

(ai+1 − ai)α

where 1 = a1 < a2 · · · < aφ(q)+1 are the integers in [1, q+ 1] that are coprime to q.
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The following proposition is crucial for the proof of our main theorem.

Proposition 2.3. ([6, Corollary 1]) Let q ∈ N. For any fixed real number α ≥ 1,
there is a positive number c(α) such that

Vα(q) ≤ c(α)φ(q)(φ(q)/q)−α.

We have the following inequality, which follows from [8, (3.30)] and a short
calculation:

n!
φ(n!) < 3 lnn, for all n ≥ 2. (1)

Following [5], we define

S(r, n) :=
n∑
k=0

r

k + r

(
n

k

)
.

It is clear that
Sr(n) + S(r, n) =

n∑
k=0

(
n

k

)
= 2n, (2)

so that Sr(n) is integral if and only if S(r, n) is integral.
The following result is shown in [5].

Lemma 2.4. We have

S(r, n) =
r∑
j=1

(−1)r−jr
(
r − 1
j − 1

)
2n+j − 1
n+ j

.

3. The search to r = 22

Proposition 3.1. Let n, r ∈ N and suppose for some integer j ∈ {1, . . . , r} we
have n+ j = ab where a, b ∈ N, b > 1, such that

• each prime dividing b is greater than r,
• and each prime dividing 2a − 1 is at most r.

Then S(r, n) is nonintegral.

Proof. Let p be the least prime factor of b, so that p > r. Note that p | n+j, but p
does not divide any other member of {n+1, . . . , n+r}. Suppose that p | 2n+j−1.
By Lemma 2.1, p | 2a − 1. But by assumption, all prime factors of 2a − 1 are at
most r, a contradiction. Thus, in lowest terms, the fraction (2n+j−1)/(n+ j) has
at least one factor p in the denominator. The term corresponding to j in Lemma
2.4 is, up to sign,

r

(
r − 1
j − 1

)
2n+j − 1
n+ j

.

So, since p > r, we see that this term, when reduced to its lowest terms, has
at least one factor p in the denominator. However, no other term in the sum in
Lemma 2.4 has a factor p in the denominator, so that in the full sum S(r, n),
there is a factor p in the denominator. That is, S(r, n) is not an integer. This
completes the proof. �
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Remark 1. We note that for every integer a ≥ 2, there is a prime p ≡ 1 (mod a)
that divides 2a − 1, see [1]. This implies that with a, b as in Proposition 3.1 we
have a ≤ r − 1, so that a and b are coprime.

Proof of Theorem 1.1. If {n + 1, . . . , n + r} contains some n + i coprime to mr,
then we can apply Proposition 3.1 to n+ i with b = n+ i and a = 1. On the other
hand, if {n+ 1, . . . , n+ r} contains two even numbers less than 8 apart that are
not divisible by any odd prime up to r, at least one of them is not divisible by 8,
say it is n+ j. We apply Proposition 3.1 with a = 2 or 4 and b = (n+ j)/a. Since
we may assume that n ≥ r > 6 from [5], Proposition 3.1 applies. �

Using Theorem 1.1 and with some additional help from Proposition 3.1 we can
prove the conjecture for r ≤ 22.

Proof of Theorem 1.2. We first handle the cases r = 11, 12. The product of the
primes to 11 is m11 = 2310, so it suffices to show that every interval of 11 con-
secutive integers either contains a member coprime to 2310 or contains two even
members less than 8 apart that are coprime to 1155. Since the problem is sym-
metric about 1155, we only need to search to this level. There are precisely 7
intervals of 11 consecutive integers in this range which do not contain a number
coprime to 2310; these are the intervals starting at

2, 114, 115, 116, 200, 468, 510.

We check that in each of them there are two even numbers less than 8 apart which
are coprime to 1155.

The calculation for r = 13, 14, 15, 16 is somewhat more extensive. Here we show
that every interval of 13 consecutive integers contains either one that is coprime
to m13 = 30030 or contains two even members less than 8 apart that are coprime
to 15015. We need only check intervals whose first element is in [1, 15015]. All but
76 of them have a member coprime to 30030. Each of these 76 intervals contains
two even members less than 8 apart that are coprime to 15015.

This plan breaks down for r = 17, 18. For example, when n = 60462, the
interval [n, n+ 16] has each member with a nontrivial gcd with m17 = 510510, so
that condition (1) does not apply. In addition, the only members of this set with
no odd prime factors at most 17 are n+ 2 and n+ 10. So, condition (2) does not
apply either. However, for r ≥ 17, we can strengthen (2) to

(2’) There exist i, j ∈ {1, . . . , r} such that 0 < |i− j| < 16 and both n+ i and
n+ j are even but not divisible by any odd prime up to r.

In addition, we have found it easier at higher levels to use Proposition 3.1 directly
for those intervals that do not have a member coprime to mr. When r = 17,
there are 498 such intervals [n, n + 16] below 255255. For each such interval I,
we examine I translated by j × 510510 for j = 0, 1, 2, 3, searching in each for
a member of the form ab where the primes in b are greater than r, and with
a = 2 or 4. All but two intervals had this property, namely the length 17 intervals



PROGRESS TOWARDS A NONINTEGRALITY CONJECTURE 5

starting at n = 60462 and at n = 97590 shifted by 3× 510510. However, in these
intervals, property (2’) applies.

In continuing on to r = 19, 20, 21, 22 it turns out that conditions (1) and (2’)
are not sufficient for all cases. We can supplement with a new condition which
works for r ≥ 13:

(3) There exist i, j ∈ {1, . . . , r} such that 9 - j − i, both n + i and n + j are
multiples of 3, they are not divisible by any prime in [5, r], and they are
not divisible by 8.

The sufficiency of condition (3) follows from Poposition 3.1 with a | 12, using that
the largest prime factor of 212 − 1 is 13. Condition (3) works well in conjunction
with condition (2’) since to apply them one needs to to translate the interval
by jmr, for j = 0, 1, 2, 3. In examining length 19 intervals, all but 8439 of them
satisfy condition (1). Looking up to 4 timesm19, all but a handful of these 4×8439
intervals satisfy the hypothesis of Proposition 3.1 with a = 2 or 4. This handful
is settled using conditions (2’) and (3). This completes the proof. �

Remark 2. One possible route to proving that Sr(n) is always nonintegral is to
show that one of (1), (2) in Theorem 1.1 always occurs. In fact, in the next
section we show that condition (1) holds when r is large for most of the intervals
{n + 1, . . . , n + r}. However, there are exceptional intervals where (1) does not
hold, and we have already seen that there can be intervals where neither (1) nor
(2) hold. In addition, one can show that for all sufficiently large numbers r there
is some n such that {n+ 1, . . . , n+ r} has each member with an odd prime factor
at most r. For example, a short argument shows this is the case for r = 103.
So, replacing condition (2’) with higher powers of 2 does not always work either.
It is conceivable that for every r and every interval of r consecutive integers at
least r there is a member for which the hypothesis of Proposition 3.1 holds, but
we are not sure if this is so. Complicating things, one has for all sufficiently large
numbers r an interval of r consecutive integers each divisible by a prime p in the
range log2 r < p ≤ r, see [7, equation (3)].

4. Density

In order to prove Theorem 1.3, we first show that condition (1) from Theorem
1.1 usually holds.

Theorem 4.1. For each k > 0 there exists a constant ck > 0, such that for each
integer r > 1, the asymptotic density of those integers n such that {n+1, . . . , n+r}
contains no number coprime to mr is at most ck/rk.

Proof. Let α ≥ 1 be a real number to be determined. Recall that

Vα(q) =
φ(q)∑
i=1

(ai+1 − ai)α
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where 1 = a1 < a2 · · · < aφ(q)+1 are the integers in [1, q + 1] that are coprime to
q. By Proposition 2.3, it follows that

Vα(q) < c(α)φ(q)(φ(q)/q)−α = c(α)q(q/φ(q))α−1

for some constant c(α) > 0. Applying this with q = mr, together with (1), yields
Vα(q) < c(α)q(3 ln r)α−1. (3)

Let N :=
∑

{i: ai+1−ai≥r}
(ai+1 − ai). Then

Nrα−1 =
∑

{i: ai+1−ai≥r}
(ai+1 − ai)rα−1 ≤

φ(q)∑
i=1

(ai+1 − ai)α = Vα(q),

so that N ≤ Vα(q)/rα−1. Using inequality (3) we obtain

N ≤ c(α)q
(3 ln r

r

)α−1
. (4)

Now, we note that if an interval I ⊂ [1,mr] of integers does not contain any
member of {a1, . . . , aφ(q)+1}, then since it is an interval, it must lie completely
between two consecutive members of this set. So, if {n+ 1, . . . , n+ r} contains no
number coprime to mr = q, there exists w ∈ [1, φ(q)] such that (n, n + r + 1) ⊆
(aw, aw+1). Then n may be any of the numbers aw, aw+1, . . . , aw+1−r−1, that is
the interval (aw, aw+1) gives rise to exactly aw+1−aw−r intervals {n+1, . . . , n+r}.
Therefore

#{1 ≤ n ≤ q : gcd(n+i, q) 6= 1 for i = 1, . . . , r} ≤
∑

{i:ai+1−ai>r}
(ai+1−ai−r) ≤ N .

It remains to note that the integers n where {n+ 1, . . . , n+ r} has no element
coprime to mr form a periodic set mod mr. That is, if n has this property, so
does every positive integer m ≡ n (mod r!). Hence by (4) the density of the set
of such numbers is at most c(α)

(
3 ln r
r

)α−1
. Then let α = k + 2, and the result

follows with ck the maximal value of c(α)(3 ln r)α−1/r. �

Theorem 1.3 now follows as a corollary.

Proof of Theorem 1.3. It follows from Theorem 1.1 that if some member of {n+
1, . . . , n + r} is coprime to mr, then Sr(n) is nonintegral. Thus, the theorem
follows immediately from Theorem 4.1. �

5. Thongjunthug’s theorem

In [9], the fourth author proved the following theorem.

Theorem 5.1. ([9, Theorem 4.1]) Given an integer r ≥ 5, the sum Sr(n) is not
a positive integer for all n ≥ 2 if the following two conditions hold:
(a) For all l ∈ {1, 2, . . . , r}, we have
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r(Fr(n)− (−1)r−1(r − 1)!) ≡ ±r!(2n+l − 1) (mod (n+ l))

where Fr(n) =
r−1∑
i=0

n+r∑
k=0

s(r, i+1)ki
(
n+ r

k

)
, and s(r, i+1) is the signed Stirling

number of the first kind.
(b) Each integer n ∈ {0, 1, . . . , P − 1}, where P is the product of all primes up to

r, satisfies at least one of the following:
(b1) There exists i ∈ {1, . . . , r} such that p - (n+ i) for all primes p ≤ r.
(b2) There exist i, j ∈ {1, . . . , r} such that 0 < |i− j| < 8 and both n+ i and

n+ j are even but not divisible by any odd prime up to r.

We have seen in Theorem 1.1 that this result holds without condition (a), so
that condition is superfluous. However, condition (a) is harmless, in that it always
holds. We now prove this assertion.

Proposition 5.2. The condition (a) in Theorem 5.1 holds for all r, n ∈ N.

Proof. Using [9, Lemma 3.2] and (2) one has
r(Fr(n)− (−1)r−1(r − 1)!) = (n+ 1) · · · (n+ r)S(r, n)

=
r∑
i=1

(−1)r−ir
(
r − 1
i− 1

)
(2n+i − 1)

r∏
j=1,j 6=i

(n+ j).

Thus, for each i = 1, . . . , r we have

r(Fr(n)−(−1)r−1(r−1)!) ≡ (−1)r−ir
(
r − 1
i− 1

)
(2n+i−1)

r∏
j=1,j 6=i

(n+j) (mod n+i).

(5)
Since n+ j ≡ j − i (mod n+ i), we have

r∏
j=1,j 6=i

(n+ j) ≡
r∏

j=1,j 6=i
(j − i) = ±(r − i)!(i− 1)! (mod n+ i).

Multiplying this by r
(r−1
i−1
)
one gets ±r!, and substituting into (5) gives

r(Fr(n)− (−1)r−1(r − 1)!) ≡ ±r!(2n+i − 1) (mod n+ i),
which completes the proof. �
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