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1. Introduction

In this paper we present several algorithms that can find proofs of primality
in deterministic polynomial time for some primes. In particular we show this
for any prime p for which the complete prime factorization of p — 1 is given.
We can also show this when a completely factored divisor of p—1 is given that
exceeds p'/4*+¢, And we can show this if p—1 has a factor F exceeding p¢ with
the property that every prime factor of F is at most (logp)*/«. Finally, we
present a deterministic polynomial time algorithm that will prove prime more
than 2'~¢ primes up to z. The key tool we use is the idea of a smooth number,
that is, a number with only small prime factors. We show an inequality for
their distribution that perhaps has independent interest.

It is known that if one assumes the Riemann hypothesis for Dirichlet /.-
functions, then the prime recognition problem is in the complexity class P.
Thus, from Miller and Bach we know that for every odd composite number n
there is some integer a in the range 1 < a < min{n, 2(logn)?} such that n is
not a strong probable prime to the base a, and so n is proved composite. If an
odd number n is a strong probable prime to every base a in the above range,
then n is prime. Thus assuming the above extended Riemann hypothesis,
every prime p can be deterministically supplied with a proof of its primality
in O((log p)®) arithmetic steps with integers at most p.

The results in this paper do not rely on the truth of any unproved hy-
potheses,

It has been known since Lucas that it is easy to find a proof of primality
for a prime p if the complete factorization of P — 1 is known. Indeed one
merely has to present a primitive root for p and prove it is one using the
prime factorization of p—1. Though we know no fast deterministic algorithm
for finding a primitive root for a prime p, the probabilistic method of just
choosing random integers until a primitive root is found works very well in

* Supported in part by the Cultural Initiative Fund and the Russian Academy of
Natural Sciences
** Supported in part by an NSF grant

"—V‘ . m MEPL\-@W&}L?LS o{ ?au_] Erfﬁé's T p Rl G‘Y‘\'-L\qm
wd T N¢§&+F"’)uﬂﬁ- ) gl’ﬁ"‘_’)ar- V’U’*j , Barlin
l*le}'ﬂ.e,”:lcrjj J‘iq"fJ Pe P 76 - |98 .



2 Sergei Konyagin and Carl Pomerance

practice. The expected number of tries is O(loglogp). In fact, one can show
that the expected number of random choices to find a set of numbers which
generate (Z/pZ)" as a group is O(1). (Note also that it is a simple matter
to deterministically fashion a primitive root out of a set of generators with
knowledge of the complete prime factorization of p — 1.) Our algorithm re-
quires O((log p)°/7) tries, and does not guarantee that it will find a primitive
root or a set of generators, but it does prove primality and it is deterministic.

It is also known (see Brillhart, Lehmer, Selfridge [5]) that if one has a fully
factored divisor F¥ of p — 1, where F' > p/3, then one can quickly decide if p
is prime or composite. Again, this involves choosing numbers at random. We
show how the prime or composite nature of p can be decided deterministically
and in polynomial time. In addition, we only require F' > p'/%+¢ In another
algorithm we only need F > p®, but for the method to be fast, F must be
smooth.

While many of the algorithms in this paper are only of theoretical interest,
it is likely that at least some of the ideas have practical value. In particular,
an algorithm we present below which allows one to decide whether n is prime
or composite, when it is known that all prime factors of n are 1 mod F with
F > n3/1% should be a practical addition to the Brillhart, Lehmer, Selfridge
“n—1 test”.

It is to be expected that some of the ideas presented here would be of
use in the “n + 1 test” and the combined “n? — 1 test”. These elementary
tests are often used in conjunction with the Jacobi sums test (see [3] and
references there), and it is possible that a few ideas presented here will be of
use in that context as well. However, as stated above, our primary emphasis
in this paper is theoretical and not practical.

Let #(x,y) denote the number of integers n < z free of prime factors ex-
ceeding y. In [9], Erdés and van Lint show that in some sense ¥(z,y) can be
approximated by the binomial coefficient (”(1’[2";'[“]) where u = logz/logy
and 7m(y) denotes the number of primes not exceeding y. In fact an ele-
mentary combinatorial argument shows that Y(z,y) > (’T(y[ﬁ[u]),'so one
side of the approximation is easy. In this paper we obtain the lower bound
z/(logz)* = gl-loslog=/logy which is valid whenever > 4and 2 < y < z.
This lower bound for ¥(z,y) is attractive for its simplicity and near univer-
sality. However, one should note that it is a good approximation to P(z, y)
only in the range (logz)'*c < y < exp((logz)). The inequality in the special
case y = (logz)® was previously established by Lenstra {12], and for a similar
purpose.

Our main idea in this paper is to build up a large subgroup of (Z/nZ)*
using a small set of generators. Specifically, if p is the least prime factor of n
and a is an integer with 1 < a < p, let Gn(a) denote the subgroup of (Z/nZ)*
generated by j mod nforj =2 3,. .. » @. From the above estimate for Yz, y),
we have

#0n([(logn)°]) 2 ¥(n, (log n)°) > n'-1/c,
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whenever n > 4 and 2 < (logn)¢ < p, with p the least prime factor of n.
Thus we can create an “exponentially large” subgroup of (Z/nZ)* with a
“polynomially sized” set of generators. The idea of using smooth number
estimates to show that one has built up a large subgroup of (Z/pZ)* for p
prime was first used in 1926 by Vinogradov [19] to estimate the least positive
residue mod p that is not a k-th power.

It was previously shown by Pintz, Steiger and Szemerédi [14] that there are
infinitely many primes p that can be proved prime in deterministic polynomial
time. They require for their primes p that p—1 has a divisor which is a power
of 3 and exceeds p'/2. Thus they could only show there are more than z3/3-¢
such primes up to z. As mentioned above, we replace the “2/3” with 1.

Our result in Section 3 on deciding if n is prime or composite in deter-
ministic polynomial time, when the complete prime factorization of n — 1 is
given, was anticipated by Fellows and Koblitz [10], though their algorithm is
not as fast as ours.

We mention a few other results that are somewhat relevant, Adleman
and Huang [1] have given a probabilistic algorithm for primality proving that
has expected polynomial time. Much earlier, Solovay and Strassen [18] had
given a probabilistic algorithm for compositeness proving that has expected
polynomial time. In [15], the second author showed that for every prime p
there is a proof that p is primne that can be verified in O(log p) arithmetic
steps with integers at most p. Previously, Pratt [16] had shown via Lucas’s
test the existence of a primality proof that requires O((log p)*) arithmetic
steps. These two papers show only the existence of these proofs; they do not
show how to find them quickly.

We wish to thank W. R. Alford, Ronald Burthe, Andrew Granville, Hen-
drik Lenstra and Jeff Shallit for some helpful remarks.

2. A lower bound for the distribution of smooth
numbers

We say an integer n is y-smooth if no prime factor of n exceeds y. Let 9(z,y)
denote the number of integers n in (1, z] that are y-smooth. In this section
we are going to prove the following theorem.

Theorem 2.1, Ifz >4 end 2 <y < z, then P(z,y) > awl-loglogz/logy

We begin with a few lemmas. Let w(z) denote the number of primes p
withp < .

Lemma 2.1. Forz > 37 we have m(z) — n(c'/?) > (7/9z/logz.

This lemma follows from Rosser and Schoenfeld [17, Theorem 1] and a
simple calculation. The next lemma is well known; we give the proof for
completeness.
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Lemma 2.2. Let p; denote the k** prime. For ¢ > 1 we have

Proof. An integer n < z which is Pi-smooth has its prime factorization
in the form pi'p3®...pt* where ay,@a,...,ap are non-negative integers
and ) ajlogp; < logz. Thus ¥(w,pr) is the number of lattice points
(a1,a3,...,a;) € Z* with each a; > 0 and Y g logp; < logz. Putting
each such lattice point at the “lower left” corner of a unit cube with edges
parallel to the axes, a region is described which is strictly larger than the
simplex

k

(91, 9e) ER®: each y; >0, Yy logp; < logz
i=1

Thus ¥(z, p) exceeds the k-dimensional volume of this simplex, which is

k
(log )* (k1)1 H(logpj)—l.

j=1

Proof (of Theorem 2.1). We verify the theorem directly for pairs z, y with
2 <y < 37 and ¢ < 120. Assume now that 2 Ly <37 and z > 120. Since
the theorem is trivial when logy < loglogz, we may assume y > 3. It is not
hard to show that (log)?
l-laglogz/log3at Cgzx 9
% < log3logd &)

for z > 120. But the left side of (2.1) is greater than £1~'Elgz/105y 404 the
right side of (2.1) is less than 4(z, 3) by Lemma 2.2. Since ¥(z,3) < ¥(z,y),
the theorem holds in this range.

Now assume 37 < y < z. Let u = logz/logy and let {u} = v — [y
denote the fractional part of u. If m is a positive integer with m < yiv} and
n is a product of {u] not necessarily distinct primes in the interval (y/2, vl
then N = mn is y-smooth and N < y{“}y[“] = y* = z. Moreover, since
m has at most one prime factor in (y'/%, 4], it follows that the number of
representations of N as a product mn in this way is at most [u] +1. In fact, if
{u} < 1/2, then N has at most one representation as mn. We conclude that

y) (w(y) — w2 (] + 1)L, {u} > 1/2
vy 2 { {5{“}} ((5) — 7)) ], it {u} <172. (22

Note that using y > 37, we have

Sylu}jr 1/2
{u} 7Yy, 1 {TJ} > /
[‘J ]>{ Lyt if {u} < 1/2. (2:4)
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Also, from Lemma 2.1, we have
" [u] [u] [u]
s (T v Y 1’5) i I
() = 7(y™"%) >(9 logy) (9 (log )i
Thus
[u] U
" 71\'. Y
{u}(, — a(yt2))y[u] = {u}_Y%
v (y) — w(y'?) > (g) (logz) (g 2"
[u]
= (T_U) (Ioga:){u}zl—loglog.r/lugy_
9

Using this inequality with (2.2) and (2.3) we have that the theorem will hold
if we show

(] 7 :

Tu (el + 1), if {u} > 1/2

il {u} 6 1

( 9 ) (og )™ 2 { 2[u]! if {u} < 1/2. (2.4)
We now show
Nk

o ) > 2(k+1)! for every integer k > 6. 2.5
9 (

This holds by inspection for k = 6,7,8,9. For any non-negative integer k, the
arithmetic-geometric mean inequality implies that

& E+1
(J_?) > (k+ 1)\,
2
Using this and the easily verified inequality
- : k41
({—;-) > 2 (L_—;—Z_) for k > 10,

we have (2.5). Note that (2.5) implies (2.4) when u > 6.
Suppose that 3 < u < 6 and {u} < 1/2. We verify for £ = 3,4, 5 that

k
(7—;-) > 2k

so that (2.4) holds for these values of u.
Suppose now that 2.5 < u < 6 and {u} > 1/2. We verify for k = 2,3,4,5

that .
T(k+1/2 N2 7
((_I;_/)) (log(37k+1/-)) > s+ 1),

so that (2.4) holds for these values of . (We use that z = y* > 374))
Now suppose 2.2 < u < 2.5. We have
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(%’i) " (log )4} > (@9&)) 2 (log(37%%))™2 > 4 = 2[u]!,

so the theorem holds here too.
In the range 1 < u < 2.2 we use another estimate for ¥(z,y). The number
of integers up to z divisible by a prime p is [z/p]. Thus

T 1
UL R E]>e-1- : 3 5 (26)

where p runs over primes.
First assume that 1.6 < u < 2.2. Then = > 376 > 286. It follows from
Theorem 5 in Rosser and Schoenfeld [17] that

1 1
y(%r = < loglogz —loglogy + Sog R + Aoga?
< log22+4 2(log(3171~6))3 + 2(101;137)2 < 0-85.
Thus from (2.6) we have
¥z, y) > 0.15z — 1 > 0.14z.
But i =
ol Tslonsl 8 — Togay S gmmeyEE < 007,

so the theorem holds in this range.
Finally assume 1 < w < 1.6. Then from Theorem 5 and its Corollary in
[17] we have that

! < loglogz —loglogy + : + !
2 (og=)? * Z(logy)?
1 1
< logl.64 < 0.59,

(log37)2 ¥ 2(log 37)2
so that from (2.6) we have

w(z,y) > 041z — 1 > 0.38z.

But
gl-loglogz/logy o T < 0.28z,

~ log37

so we have the theorem here as well. This concludes the proof of Theorem 2.1.
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3. When n — 1 is fully factored

In this section we present and analyze two deterministic algorithms that will
decide if a positive integer n is prime or composite when the complete prime
factorization of n—1 is known. The first algorithm uses the Brillhart, Lehmer,
Selfridge “n — 1 test” (see [5]). The second algorithm is somewhat faster and
uses a new result presented below.

We begin with a factorization algorithm that is very fast, but unfortu-
nately is usually unsuccessful in factoring composite numbers.

The base B factorization method. We are input integers n, Bwithn > B > 2.
This algorithm attempts to find a nontrivial factorization of n.

Step 1 Write n in the base B : n = ¢yBY + cg_1B%Y 4.4 cg, where
Co,**-,Ca are integers in the interval [0, B — 1] and ¢g > 0.

Step 2 Compute ¢ =gcd(cg, - ve,eq). f e > 1, return c as a proper factor
of n and stop.

Step 3  Factor f(z) = cqz? + -+ + ¢p into irreducible polynomials in Zz]
with the algorithm of [11].

Step 4 If f(z) is irreducible in Z[z], the algorithm has failed, so stop. If
f(=) = q1(2)ga(z) - - - g (x) where each g;(z) is irreducible in Z[z],
then return g,(B)ga(B) - gi(B) as a nontrivial factorization of n
and stop.

That each g;(B) is a proper factor of n in Step 4 follows from {4]. Thus
the algorithm is correct. From the analysis in [11], it follows that the running
time of the algorithm is (logn)@(1),

We shall only be applying the base B factorization method in the cases d =
2,3 and in these cases it should be considered “overkill” to use the algorithm
of [11] to factor f(z) in Step 3. In particular, if d = 2, then cax® + 1z + ¢4
factors if and only if ef — 4cocs is a square, in which case it is trivial to write
down the factorization. Further, it is easy to detect squares and take square
roots of squares with a binary search. Thus the time for Step 3 in the case
d = 2 is O(log n) arithmetic steps with integers at most n. (Newton'’s method
is even better than a binary search; its complexity is O(loglog n) arithmetic
steps with integers at most n.)

When d = 3 we can again use a binary search in Step 3. In particular,
f(z) factors if and only if it has a rational root, and if one rational root is
found, we can reduce the problem to the quadratic case. It is more convenient
to replace f(z) with ¢ff(x) = g(csz), since g(z) factors if and only if it has
an integer root. However, every integer root of g divides g(0), so if g(0) # 0,
then every integer root is in the interval [—|g(0)], |(0)[] and may be located
with essentially a binary search. Thus again Step 3 can be accomplished
in O(logn) arithmetic steps with integers at most n. (Note that Newton’s
method could be applied here as well.)

We now describe an algorithm based on the Brillhart, Lehmer, Selfridge
n —1 test.



8 Sergei Konyagin and Carl Pomerance

Algorithm 3.1. We are input an integer n > 4 and the complele prime
factorization of n — 1. This deterministic algorithm decides if n is prime or
composite.

Let F(1)=1. Fora=2,3,...,[(logn)*? do the following:

Step 1 Ifa is composite, let F(a) = F(a—1) and go to Step 7. If aF(s-1) =
1l mod n, let F(a) = F(a—1) and go to Step 7. Verify that a"~1 =
1 mod n. If not, declare n composite and stop.

Step 2 Using the prime faclorization of n—1, find the least positive divisor
E(a) of n—1 with a®(® =1 mod n.

Step 3  Verify that (a®(a)/1 _ 1,n) =1 for cach prime factor q of E(a). If
not, declare n composite and stop.

Step 4 Let F(a) =lem {F(a— 1), E(a)}. Compute F(a).

Step 5 If F(a) > n*?, declare n prime and stop.

Step 6 If nl/3 < F(a) < n!/?, attempt to factor n by the base F(a) fac-
torization method. If n is factored nontrivially, declare n composite
and stop. If n is not factored, declare n prime and stop.

Step 7 If e < [(logn)®?), get the next a. Otherwise declare n composite
and stop.

Proof (of correctness). Since (log n)32 < n for every integer n > 1, Step 1 is
correct by Fermat's little theorem. It is clear that Step 3 is correct from the
definition of E(a).

Suppose r is a prime factor of n and we have reached Step 4 of the
algorithm for a particular a. Consider the subgroup G,(a) of (Z/rZ)* defined
in the Introduction. We shall show that #0r(a) = F(a). For each prime j with
J < a we have j7(%) = 1 mod n, so that 7¥(*) = 1 mod r. Thus #G(a)|F(a).
Further, if j is a prime with j < a and F(j) > F(j — 1), then from Step 3
the order of j in (Z/rZ)* is E(5). Since F(a) is the least common multiple
of those numbers E(j) with J prime, j < a, and F(j) > F(j — 1), we have
F(a)|#6-(a). Thus #G,(a) = F(a), as asserted.

We conclude that if we have reached Step 4 of the algorithm for a partic-
ular a, then for each prime factor r of n we have r = 1 mod F(a). Thus the
correctness of Steps 5 and 6 follows from [5].

Suppose now that a = [(logn)¥?] and we have reached Step 7. Thus
F(a) < n'/3. Suppose n is prime. For every a-smooth integer m in the range
l1<m<nwehave mmodn e Gn(a). Thus

F(a) = #Gn(a) > 9(n,a) = ¢(n, (log n)*/?) > p1/3,

where the last inequality follows from Theorem 2.1 and the fact that
(logn)2 > 2 for n > 4. This is a contradiction and so Step 7 is correct,.
We conclude that Algorithm 3.1 is correct.
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Analysis of runiime. We measure the runtime by the number of arithmetic
steps with integers no larger than n. By an arithmetic step we mean addi-
tion, subtraction, multiplication, division with remainder, greatest common
divisor, and finding an inverse for a member of (Z/nZ)*. Using naive arith-
metic, an arithmetic step can be accomplished in O((log n)?) bit operations.
Using the FFT, an arithmetic step can be accomplished in O¢((logn)'+¢) bit
operations for each ¢ > 0.

One can use the sieve of Eratosthenes to prepare a list of all of the primes
up to (log n)*? in time O((log n)*2loglog n). For each prime number a, Step
1 can be accomplished in O(log n) arithmetic steps. Since the number of such
primes is O((log n)¥/?/loglog n), an upper bound for the time spent in Step
1 is O((log n)*/*/ loglogn).

To do Step 2 we use a variation of the algorithm of [6]. First consider the
case where n — 1 is squarefree; say n— 1 =gq;...q; with q1; .. -, qr distinct
primes. Then to find E(a) it suffices to find the set of ¢ which divide E(a).
But ¢:{E(a) if and only if a(®~1/4 2 1 mod n. The algorithm of [6] computes

all of the residues allizi¥ mod n = o(r-1/u modn fori = 1,... k. It
breaks the computation into steps where at a particular step we are taking
a residue x mod n and computing % mod n for some J- Each g¢; is used
O(log(k + 1)) times, so that the total number of arithmetic operations with
integers at most n is

.
o(z log g; log(k + 1)) = O(logn log(k + 1)).

=1

Now consider the general case where we no longer assume that n — 1 is

squarefree. Say n — 1= ¢ ., .qg* with the g;’s distinct primes and the a;’s
positive integers. We have q,-‘ﬁ'HE(a) if and only if §; is the least non-negative
integer with ar=1)gfi"" = 1 mod n. To compute the F’s we combine the

ideas from the squarefree case with a binary search. In the first step, we let
my = qE""‘/Q] . ..gg}"/z] and let a; = a™* mod n. We use the algorithm of [6]
with a1 and the numbers g™ 1™/ 4 decide 8 < [ei/2) or [:/2) < B; <
for each i = 1,..., k. In the first case we replace qu N in m; with qf-n"/é].
In the second case we replace q,[a"/zj in my with ¢®~l*/4 Thus we have
a number my, we form a; = a™ mod n and again we use the algorithm
of [6], this time with the g;’s raised to exponents about «;/4. Continuing
in this fashion we compute the Bi’s and thus E(a). In the I-th step of this
algorithm we are using the algorithm of [6] with numbers whose product
is about n®~'. Thus the number of arithmetic operations for the i-th step is
02 "logn log(k+1)). Moreover, we can compute a; from ai-1 in O(27'log n)
arithmetic operations. Thus summing over {, the number of steps for Step 2
for a particular value of a is O(logn log(k+1)). The number of values of a for
which we perform Step 2 is O(logn). (To see this, note that we only perform
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Step 2 when F'(a}) > F(a — 1) and that F(a) is the product of the integers
F(j)/F(j—1)for 2 < j < a.) Since k = O(logn), we have that the total
time spent in Step 2 is O((logn)®loglogn) arithmetic steps with integers at
most n,

For Step 3, note that to compute the greatest common divisor it is suffi-
cient to work with a®(®)/¢ mod n rather than a7, [f E(a) = ¢ .. .qgf"
where q1,...,q are distinct primes and B, ..., B are positive integers, let

a; = Haqf'—l mod n. We use the algorithm of [6] to compute QP#‘ ¥ mod n
= a®(8)/% mod n for each i. The number of steps is O(log E(a) log(k' +1)) =
O(lognlog(k + 1)), where & > k' is the number of distinct prime factors of
n—1. Thus as with Step 2, the total time spent in Step 3 is O((log n)* log log n)
arithmetic steps with integers at most n.

Steps 4, 5, and 7 are each O(1) arithmetic steps for each a and, as re-
marked above, Step 6 is O(log n) arithmetic steps for each @. Note that
we visit Steps 4, 5, and 6 for O(logn) values of a and we visit Step T
for O((logn)®?) values of a. Thus the total time for all of these steps is
O((logn)?) arithmetic steps with integers at most n.

We conclude that in the worst case, Algorithm 3.1 runs in
O((logn)®?/loglogn) arithmetic steps with integers at most n. We have

proved the following theorem.

Theorem 3.1. Given an inleger n > 4 and the complete prime fectoriza-
tion of n — 1, Algorithm 3.1 correctly decides if n is prime or composite.
Further, Algorithm 3.1 uses at most O((logn)®?/ loglogn) arithmetic steps
with integers at most n.

We remark that in some cases when Algorithm 3.1 declares 7 composite, a
nontrivial factorization of n may also be found. In particular, this is true in
Steps 3 and 6. However most composite inputs will be proved composite in
Step 1 with @ = 2, in which case no nontrivial factorization of n is produced.

The next algorithm may be considered an extension of the Brillhart,
Lehmer, Selfridge n — 1 test. We shall use it as a subroutine in an improved
version of Algorithm 3.1 we present below.

Algorithm 3.2. This deferministic algorithm finds the complete prime fac-
torizalion of n when input integers n, F' such that F > 0?10 5 1 gnd each
prime faclor of n is 1 mod F.

Step 1 Ifn < 243, factor n by trial division and stop,

Step 2 IfF > n'/3, use the method of [5] and stop. (That is, if F > nl/?
declare n prime; if n'/3 < F < nl/2, yse the base F factorization
method to factor n. Note that if the base F factorization succeeds
in factoring n, then it produces the prime factorization of n, while
if it fails, then n is prime.)

Step 3 We have n¥10 < F < nl/3. fttempt 1o factor n by the base F
factorization method. If this succeeds in splitting n, report it as the
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complete prime factorization of n and stop. Let ¢y, eq,ca be the base
I “digits” of n, so that n = caF® o ¢ F? ¢ F + 1.

Step 4 Leteq = caF4co so thatn= caF24ei F41. If either cqz® iz +1
or (ca — 1)z + (e1 + F)z + 1 are reducible in Z[z], this may lead
to a factorization of n as in the base F factorization method. If so,
report this factorization as the prime factorization and stop.

Step 5 Develop the continued fraction for oy /F and let uf/v, v fv' be con-
secuttve convergents with v < F2/\/n < o', Let ug = 0! vy = +o'
be such that uvg + ugv = 1.

Step 6 For each integer d with |d — cav/F| < 2n3/2 /5 (£ 2} do the
following. Find all integral roots s of the polynomial

fa(z) =y® —c1y® + cay + Fry + 2

where y = dvg + vz, z = —dug -+ uz. For any integral root 5 found
with (dvo + vs)F + 1 a nontrivial factor of n, report this number
and its cofactor in n as the prime feclorization of n and stop. If n
is not split in this step, then declare n prime and stop.

Proof (of correctness). We first show that if n is factored in Step 3, then this
step produces the complete prime factorization of n. First, it is clear that
n has at most three prime factors. Thus if f(z) = cagz® + caz® + gz + 1
factors into three linear factors in Z[z], then these give, upon substituting
F for z, the prime factorization of 7. Suppose conversely that n has three
prime factors. Thus there are positive integers a;,as,az with n = (a1 F +
1)(aaF +1)(agF +1). Since n > 243 we have F* > 3n, so that ayaza3 < F/3.
Thus a a2 + ajaz + aaza; <3ajazaz < Fand ay +as+ a3 < F. We conclude
that ¢3 = ajasa3, €3 = ajas + @1a3 + aada, ¢y = aj + as + az and that
f(z) = (a1z+1)(asz + 1)(agz +1). That is, the base F factorization method
will find the complete prime factorization of n.

Suppose now that n has exactly two prime factors so that there are pos-
itive integers a;,as with n = (a; F + 1)(a2F + 1). Assume a; < ay. If we
obtain any nontrivial splitting of n in any step of the algorithm, evidently
this gives the complete prime factorization of n. We now show that if n has
not been factored in Steps 3 and 4 of the algorithm and if n is composite,
then it will be factored in Step 6.

Sincen =c4F24c; F+1=qaya,F? +(ay+a2)F +1, there is some integer
t > 0 with

Qi1as =c4—1, ay+ay=c +tF (31)

From the failure of Step 4 to find a;, a, we have ¢ > 2. Thus

2F
azg“l;“”gclg >F (3.2)

and
n

n
a4 < — < —.
! ﬁ'.ng_Fa

(3.3)
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We have from (3.1) that

_ ap+ay _ aas+1 ¢4 n
LS =% F<7<mm (3.4)

Also (3.1) gives us the equation

a)cy +ﬂ1tF:ﬂf+‘C4 —t. (35)
From the elementary theory of continued fractions we have
¢y u 1 -\/T_I
—_——_——ll— < 2 .
Fooul= v = yF? (2:5)
Using (3.5) we have
a1u+a1iv—c—§i = av (%—CF—I)—i-(alcl+a1tF)%—cq?v
= alv(-—-—;‘_‘—l)—{—(a%-{—c‘;—i)%_g

u [} 2 i
= av (;—'}‘F)—F(al—t)F.
Thus from (3.3), (3.4), (3.6) and the fact that v < F2/,/n we have that

cav Vv n\2uv n/n a®F?  9p3
sty — 7| <awim + (g5) 7 < PR YRS
(3.7)

Let d = aju+a;tv. Note that the general solution to yu-zv = d is given
by
¥ = dvp + vs, z = dug — us,
where s runs over the integers. Let s be the unique integer with
ay = dvg+vs, apt = dug — us.
From (3.5) we have that s satisfies

dug — us

d # —-—_—=
(dvo +vs)" + 4 dug + vs

(dvg + ws)ey + (dug — us)F.

Thus from (3.7) we see that s is an integral root for one of the polynomials
fa(z) presented in Step 6. This concludes the proof of correctness of Algo-
rithm 3.2.

Since the computation of the convergents u/v and u'/v’ in Step 5 of the
algorithm can be made part of the extended Euclidean algorithm for ¢ and £,
it is clear that the runtime of Algorithm 3.2 is dominated by the calculations
of the possible integer roots of the four cubic polynomials in Step 6. Thus
Algorithm 3.2 runs in O(logn) arithmetic operations with integers at most
n if a binary search is used to find the roots as discussed in connection with
the base B factorization method above.
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We now use Algorithm 3.2 in the framework of Algorithm 3.1.

Algorithm 3.3, We are input an integer n > 5 and the complete prime
factorization of n — 1. This deterministic algorithm decides if n is prime or
compositie.

Let F(1) = 1. Fora =2,3,...,[(logn)!™7] do the following:

Steps 1-4 These are exactly the same as in Algorithm 3.1 ezcept that when
F(a) = F(a —1) we go to Step 6.

Step 5 If F(a) > n®1°, find the complete prime factorization of n with
Algorithm 3.2 and stop.

Step 6  Ifa < [(logn)*®7], gei the next a. Otherwise declare n composite
and stop.

We have already proved in connection with Algorithm 3.1 that if we do
Steps 1-4 for j = 2,3,...,a, and we have not stopped, then every prime
factor of n is 1 mod #(a). Thus Algorithm 3.2 is appropriate to use in Step
5. Suppose a = [(logn)'%"] and we are in Step 6. If n is prime and G,(a) is
as before, then, as with the proof of correctness of Algorithm 3.1, we have

F(a) = #Gn(a) > ¥(n, a) = ¥(n, (log n)!%7) > p3/10

by Theorem 2.1. Thus Step 6 is correct. We conclude that Algorithm 3.3 is
correct.’
We have the following theorem.

Theorem 3.2. Given an integern > 5 and the complete prime factorization
of n—1, Algorithm 3.3 correctly decides if n is prime or composite. Moreover,
it uses at most O((logn) ™7/ loglog n) arithmetic operations with integers at
most n.

4. When n — 1 is partially factored

In this section we describe a deterministic polynomial time algorithm that
decides if n is prime or composite when n and a divisor F of n — 1 are input
with F > pl/d+e,

Algorithm 4.1. We are inpui an integer n and a number ¢ with n > ed,
0<e<3/4 and (logn)5/9) < n. We are also input integers F, R withn —
1=FR and F > n''**¢ and we are input the complete prime factorization
of F'. This deterministic algorithm decides if n is prime or composite.

Let F(1)=1. Fora=2,3,...,[(logn)3/(3)] do the following:

Step 1 If a is composite, let F(a) = F(a — 1) and go to Step 7. If
afiF(a=1) = | mod n, let F(a) = F(a—1) and go to Step 7. Verify
that a®~! =1 mod n. If not, declare n composiie and stop.

[
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Step 2 Using the prime factorization of F, compute E(a), the order of
a® mod n in (Z/nZ)*. Thus E(a) is the least positive divisor of F
with a8 = 1 mod n.

Step 3  For each prime faclor q of E(a), verify that (a®E(®)/q _ 1,n)=1.
If not, declare n composite and stop.

Step 4 Let F(a) =lem{F(a—1), E(a)}. Compute F(a).

Step 5 If F(a) > n¥'0 get the complete prime factorization of n by Al-
gorithm 3.2. In particular, if n is prime, declare it so and stop; if
n is composite, declare it so and stop.

Step 6 If F(a) > nY**/5 gitempt to factor n by the base F(a) factor-
ization method. If this succeeds in splitting n, then declare n com-
posite and stop. Lel c1,ca,cq be the base F(a) “digits” of n so that
n = C3F(ﬂ)3+CQF(ﬂ)2+C1F((1)+ 1. Let cqg = c3F(a) +ca. If either
caz? +erz+1 or (g — Dz*+(c1+ F(a))x+1 are reducible in Zlz],
this may lead to nontrivial factorization of n by substituting F(a)
for x. If so, declare n composite and stop,

Step 7 Ifa <|(logn)®* ()] get the nert a. Ifa = [(logn)5/(9)] and F(a) <
nl/4+elS declare n composite and stop. If a = [(logn)3/(49)] qnd
F(a) > nt*t</5 declare n prime and stop.

Proof (of correctness). Since (logn)* (1) < n Step 1 is correct. Step 3 is
clearly correct. We recall the definition of G.-(a) from the Introduction. If we
have passed Step 3 of the algorithm for 2,3,...,a, then F(a)|#G,(a) and
#0r(a)|RF (a) for each prime factor r of n. In particular » = 1 mod F(a).
Thus it is appropriate to use Algorithm 3.2 in Step 5.

It is clear that Step 6 is correct since it only declares n composite when
it succeeds in splitting n. Suppose we are in Step 7 and a = [(logn)5/(49)], If
n is prime, then as in the analysis of Algorithm 3.1, we have

RF(a) > #Gn(a) > ¥(n,a) = (n, (logn)5/(49)) > pl-te/s

by Theorem 2.1. Since R < n%4~¢, we thus have F(a) > nl/4+e/5 e con-
clude that if F(a) < n'/*+</5 then Step 7 is correct in declaring n compos-
ite. Suppose finally we are in Step 7, a = [(logn)3/(49)], F(a) > nl/4+e/s
and n is composite. Since Step 6 was not able to split n, we have as
with the analysis of Algorithm 3.2 that n is the product of two primes.
(It is here where we use the hypothesis n > 2 since this assures that
F(a)* > alt1e/5 5 n((log n)s/(2))4e/5 - nlogn > 3n.) Say n = ryry where
r1 < 7z are primes and r; = by F(a)+1, ry = b2 F'(a)+1, where by, by are pos-
itive integers. Again from the failure of Step 6 to factor n and the argument
for Algorithm 3.2 (see (3.5) and (3.3)) we have

by + b, ! n

7 > F(a), by < sz(a)g < F(a)3'

by >

Thus
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#grz (a)

1A

(RF(a),ra~- 1)< (n—1,ra—1)
(blbgF(a)2 -+ (bl + bg)F(CI), bgF(CL))
(6162 F(a) + by + bs ba)F(a) = (b1, ba) F(a)

M

tl

b
< b F(a) = i-bgF(a) < .I%a)‘lrz < n=4el5p,,

On the other hand, as before, we have

#0r2(a) 2 ¥(r2, a) = %(ra, (logn)> D) > 4(ra, (log ry)5/(4)) > pl=4e/5

by Theorem 2.1. These last two displays are incompatible. Thus Step 7 is
correct in declaring n prime when a = [(logn)3/(*9)] and F(a) > nl/4+¢/5,
This concludes the proof of correctness for Algorithm 4.1.

The runtime analysis for Algorithm 4.1 is argued analogously to that of
Algorithm 3.1. We have the following theorem.

Theorem 4.1. On input of an inleger n > e, a number € in the range
0 < €< 3/4 with (logn)®(49) < n, integers F, R withn—1= FR and F>
n/4+¢ and the complete prime factorization of F, Algorithm 4.1 correctly
decides if n is prime or composite. The runtime is O((log n)t5/(19) f log log n)
arithmelic operations with integers at most n.

5. Primes recognizable in deterministic polynomial time

The algorithms in the preceding two sections to determine whether n is prime
or not all hypothesized substantial information about the factorization of n~1
(or knowledge about the prime factors of n). In this section we present an
algorithm that can be applied to any number n. For most numbers, this
algorithm will not be very efficient ~ in fact it will take exponential time.
However there are also many primes for which the algorithm will work in
polynomial time — more than z!=¢ of them up to z. Before we give this
result, we first state the algorithm.

Algorithm 5.1. Suppose we are input ¢ positive integer n > 5 x 104, This
deterministic algorithm decides if n is prime or composite.

Step 1  Continue using trial division on n— 1 until a fully factored divisor
F ofn—11is found with F > nl/3,
Step 2 Use Algorithm 4.1 with inpuis n, € = 1/12, F, R=(n—1)/F.

It is clear that Algorithm 5.1 is correct. It is also clear that for some num-
bers it is a terrible algorithm. For example, if n is even, one might well spend
exponential time discovering that n is compaosite. Nevertheless, Algorithm 5.1
is able to prove prime quite a few numbers in polynomial time.
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Theorem 5.1. For each ¢ > 0 there are numbers k and zy such that if
T 2> zq, then the number of primes p < z which Algorithm 5.1 Proves prime
in at most (log p)* arithmetic steps with inlegers al most p ezceeds zl—¢.

The proof of this theorem depends strongly on the distribution of primes
p for which p— 1 has a large smooth divisor. We establish such a result now.

Theorem 5.2. There are effectively computable positive constants c1, Ty
with the following property. Suppose x > zy, logz < y < z/20 g4 N(z,y)is
the number of primes p < x such that p— 1 has a y-smooth divisor exceeding
23, Then N(z,y) > r/(cy log z)1+/3, where u = logz/logy.

Proof. Let a» be the number ¢, in Theorem 2.1 of [2], where ¢ = 1/11 and
0 =1/60.If z > za, let d1,ds,...,d; be the possible “exceptional moduli”
corresponding to z in this theorem, so that they all exceed logz and & =
k(z) = O(1). Let ¢; denote the greatest prime factor of d; for 7 = 1,.. . k.
Let,

P ={g prime :y/2 <q <y}\{q,...,q}.

Thus if an integer d is composed solely of primes from P, then no d; divides
d. From Mertens's theorem we have that if z is sufficiently large, then

1 1 1 1
gy, — &Yl (5.1)
2logy 4 quq—l logy

Let v = [(log(mlla))/log(yﬂ)] and let D(P,v) denote the set of integers
d composed of v not necessarily distinct primes from P. If d € D(P,v), then
clearly d > z1/3 and d is y-smooth. Further, if z is sufficiently large, then

d < yl+(log(="""))/ log(y/2) _ y(z1/3)leay/ og(v/2) < z2/5

Thus if z is sufficiently large and d € D(P,v), we have from Theorem 2.1 in
(2] that _
9 z
m@d )= Y 1> =y (5.2)
N 10(d) logz

where p runs over primes and ¢ denotes Euler’s function.

For n a positive integer, let (n, P) denote the largest divisor of n composed
of only primes from P. For p a prime, let d(p, v) denote the number of divisors
of p—1 which come from D(P, v). Note that d(p,v) = 1 if and only if there
is some d € D(P, v) with djp— 1 and ((p — 1)/d,P) = 1. Thus



Primes in Deterministic Polynomial Time 17

Ney 2 3123 1= Y

pSz P dED(P,v) »<=zdlp—1

d(p,u)>0 {rv)=1 ({2=1)/¢,P)=1
It e

dED(P,V) ps=. i T (5.3)
> X Li-FT 3 1

dED(Pv) p<= AR EP aar,
= Y wmdl = 3 > redsl)

dED('P,U) deD(P, v)gEP

From (5.2) we have
9 T 1
¥, seddis ..t Y, — (5.4)
dgD(P,v) 10 IOE::L‘ deD(P,v) ‘P(d)
if z is sufficiently large. From the Brun-Titchmarsh inequality we have

Y Yrwdn) <« Y 2 @ o T@)

deD(P,u)qeP deD(P v)qEP

log ( _)Z_-l-_l

dED(P,u) w(d) e 7

T 1
logzlogy dE%, P

where we use (5.1) for the last inequality. Putting this estimate and (5.4) into
(5.3) we have for all sufficiently large z that

T 1
N(-"%.U)Zg'logx B e (5.5)

deD(P,v)

We now estimate this last sum. We have from (5.1) that

1 11 IN®
@ > 2 a5
deD(P,v} i deD(P,v) qEP q

= exp(—vlogv —vloglogy -+ O(v))

1
= exp(—gu logu — él—uloglogy+ O(u))

1
= exp(—gu loglogz + O(u)).

Putting this in (5.5) we have the theorem.
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Proof (of Theorem 5.1). First note that from Theorem 0.2,if k£ > 1 is arbi-
trary, then the number of primes p < 2 for which p—1has a (log z)*-smooth
divisor " with F' > z'/3 is at least 21=1/(3)+2(1) a5 & _, 5. For such primes
p, Step 1 of Algorithm 5.1 takes at most O((logz)*) arithmetic steps with
integers at most p. The number of arithmetic steps with integers at most p
to complete Step 2 of Algorithm 5.1 is O((log p)'¢/ log log p).

It suffices to establish the theorem for values of ¢ satisfying 0 < ¢ < 1/48.
In this case let & > K' > 1/(3¢) be arbitrary. If p > '3 and ¢ is any
constant, then (logp)® > e(logz)¥" for all large z. Thus if = is large, pis a
prime with p < z and p— 1 has a (log :z:)K'-smooth divisor F > z'/3 then
Algorithm 5.1 takes at most (log p)¥ steps with integers at most p to prove
p prime. By the above, the number of such primes is at least z!—1/(3K")+o(1)
for  — 00. As 1~ 1/(3K’) > 1 —¢, the theorem follows.

6. More primes recognizable in deterministic
polynomial time

In this section we describe a deterministic algorithm that recognizes many
more primes in polynomial time than our previous methods. Covered is any
prime 7 with a divisor F of n~1 exceeding n¢ and such that all of the prime
factors of F are at most (logn)*. The running time is about O((logn)?/c +
(logn)¥). We also show that for most such primes, the 2/¢ can be reduced
to 1/e. A corollary of this algorithm is an improved version of Theorem 5.1,
There if we were willing to spend time (logn)* on trying to prove n prime,
we would succeed for about z'~(**)™" primes up to z. With the methods of
this section we will succeed for about «!=*~* primes up to z.

If n is prime and the order of b in (Z/nZ)" is E, then for any e with
af =1 mod n, there is some exponent 7 & {1,2,.--, E} with @ = & mod n.
Thus if it is shown that no such j exists, then it is proved that n is composite.
How difficult is it to do this test? If we have already prepared the complete set
{! modn:j=1, 2,-++, E}, then testing if there is some j with @ = & mod n
can be accomplished by a binary search in O(log F) steps. Thus we have the
initial step of preparing the set of powers of b, which takes E steps, and then
each subsequent test takes O(log E) steps.

In the case when E = ¢# with ¢ prime and B > 1, we can do a pre-
computation taking ¢ steps, with each subsequent test taking O(F*logq)
steps. Here is how. Suppose the order of b mod n in (Z/nZ)* is ¢°. Assuming
that we have already computed 67" mod n (if not, this takes an additional
O(Blog q) steps for the precomputation), we can compute the set

1

B:{bj"ﬁ_ modn:j=1,--- ¢}

in ¢ steps. Now suppose we are presented with some integer a with the order
of ¢ mod n in (Z/nZ)" equal to ¢%, with 0 < a £ f, and we wish to see if
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there is some integer j with a = & modn. If & = 0 or 1, then if j exists it
is a multiple of ¢°~!, and so we test for membership of e mod n in B by a
binary search. As an induction hypothesis suppose 1 < o < 4 and we have
already described how to find j for any o’ for which the order of a’ mod n
in (Z/nZ)" properly divides ¢®. Note that the order of a7 mod n is ¢!, s0
we may use our inductively described algorithm to search for some integer
Jo with @ = #° mod n. Suppose we have found Jo- Then it must be that
g?=(@=1) divides jp and, in particular, g|jo. Then ab="?"" mod n has order
dividing g. But we have already described how in this case we may search for
an integer j; with ab=/9¢"" = b/ mod n. If these searches are successful, we
may take j = ji + jog~!. Totaling up the time spent, we have used & binary
searches in the set 55, we have done & —1 modular multiplications, and we have
done a — 1 modular powerings with exponents at most ¢ (in fact, at most
g°~1). The latter computation dominates, taking O(aflogg) = O(5° logq)
arithmetic steps with integers the size of n.

The computation of B, which is the precomputation step of this method,
we call “Set up (b,¢?)”. The subsequent search for an exponent j we call
“Test (b,q”;a)”. With these subroutines we are now ready to describe the
main algorithm of this section.

Algorithm 6.1, We are given positive integers n, F', R and a positive num-
ber € such that n > 4, 2 < (logn)¥¢ < n,n—1= FR, and F > nf. This
algorithm decides if n is prime or composite.

Let F(1)=1. Fora=2,3,---,[(logn)*| do the following.

Step 1. Check if n is even or if n is a nontrivial power. If so, declare n
composite and stop.

Step 2. Verify that a" ' = 1 mod n holds. If not, declare n composite and
stop.

Step 3. Compute E(a), the order of a® mod n in (Z/nZ)*. Let F(a) =
lem{E(a), F(a — 1)}. For each prime 7| F(a)/F(a— 1), verify that
(@B 1 ~ 1, n) =1 holds, declaring n composite and stopping if
not.

Step 4. For each prime q and positive integers o, B with ¢*||(E(a), F(a—1))
and ¢°||F(a — 1) do Test (b, gP; afE@™Y | If this test proves n
composile, then declare this and stop.

Step 5. For each prime q and positive integer 8 with q|F(a)/F(a—1) and
q°||F(a), let by = a®EE)™" mod n and do Set up (be, g°).

Step 6. IfF(a)'°62 > ploglogn Jecfgre prime and stop. Ifa < [(log n)¥e],
get the next a. If a = [(log n)¥€], declare n composite and stop.

Proof (of correctness). Suppose we have made it to Step 6 and a = [(log n)*¢].

Suppose 7 is prime. From Theorem 2.1 we have #Gn(a) > n'=42 Every
b € Gn(a) satisfies b("=DF(@/F = | mod n, s0 #Gn(a) < (n — 1)F(a)/F <
n'~°F(a). Thus F(a) > n/?, so that F(a)°8% > nl°€1o8" Fence it is correct
to declare n composite when this inequality fails.
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Suppose n is composite and suppose we have made it to Step 6 for a
particular a. From Step 1 we know that n is divisible by at least two distinct
odd primes. From Step 3 we know that each prime factor of n is 1 mod F(a).
Let 7 = {bmodn : $"~! = 1 mod n}. By the Chinese remainder theorem,
this subgroup of (Z/nZ)" is isomorphic to the direct product of the groups
Fp = {bmod p* : b"~' = 1 mod p®} where p“ runs over the prime powers
with p®||n. Since p is an odd prime, (Z/p®Z)" is cyclic so that #Fp = (n—
L,¢(p®)) = (n ~ 1,p ~ 1). Thus for each prime power ¢f with 7°|| F(a) we
have q'5|#}'p. Since n has at least two distinct prime factors D, the number
of bmod n € F with 9° = 1 mod n is at least ¢*?. From Step 2, Ga(a) is a
subgroup of . And from Step 4 we have that Gn(a) has exactly ¢° members
bmod n with 5" = 1 mod n. Thus the index of Gn(a) in F is at least the
product of the prime powers ¢” with 7?||F(a), which is F(a). We have from
Theorem 2.1 that

1
l-loglogn/loga gt - -
ntTo8 <#gn(a)§F(a) | [(n Lp—1)<

pln

Fla)’

so that F(a) < nl°Elegn/loga Hence it is correct to declare prime when
F(a)°82 > nloglegn This concludes the proof of correctness.

Analysis of runiime. For each integer & < logn/log2 we can check if n is a k-
th power by computing [n/*] with a binary search and seeing if [n/k)F = n.
When £ > 3, the binary search may begin with [nl/(k‘l)l. Thus the number
of arithmetic operators to see if n is a k-th power is O(l—"f—- log n), so the total
number of arithmetic operations for Step 1 is O(log n(loglogn)?).

The time for Step 2 is at most O((logn)1+2/¢),

For each a, the time for Step 3 is O(log nloglogn). Thus the total time
for Step 3 is O((logn)!*+*/ ¢loglogn).

As we have seen, each implementation of Test (by,9”;a) in Step 4 takes
time O(f* log q). Thus the total time for Step 4 is O((log n)**+3/¢).

Each time we do Set up (by, ¢?) in Step 5, it takes time O(q + Blogq).
Thus if {2 is the total number of prime factors of F', counted with multiplicity,
and if each prime factor q of F satisfies g < B, then the total time for Step
5is O(B2 + 2% logn) = O(Blogn + (logn)3).

Thus the total number of arithmetic steps with integers at most n is
O((logn)*+*¢ 1+ Blogn).

We have the following theorem.

Theorem 6.1. On input of positive integers n, F', R and a positive num-
ber e withn > 4, 2 < (logn)¥* < n, n~1 = FR and F > n¢, Algo-
rithm 6.1 correctly decides if n is prime or composite. The running lime is
O((logn)**%/¢ + Blogn) arithmetic steps with integers at most n, where B
is the largest prime factor of F.
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We remark that the term (log n)2+2/¢ in the running time may be replaced
with e(logn)*+*/¢/loglogn if we perform Steps 2 to 4 only for prime values
of a.

The time bound in Theorem 6.1 is only an upper bound. With the aid
of the next result we will be able to show that most primes for which Algo-
rithm 6.1 is applicable are proved prime in a considerably shorter time.

Theorem 6.2, For 2 < y < z let R(z,y) denote the number of primes
pin the range y < p < x such that (Z/pZ)" is not gencrated by the set
{amodp:1<a<y); that is, such that Go([W]) # (Z/pZ)*. Then R(z,y) <
R 2loglog(=?)/ logy

Proof. Let Z denote the set of y-smooth numbers up to z2. Suppose p is a
prime counted by R(z, y). Then #Gp([y]) divides (p—1)/q for some prime g.
Thus the set Z occupies at most (p—1)/q residue classes mod D, so there are
at least p/2 residue classes mod p free of elements of Z. Thus by the large
sieve (see Theorem 3, p. 159 in [8]) we have

42

F e
ety

—

Thus from Theorem 2.1 we have

822 8172 1 2
< e A L p2loglog(z?)/logy ;
R(z,y) < 7 = 9 < 8z ; (6.1)

which completes the proof of the theorem.

Because of the use of Theorem 2.1 in the proof, Theorem 6.2 is only fairly
good when y is a power of logz. If we let v = 2log z/logy and use a stronger
estimate for 1(z?,y) (see [7]) we may obtain the following result which is
valid in the same range as is Theorem 6.2:

R(z,y) < exp(v(logv + loglogv — 1 + (loglogv — 1)/ log v)
+ O(v(loglog v/ log v)?)).

This estimate is implicit in the dissertation of Pappalardi [13, Section 3.3].
The estimate has an inexplicit constant, though an actual numerical value
could be provided in principle. We remark that Vinogradov, Linnik and Fri-
dlender have discussed problems related to the estimation of R(z,y).

Theorem 6.3. Lelz, € > 0 be arbitrary and let E(z,€) denote the number
of primes p with (logp)¥c < p < for which there is some integer F > o
with Flp— 1 and such that if Algorithm 6.1 is run on n = p, F, €, then
F(a)'8® < ploglogr for q — [(log p)*/€]. Then B(z, €) < 9z3¢ 4 32,



22 Sergei Konyagin and Carl Pomerance

Proof. Suppose Algorithm 6.1 is run on n = p, F, ¢ where Flp—1and F > p°.
If F(a) = F with a = [(logp)'/¢], then F(a)\°6¢ > ploglogr Thys we may
assume that if p is counted by E(z,€), then F(a) < F with a = [(log p)Y/<].
Thus (Z/pZ)* is not generated by {j modp:1<j < e}. We conclude from
Theorem 6.2 that

E(z, E)— E(ﬂ"l/?l E) R(z, [(logmllg)llc])
Rz, (logz'/?)!/5)

< 8gleloglog(z?)/ log log(z'/?) ‘

IA A

Note that if 2 > €%, then loglog(z?)/loglog(z'/?) < 3/2. Thus if k is
that positive integer with 227" < €3? < 227" then
k-1
E(r,e) = Z(E(mz_‘, &) — B(z2"7, €)) + E(z*", €)

i=0

k-1 _
< Z 8(z" )% + E(e®,¢)
i=0

< gmae +f332,
which concludes the proof of the theorem.

We remark that Theorem 6.2 can also be used in the context of Algo-
rithm 4.1 to give a small improvement in that algorithm for most primes.
We now give an algorithm similar to Algorithm 5.1.

Algorithm 6.2. Suppose we are input a positive number € and an integer
n > 4 with 2 < (logn)*¢ < n. This algorithm attempis to decide if n is prime
or composiie.

Step 1. Using trial division, find the largest divisor F of n—1 composed of
primes up to (logn)'*Y/<. If F < nf, then stop for the algorithm
has failed.

Step 2. Use Algorithm 6.1 on n, F, ¢, lerminating with failure if the pa-
rameter a exceeds [(logn)'/<].

From the proof of Theorem 5.2, for each number ¢ with 0 <e<],
there is a number x3(¢), such that if z > Z3(e), the number N of primes
p < z for which p— 1 has a (log p)"*'/“-smooth divisor exceeding p® satisfies
N > 2z1~¢. For such primes p we make it past Step 1 of Algorithm 6.2.
From Theorem 6.3 we have that if 0 < ¢ < 1/4, then at least half of these
primes are proved prime in Step 2 of Algorithm 6.2, though z4(¢) may have
to be adjusted. We thus have the following result.

Theorem 6.4. Let € be any number with 0 < ¢ < 1/4. There is a num-
ber za(e) such that if ¢ > za(€) then the number of primes p < = which
Algorithm 6.2 proves prime ezceeds z1=<.
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We remark that the running time of Algorithm 6.2 is O((log n)**1/¢)

arithmetic steps with integers at most n. Thus Theorem:fi.ti improves on
Theorem 5.1 since there if one wants to prove prim:e z!'=¢ primes up to z,
the bound for the running time is about (logn)L/G<),
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