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Introduction .

In [16], 0 . Ore introduced the arithmetic functions A(n), G(n), H(n) which

are respectively the arithmetic mean, the geometric mean, and the harmonic mean

of the natural divisors of n . Thus one easily has

A(n) = a(n)Jd(n), G(n) = T , H(n) - nd(n)/o(n),

so that all three functions are seen to be multiplicative . We note that G(n)

is an integer if and only if n is a square, so that the set of n with G(n)

integral has density 0 . In [10j, Kanold showed that the set of n with H(n)

integral also has density 0. The corresponding statement for A(n) is certainly

not true, for, as Ore pointed out (in [16]), if n is odd and square-free, then

A(n) is integral . In fact, the set of n for which A(n) is integral has density

1 (cf . [18]) . In our Theorem 2 .1 we study the distribution cf these exceptional

n for which A(n) is not integral .

We show in Theorem 3 .1 that the set of n for which d(n) 2 :a (n) has asympto-

tic density exactly 112 .

In our Theorem 4 .1 we show that the mean, value of A(n) for n < x is

asymptotic to c x11lT x where c is an explicit constant . Moreover, in

Theorem 5.1, we show that the number of n with A(n) < x is asymptotic to a

constant times x log x . This last result is somewhat more difficult to establish

than, say, an asymptotic formula for the number of n with o(n) < x

(cf. Bateman [1]) .

In [18], Pomerance asked what can be said about the distribution of the

distinct Integral values of A(n) . In Theorem 6 .1, we show that they have



rsa

density 0 and that, in fact, the non-integral values may be thrown in as well .

At the end of the paper we briefly consider some further problems .

This paper is the long-term result of conversations which the first and

fourth authors had with Herbert Wilf in the spring of 1962 . We also take this

opportunity to acknowledge several interesting conversations about the contents

of this paper with Harold Diamond and Gabor Halasz . Finally, we mention that

the research of the last two authors was supported by grants from the National

Science Foundation .

2 . The distribution of the n for which A(n) is not integral .

THEOREM 2 .1 . Let N(x) denote the number of n < x for which A(n) = a(n)/d(n)

is not an integer . Then

N(x) = x •exp{-(1+o(l)) •2VTo

	

o og x } .

PROOF . We 'First show N(x) > x •expi-(1+0(1)) •2

	

dlog log x } .

Let p o = p o(x) be the closest prime to J(log log x)/log 2 . (If there is a tie,

choose either prime) . Then p o = (1+o(1))J(log log x)/log 2 . We-shall consider

p o -i
integers n < x such that 2

	

;1n, p o t a(n) . For such n, d(n)pa(n) . Let

M(y) _ #1m < y:2,(m, p o,(a(m)) .

The following lemma will enable us to estimate N(x) from below .

LEMMA 2 .1 . These is an absolute con!~tant c > 0 such that for x l/2 < y < x,

1/(po-1)
M(Y) . c Y/009 Y)

Assuming Lemma 2 .1, we have at once

p 1

	

p -1

	

1/(P -1)
N(x) > M(x/2 o- ) > r_ x/ ;2 o •((log x)

	

°

x •exp{-(l+0(1)) •2

	

2 r7og log x
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To prove Lemma 2 .1 (and several other results in this paper) we shall use

the following corollary of the Siegel-Walfisz theorem .

THEOREM A . (Norton [15], Pomerance [17]) . Let 0 < t < k be integers with

(t,k) - 1 . Then for all x > 3

E

	

1/p =
-S

log log x
p<x

p = t (mod k)

Then using Theorem A, we have, uniformly for z > 3,

tt,en

(2 .1)

	

C Iy/(1og y)

	

°

	

< yW(Z 1 ) < YW(z2) < c2y/(1og y)

	

°

where t* = 1/t if t is prime and 0 otherwise . The constant implied by the

0 -notation is absolute .

PROOF OF LEMMA 2 .1 . Let

W(z) _ (1/2 .)

	

n

	

(1 - 1/q) .
q=-1 (mod po )

q<z

W(z) =(1/2) . exp { -Z'

	

Y

	

1/(kq k )}
k>1

=(1/2) • exp(-~' Z 1/(kg k )1 . exp{-Z' 1/q}
k>2

+ t * + 0( 1

	

log k)
f CRT

= exp (0(1)) . exp(-(Iog log z)/(p
0-1 M 1

where L7' denotes the sum over primes q < z, q = -1 (mod p o ) . Thus if

zl = yexp(-(log log y) 1/3 )

	

z2 _ yexp(-(log log i')1/2) ,,



where 0 < c l 4- c 2 are absolute constants . For i = 1,2 let P i = 2

	

n

	

q -
q < z i

q _ -1 (mod p 0 )

M(Y) ? #{m

	

y :(m,PI) = 1, P oXG(m) },

M(Y) >- 5 1 -5 2-S 3-S 4-5 5-5V

# {n < y:(n,P,) = 1} ,

•

	

# {n < y:(n .P,) - 1, jq = °1(p o ), zl < q < Y/zlo, qjn}

# {n < y:(n,P 2 ) = 1, jq

	

-I (P O ), Y/Z 10 < q < Y/z2 0 , qin}

•

	

# {n < y : cJ q > y/z20 , qjn}
•

	

# _ {n <
y:(n,Pi)

= i,
qa

< y/z 10 , a >
1,

q a+1 _ 1(p o ), ga ln}

•

	

# {n < y :
3

q a > y/Z1 , a > 1, g a in} .

By Theorem 2.5 in [7], we have
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c 3YW(zl) <
S1 < c4Yw(z,),

where 0 < c 3 < c 4 are absolute constants . Thus by (2 .1) the proof, of Lemma 2 .1

will be complete if we show that S i = o(S l ) for 2 < i < 6 . We have the following

estimates (where we use Theorem A in considering S 2 and upper bound sieve results

in considering S 2 , S 3 , and S V )

4

	

1
S2

- q - -•1 (p o )

	

m < y/q

z l < q < y/z10

	

(m,P 1 ) = 1

« yw(zl)
q -"

4

- ](PC)
1/q .

z i < q < Y
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log ploq
yW(z l ) .{ Pó • log log

	 it + 0(	
po

	 ) }

« yw(zl)/(log log
A1/6 = o(S l ) .

53
~ q = ~l(po )

Y/z 10 < q < y/z20

« yW(z2 )

	

1/q

Y/z~ 0 c q < Y

« yW(z log
z l

2 ) 01

	

y - o(S1) .

S 4 < y

	

1/G « Y
10

	

o9YY

<

	

1
55

	

qa < y/z10

	

m < y/q a
a >

1, q a+1 = l(po)

	

(m,Pl ) = 1

« yW(zl)

	

E

	

l/, a < yW(zl)

	

Y 1/qa « yW(z l )P-1/4 = o(s l )s
a>1

	

a>1

qa+l = 1(p o )

	

qa > P112
U

S 6 < y

	

l

	

1/qa « Y/>y/
qa > y/z,0

a>1

log z 2 -
	 Y .	 = o(Sl). •

exp(dlog log y}
y/z2

<
q

< y

« y2/3 = o(s l ) .

This completes the proof of Lemma 2 .1 and thus of our estimate of N(x) from below .

We now show that N(x) < x •exp{-(l+0(1))2/log 2 dlog log xl .

	

For any

integer n, we may write n = sm where 4s is square-full, m is odd and square-free,

and (s,m) - 1 . Suppose d(n)jo(n) . Now d(n) = d(s)d(m), o(n) = o(s)6(m), and



d(m)la(m) . Thus d(s)ja(n)/d(m) . We now divide the n < x for which d(n)ja(n)

into 3 classes :

(1)

(2)

(3)

Let: N,(x), N2(x), N 3 (x) denote, respectively, the number of n in classes 1,2,3 .

Let S(y) denote the number of s < y for which 4s is square-full . Then

S(y) « yl/2 . Thus

N,(x) << x •exp(-2Jlog 2 rlog log x) .

To consider the n in the other two classes, we shall use the following lemma .

LEMMA 2 .2 . Let u,v be integers with (u,v) = 1, v > 3 . Let N(v,u,k,y) denote

the number ofintegers m < y which are nott divisible

	

k or more rimes

q = u (mod v) . There are absolute constants c and c' such that

rovided 1 <

s > exp(4dlog 2 Ylog log x ),

S < log log x,

log log x < s < exp(4

	

Jlog log x) .

PROOF . This lemma follows by applying a result of Halasz [6] in conjunction

with Theorem A .

Now say n = sm is in class 2 . Since d(s)Xa(n)/d(m), it follows that m is

not divisible by any prime q --1 (mod 2d(s)) . From Theorem 317 in [9] we have

(2 .2)

	

d(t) < 2 (1+0(1))(109 t)/log log t

So, since s < log log x, we have d(s) < iő -log log x for large x .

Applying Lemma 2.2, we have

202

lo v i

	

1/0(v)
N(v,u,k,Y) < c

ki-1

~0 y(

l---o~~g-~--} !{i . (l09 Y)

	

1,

< - 1 • log log y - c' and y > 3 .

N 2 (x) <

	

I

	

N(2d(s), -1,1,x) <
s<loglogx

	

s<
< c x(log log x)/exp(5/log log x) ,

~09 109 x
cx/(log x)l/d(2d(s))
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so that class 2 is under control .

Thus to complete the proof of Theorem 2.1, it remains only to consider the

n in class 3 . Suppose n = sm is in class 3 . Since d(s)to(n)/d(m), it follows

that there is a prime power .p k with p k Id(s) but p kjO (n)/d(m) . Thus it is not

the case that there are k primes in the class -1 (mod 2p) which divide m . Thus

(2 .3)

	

N3 (x) <
s p ld(s)

N(2p, -l,k,x/s)

where s runs through the integers in [log log x, exp(4JIog 2 Vlog log x)]

for which 4s is square-full . We shall require the following lemma .

LEMMA2 .3 . Suppose t is an integer and p k jd(t), where p is a rime. Then for

all sufficiently large t we have

p < 2 log t, k < (3/2)(109 t)/log log t .

PROOF . Since p1d(t), there is a prime power gb11t with pfb+l .

p< b+l< log t + 1< 2 log t

for large t . From (2 .2) we have

p k < d(t) < 2 (1+0(1))(log t)/log log t

Then

so that

k < (1+0(1))(109 t)/log log t < (3/2)(109 t)/log log t

for large t . Thus Lemma 2 .3 is proved .

In view of (2 .3) and Lemma 2 .3, we have for all large x

N 3 (x) <

	

Y

	

N(2p,-l,k,x/s),

p <4 logTogx P ld(s)

k <,i6 log log x

where the inner sum is taken over those s such that 4s is square-full and

d(s) 5 0 (mod p k ) .

	

Let f(pk ) denote the inner sum . Thus



(2 .5)
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N 3 (x) < 48 log log x •max{f(pk ) : p < 8rlog log x, k < 6rlog log x1 .

Thus to prove Theorem 1, it is enough to show that each

(2.4)

	

f(p k) < x •exp{-(1+0(1)) 2

	

Vlog log x) .

By Lemmas 2 .2 and 2 .3, we have

f(P k ) < ---c -

	

1

	

1 k-1
{ 1 	log log x) 1 /i : .

(log x),5(2p)

	

p
k
Id(s)

s JO

	

á(2p)

The following two lesmes will enable us to prove (2 .4) and thus complete the

proof of the upper estimate of N(x) .

LEMMA 2 .4 . Suppose the prime power p k jd(t) where p-1 >
11-g

	

g log x and

t < exp (4415ő f Jlog7úgx) . Then for all sufficientl,L lar F_ x, we have

k < 60 .

PROOF, say gbjjt where pjbt-1 . If p2 jb+l, then

2	 1 log log x
t> q b > 2 P -1 > 2 14 4

	

> t

for all large x . Thus we may assume pjjb+1 . Hence there are k distinct primes

q,	q k with (g l . . .g k )p" l jt. Thus 2k( p-1) < t, so that k < 48/Jlog 2 < 60 .

Thus Lemma 2 .4 is proved .

LEMMA 2 .5. Let p be a prime and let S be a set of inte gers whose elements

satisfy pjd(s) and 4s is square-íu11 . Then there is an absolute constant c

such that

1/ s < c ,2-P

s e 5

PROOF . We may assume p is odd. If pjd(s), there is a prime power g b jjs with

pjb+i . Let t be the product of all such q b in s and write s = ut . Then

1/s «(l/u)Ql/t)
s é S



where u runs through all integers for which 4u is square-full and t runs

through all integers > 1 which are (p-1)-full . Thus

I

	

1/s «

	

1/t « ~(p-1)-1 « 2-P ,

s e S

where c is Riemann's function . Thus Lemma 2 .5 is proved .

We now show that (2 .4) holds if p-l >

	

clog log x . In this case,

Lemma 2 .4 implies we may assume k < 60 . Thus by (2 .5) and Lemma 2 .5,

f(p k ) < c-60

	

(xlloggxM(P )
59

- ky

	

1/s

p Id(s)

« x(loq log x) 59	
(log x)1/(P-1) .2p-1

Applying the inequality of the arithmetic and geometric means to the logarithm

of the last denominator, we have (2 .4) .

Now suppose p-1 <
I

Jlog log x . If p k Jd(s), since

s < exp(4ylog L Jlog log x), Lemma 2 .3 implies for all large x

k < 12 lo2 clog log x/log log log x < 10 ogóx/log log log x .

Thus by (2 .5) we have

f(pk) < ecx •( log log x) l0Vlog log x/log log log x(log x)-l/o(2p)

	

'i/s

J!d(s)

« x exp(-2Jlog log x),

so that a stronger result than (2 .4) holds in this case. Thus Theorem 2.1 is

completely proved .

REMARK . Although giving the approximate rate of growth of N(x), the estimate in

Theorem 2 .1 is not an asymptotic formula . We believe an asymptotic formula for

N(x) could be established along the general lines of our proof, but it appears

that certain strong conjectures about the distribution of prime numbers in short
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intervals (specifically, in a short interval centered at Jlog log x( og 2

would have to be assumed .

3. The n for which d(n) 2 ia(n) .

For every positive real number 8, let < n 8 >

	

11

	

PEa83 . Thus if 8 is

p o lio

a positive integer, < n 8 > = n 8 .

THEOREM 3 .1 . For an a in (0,2), the set of n for which < d(n)
2-e

> la(n) has

asymptotic densit • i, the set of n for which < d(n)
2+e

> la(n) has asymptotic

densi

	

0, and the set of n far_ which d(n) 2 1a(n) has asymptotic density 1/2 .

PROOF . Write d(n) = a(n)b(n), where a(n) is odd and b(n) is a power of 2. We

first note that the set of n for which < a(n) 8 > divides a(n) has asymptotic

density 1, no matter what positive value we choose for a . This can be seen as

follows . Lgt e be an arbitrary positive number . If we write n = sm where

(s,m) = 1, s is square-full, and m is square-free, then it is easy to see that

there is a positive integer K such that the set of n whose square-full part

s exceeds K has asymptotic density < e . (Indeed, this follows at once from the

fact that the sum of the reciprocals of the square-full numbers is convergent.)

Hence we may consider only those n whose square-full part s does not exceed K .

Since a(n)jd(s), we accordingly know that < a(n) 8 > < K 8 . If p l ,p2 . . . . are the

primes congruent to -1 modulo [K g ] :, let P be the set of positive integers n for

which there is no i such that pilln ; since I 1/p i diverges (according to Dirich-

let), the asymptotic density of the set P is

TT0-! + 1 )=0 .
i=1

	

pi pi

But if n has square-full part < K and if p i lln for some i, then

< a(n) 8 > j(p i +1)ja(n) . Thus the set of n for which < a(n) 8 > f a(n) is

contained in the union of P and the set of integers n with s(n) > K ; accordingly

the set of n for which < a(n) 8 > ja(n) has density less than c . Since a is

arbitrary, the set of n for which 4 a(n) 8 > ia(n) has asymptotic density 1 .



Since < a(n)B > and < b(n)S > are relatively prime and their product is

•

	

d(n) S >, we need only be concerned with the divisibility of a(n) by

•

	

b(n) B > for s - 2-e, 2, and 2+e .

Let v 2 (n) denote the exponent on 2 (possibly 0) in the prime factorization

of n . Let ga (n) = v2(a(n))-Bv2(d(n)) . Note that 9s is an additive function .

Moreover < b(n) s > Ia(n) if and only if g,(n) > -1 . We shall require the

following lemma .

LEMMA 3 .1 . If a ¢ 2, the normal value of gB(n) is (2-B) log log n ; that is, if

•

	

> 0, the set of n with (2-B-c)log log n < g $ (n) < (2-B+c)log log n has

asymptotic density 1 . For every real number u, the set of n with

g2 (n) < ud2 log log n has asymptotic density (2,r) -1 / 2 fu e

	

dv
def

G(u) .

We can see how the Theorem is a corollary of the Lemma . Indeed 9 2-e (n) > -1

for all n but for a set of asymptotic density 0,
g2+c

(n) < -1 for all n but for

a set of asymptotic density 0, and g 2 (n) > -1 for a set of n of asymptotic

density G(0) = 1/2 .

PROOF OF THE LEMMA . If g(n) is any real valued additive function, let

A(x) _

	

I

	

g(p)/p, and let B 2 (x) _

	

I g2 (p)/p. We shall use the following
p f x

	

p<x

generalization of the Erdös-Kac Theorem (see Kubilius [12] or Shapiro [21]) :

If B(x) - - as x W and if for every n > 0,

p < x

19M1 -- nB(x)

then for every real number u,

lim

	

X

	

1

	

= G(u) .
x + m

	

n < x

(g(n)-A(x))/B(x) < u

We apply this theorem to the functions g a (n) .

Using Theorem A, we have for any g,
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9 2 (p)/p = o(B 2(x)),



Moreover,

def
p I x

	

g 6 (P)/P =
iil p I

xi/P

	

-B P E x 1/P

p =_ 2 i -1 (mod 2 i+1 )

_

	

i •2 -i log log x + 0(~ i 2 .2 -i )-8 log log x + 0(1)
i=1

	

i=1

_ (2-8) log log x + 0(1) .

def
9 2 (P)/P =

x

	

i=1 p
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P

_ (6•- 48 a 62 ) log log x

E

	

(i-a) 2 /P
<x

= 2 i -1 (mod 2'+1 )

j (i_0)2 -2
- 'log log x + 0( £ i(i-6)2 .2-i)

i=1 1=1

Now for every n > 0, let i 8 = i 6 (n,x) = gB 6 (x) + 8 . We have (if we

large enough so that 6 < nB 6 (x))

P < x

	

gá(P)/P

	

p

	

x

	

(i-6) 2/P

6
IYO1 > nB 6 (x)

	

p

	

2'-1 (mod 2
i+1 )

T

	

(i-8) 2 .2
-c

log log x + 0( 1

	

i0-0)
2
-2 - ')

TI 2B2 (x)iog log x
6nB ~Yj

	

-

	

0 1) = o(B2 (x))

2

by our estimate for B 2 (x) .

Hence the generalization of the Erdös-Kac Theorem quoted above is applicable .

Thus the normal value of g6 (n) for 8 ¢ 2 is (2-6) log log n and, if c(n) tends

to infinity with n, we have for all n

-p(n)(log log n) 1 / 2 < 9 8 (n)-(2-a) log log n < P(n)(log log n)
1 / 2

except for a set of asymptotic density zero . Moreover, since A2 (x) = 0(1) and

assume x



since B2(x) is indistinguishable from B2(n) for n near x, we have our assertion

about g2(n) . This completes the proof of Lemma 3 .1 and accordingly Theorem 3 .1

is established .

4 . The mean value of A(n) .

Let g(s) be the sum of the Dirichlet Series I c(n)n -s whose Euler product

is

p

	

1/2 (1 + 7 (1 + P)P -s + 7 0 + P +
P

)P-2s + . . .)),

the square-root being the principal branch . Clearly both series and product

converge absolutely for Re s > since the general term of the product has

the form

where (Ek (p)( < 1 . The following result indicates that A(n) behaves like

g(l)n(n log
n)-1/2 on average .

THEOREM 4 .1 . As x -* - we have

(4.1)

PROOF . For Re s > 1 we have

(4.2)
n=l

1 + 1 p - s +
~ E,(p)p

-ks ~

k=2

2
A(n) , .	

n < x

	

27r1 /2 (lóg x) 1 / 2

n-1A(n)n-s

	

li {1 + 7 (1 + p)P - s + 7 0 +
P

+
P

)P-2s + . . .}

= 4(s)1/2g(s),

where 4(s) 1/ 2 is real for positive real s greater than 1 . From (4 .2) it is

possible to deduce in various ways that

(4 .3)

	

B(x) _

	

I n -1 A(n) N
g(1)	x	

n < x

	

4 /

	

(log x )1/2

in fact we shall sketch below several different methods of going from (4 .2) to

(4 .3) . The partial summation formula
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A(n) _
Ix

t dB(t) - x B(x) - I 1 B(t)dt
n<

	

1x

then readily enables one to deduce (4.1) from (4.3) .

Here are five methods I-V for deducing (4 .3) from (4.2) .

I One can use the classical method of contour integration (cf . Landau

[13], Landau [14], Wilson [24], Stanley [22], and Hardy

II One can appeal to general theorems established by Kienast Ell] and

Dixon [4] by the method of contour integration .

III One can start with the result

DI/2(x) _

	

dl
/
2 (n) =	x

n < x

	

(n log

of Selberg [22] or Diamond [3], where

dl
/2(n)n-s = (s)

112

	

(Re s > 1),
n=1

x)
1/2

+
O(	

(109 x) 3 /2 )

and`then use the identity

F n -1 A(n) _

	

I

	

c(n) D 1/2 (x/n),
n < x

	

n<x

where as above E c(n)n-'S = g(s) .

IV One can use the following Tauberian theorem of Delange :

LEMMA 4 .1 . Suppose I < h l

	

h2 <

	

and hn

	

+ -.

	

Suppose the Dirichlet

series

	

anhns has non-negative coefficients, and converges for Re s > 1 to a sum

f(s) . Suppose there is a real number r which, is not a negative integer such that

f(s) = (s-l)-r-lh(s) + k(s),

where h and k are holomorphic functions on some domain containing the closed

half- lane Re s > 1 and h(1) ¢ 0 . Then as x + +~ we have

a n '~

	

+
l)

x(log x) r
h < x
n-

Lerrrna 4 .1 is a special case of Theorem 3 of Delan e [2] . To obtain (4 .3)

from (4 .2) by using Lemma 4 .,1 we need only take r = - 1/2, h n -_ n, a n - A(n)/n,

h(s) _ ((s-1)á(s))1/2g(s), and k(s) = 0 .

[8] .)
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V

	

One can apply the Tauberian theorem of Delange quoted as Lemma 5 .1 in the

next section to

J(log
n) An n

	

is = - ds {4(s)l/29(s)} .
n

This approach gives

(log n) An(n) ti g(l)
x(log

x) 1/2

n < x

	

nr
12

from which (4 .3) follows by partial summation .

Any of the first three of the above five methods will in fact give the more

precise result

A(n)
=	

x2

	

{q(1)
+ b l

	

+

	

b

n < x

	

(log x)
1/2

2,r1 2

	

log x

	

logix

1

	

ti	cx	

x d n

	

(log x ) 1 / 2

for a certain positive constant c .

5 . The number of n with A(n) < x .

We begin by quoting (as Lemma 5 .1) another Tauberian theorem of Delange which

is somewhat more powerful than Lemma 4 .1 . While it requires the parameter r to be

non-negative, it requires a much less stringent condition than the analyticity of

the functions h and k which was imposed in Lemma 4 .1 . If r > 0, Lemma 4 .1 clearly

follows from Lemma 5 .1 ; if r is negative but not an integer, Lemma 4.1 can be

readily deduced from Lemma 5 .1 by repeated differentiation and partial summation .

n -'A(n)n -s =
É d(n

n -s

	

~ t(n)n-s .

n=1

	

n=1

	

n=1

n<

+. . .+ bm

	

+ 0(

	

1

	

)}
logmx

	

log'+1 x

for any positive integer m and suitable constants bl,b2, . . .,bm .

Instead of starting with (4.2) it would also be possible to begin with

where I t(n)n-s has abscissa of convergence less than 1, and then use the result

of Wilson [24] that



LE"5.1 . Suppose 1 < h l < hz < . . . And hn + +

	

Suppose the Dirichlet series

a nhn s

Suppose

THEOREM 5 .1 .

where

PROOF . For a = Re s > 1 we have

where

has non-negative coefficients and converges for Re s > 1 to a sum f(s) .

As r. -¢ + % we have

L
A(n)_s = n {'I+A(p)

-s

p

r.(s)2
s
G(s),
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lim

	

f(s)
s

	

1+iy
Re s>1

exists for each non-zero y, And suppose there exist real numbers A,r,e with

ú a n w

	

~ x(log x) r .
h
n

< x
-

Lemma 5 .1 is a special case of Theorem 1 of Delange [2 ; .

The following theorem . not only provides valuable information about the dis-

tribution of the values A(n), but also is interesting in that it is a clearcut

instance where Lermia 5 .1 appears to be needed rather than the easier Lemma 4 .1 .

N{n :A(n) < x) _

	

I

	

I n, a x log x,
A(n) < x

1 = II {(1- j2(1+ -2 +
3

+ -

	

4

	

+ . . . ) .} .
p

	

p/

	

p+1

	

P2+p+ ,

	

p3+p2+p+ ,

A( p 2 ) -s +
Alpi)-5 + . . .}

such that

A>O,r>0,0<s<1

far Re s > l, Is-11 < i .

f(s)-A(s-1)-r-1 _ 0(Is-l1 -r-e )

Then as x -* + - we have



and

(5 .2) G(s) = n ({1- 1
} 2s (1+	2s +	3s

	

+	4	
s

	

+
P

	

Ps

	

(P+1) s

	

(P2+P+1) s

	

(P3
+P2+p+1) s

For a = Re s > 1/2 we have the estimates

and

so that

Since

(5 .4)
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C(s)2s = exp{2s Z

	

~
m 1 p -ms }

p m=1

	2 s	3s	4s	2s 	4a
1+

	

s+ (P 2+P+1)̀s+ (P3
+P2+p+1)s

+ . . . =

	

(P+1)

	

2Q1+	
s+0 P

(
(P+1)

	

)

s

	

s

	

a
(1- 15)2

= exp{2 s log(1- 15)} = exp {- 25 + 0(

	

)},
P

	

P

	

P

	

P

s

	

s

	

s
(5 .3)

	

L125{,+{1-	 2	 +

	

23

	

s +

	

3 24

	

g + . . .} _

P

	

(p+1 )s

	

(p +p*1)

	

(P +P +P+1)

2s	 2s 	4a1- 5 +

	

s + 0(

	

) .
P

	

(P+1)

	

P

2
s

	

s

	

+l
	 1(-5

	

(
+

	 2 s ~ _ - 2 s Ip

	

- du~ < 2a a+~
P

	

P+1)

	

P

	

u

	

p

(5 .2) and (5.3) show that G is holomorphic for a = Re s > 1/2 .

Put

H(s) = G(s) {(-s-1)t(s)}2s

in some domain containing Re s > 1 in which S has no zeros . Then for Re s > 1

we obtain from (5.1)

E A(n) -5 = (s-1) -2
s
H(s)

n=1

_ (s-1)-2H(1) + (s-1)-2{H(s)-H(1)}

+ H(s)(s-1)-2 (exp{(2-2 s ) log



where the logarithm is the principal branch . Hence if Re s > 1 and Is-11 < 1,

we have

jexp{(2-2 s )log(s-1)} -l1 < expl(2-2s )log(s-1)l -1

< C,j(2-2 s )log(s-1)j

< C 2 1(s-1)log(s-l)I

< C 2 js-l1(logjs-lj
-1

+,r)

f C 3 ~s-11,
1-e ,

for any fixed positive E < i and suitable constants C 1 ,C2 ,C 3 . Thus (5 .4) gives

}• ~_ _ H(l~ I

n=1 A(n)'

	

(s-1)

for a suitable constant C 4 . We may therefore apply Lemma 5 .1 with h n = the n-th

distinct válue in the range of A, a n = the number of times the value h n is taken

on byA, r=1, e=e, and

A = H(1) = G(1) = R{0- !-)2(1+

	

+ _-2
3

- +

	

4

	

+ , . .)} .
p

	

p

	

P+]

	

p2+p+1

	

p 3+p2+p+1
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< C 4 (s-1)
-1-e

	

(Re s > 1, Is-11 < 1)

Thus the result of Theorem 5.1 follows .

6 . The distribution of the numbers A(n) .

THEOREM 6 .1 . There is a positive constant v such that the number of distinct

rationale of the, form ak)/d(n) not exceeding x is 0(x/(log x) v ) .

We shall use the following result of Erdös and Wagstaff [5] :

There is a positive constant p such that the number of n < x such that n has a

divisor p+l with p a prime, p > T, is 0(x/(log T)p) uniformly for all - X > 1,

T > 2. Actually Erdos-Wagstaff prove this for p-1 in place of p+1, buy tüe

proof is identical .



PROOFOFTHE THEOREM . Let e > 0 be arbitrarily small . Let x be large and let

S = (log X)
21j, where u is the constant in the Erdós-Wagstaff theorem . Any integer

n > 0 can be written uniquely in the form n = s(n) •m (n) = sm where (s,m) = 1,

m is odd and square-free, and 4s is square-full . Let

N, = #{n > x(log x)4 :

	

o(n)/d(n) < x} ,

N2 = #{n < x(log x)4 : P(n) < x l/log log
x },

N 3 = #{n < x(log x)4 : P(n) > xl/log log x, P(n) 2 In}

N 4 = #{r < x:r = a(n)/d(n) for some n with P(n) > xl/log log x ,P(n) I In,s(n) < S),

N5 = #{r < x :r = o(n)/d(n) for some n with s(n) > S),

where P(n) denotes the largest prime factor of n . Thus, if f(x) denotes the number

of distinct rationale not exceeding x and having the form o(n)/d(n), we clearly

have

(6 .1)

	

f(x) < N 1 + N 2 + N 3 + N4 + N 5 ,

so that it remains to estimate these 5' quantities . Note that in the definitions

of N l . N 2 , and N 3 we are counting the number of positive integers n satisfying

the conditions in question, but that in the definitions of N 4 and N 5 we are

counting only distinct values of the ratio o(n)/d(n) arising from at least one r ;

satisfying the conditions mentioned .

We have (see p . 240 of [24])

N1 <

	

E 1

	

4< Z

	

E

	

1
n > x tog x

	

i=0 2 i
x log 4 x < n < 2 i+1 x log 4 xd(n) > n/x

	

-

d(n) > 2 i log 4x

	 1		2

1 0 22i
	 1	

og$x

	

n 12 i+1 x log 4 x



(6.2)	 x	(i+2	107
x) 3

	

x
«

log4 x í=0

	

21

	

« log x

(6.3)

From Rankin [121

Clearly

« i

	

21
	 1	

B

	

_ 2i+1x log 4x •(i+2 log x) 3
i=0 2 log x

N2 « x/]og x .

(6 .4)

	

N3 <

	

E

	

x(log x)4,/d2 « x/log x .

d > x l/log log x

We use the Erdos-Wagstaff theorem to estimate N 4 . If a(n)/d(n) is counted by

N 4 , then a(n)/d(n) _ (o(n)/d(m))/d(s) where a(n)/d(m) is an integer and for each

e > 0 (cf . (2 .2))

def
d(s) < Z = max{d(s) :s < S} < (log x) E

for all large x depending on the choice of e. . Thus the integer 2o(n)/d(m) is at

most 2Zx and is divisible by a p+1 where p is prime, p > x
l/log log x

	

By the

Erdős-Wagstaff theorem, we thus have

(6.5)

	

N4 « xZ2/(log(x1/log
log x))u

« x/(log x)u-3
e

Note that if a(n)/d(n) is counted by N 5 and n = sm, then

a(n)/d(n) _ (o(m)/d(m))(o(s)/d(s)), so that (a(m)/d(m))a(s) < xd(s) < xs E

	

for

large x . But a(m)/d(m) is an integer . Thus for each fixed s > S for which 4s

is square full, the number of a(n)/d(n) < x with s(n) = s is at most the

number, of multiples of a(s) below xs E . Thus

(6 .6)

	

N5 <

	

xsE/a(s)
<

	

i

	

x/sl-E
« x/(log x) ri-2£11 .

S > S

	

s > S

Our theorem now follows from (6 .1), (6 .2), (6 .3), (6 .4), (6 .5), (6 .6) .



Note that if q runs through the primes not exceeding 2x-1, the w(2x-1)

numbers a(q)/d(q) _ (q+l)/2 lie in [1,x] and are all distinct . Thus the constant

v in Theorem 6 .1 cannot be larger than 1 . In fact, by more complicated arguments

we can prove that, if f(x) is as above, then for every positive a and every posi-

tive integer k we have

log x (log log x) k « f(x)<<	x
(l09 x)

7 . Other problems .

In this section we shall state some further results, giving either sketchy

proofs or no proofs at all .

THEOREM 7 .1 . There is a constant c so that

,n
{ n A(i)1 1/n - c n/(log n)log 2

i=1

n
Since there is a known asymptotic formula for { n d(i)1

due to
i=1

Ramanujan (cf . Wilson [24]), Theorem 7 .1 can be proved by establishing an
n

asymptotic formula for { n a(i)t t/n . It is possible to give the constant c
i=1

explicitly and also to give arbitrarily many secondary terms .

THEOREM 7 .2 . The set of integers n with an integral arithmetic mean for the

divisors d of n with I < d < n has density 0 .

That is, Theorem 7.2 asserts that the set of n for which d(n)-lia(n)-n has

density 0. We now sketch a proof for square-free n . The non-square-free case

is much harder .

Assume n is square-free and K is large . All but a density 0 of n have

2 p-Ilu(n) for every prime p < K . For each prime p, 2 < p < K, the n with p1w(n)

have relative density 1/p . (Here w(n) is the number of distinct prime factors of

n .) In fact, the relative density of the square-free n for which

(7 .1)

	

plw(n), 2p-l,n, 2p-1la(n)
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is p-1(1-(2p-1)-1) . But such an n has d(n)-lja(n)-n since 2p-lld(n)-1,

2p-1,(o(n)-n . The events (7 .1) for different primes p are independent . Thus the

relative density of the square-free n for which d(n)-lja(n)-n is at most

Letting K - m, this product goes to 0 and we have our result for square-free n .

The above heuristic argument can be made the backbone of a rigorous proof .

Roughly the same idea can be used in the more

of 2 .

n

	

{1- 1 0 - 1

	

) } .
2 < p

<
K

	

p

	

2p-1

Recall that a i ( n) =
dn

ó ilj =

general case when d(n) is a power

.

	

Thus o(n) = a l ( n), d(n) = a0 (n) .

THEOREM 7,3 . Let ó i,j denote the a iptItic density of the set of n for which

a i (n)ja j (n), where i,j are integers and 0 < i < j . Then

if j/i is an odd integer ;

1, if i = 0, j is odd ;

0, if i > 1, j/i is not an odd integer .

Moreover if i = 0, j is even, then. ó i}j exists and 0 < ó . ,j < 1 .
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