ON SUMS INVOLVING RECIPROCALS OF THE LARGEST PRIME FACTOR OF AN INTEGER
P. Erdös, A. Ivić and C. Pomerance*,
Budapest, Beograd and Athens, Ga, USA

Abstract

Sum of reciprocals of $P(n)$, the largest prime factor of n, is precisely evaluated asymptotically. Asymptotic formulas for some related sums, involving the function $\Omega(n)$ and $\omega(n)$ (the number of distinct and the total number of prime factors of $n)$ are also derived.

§1. Introduction and statement of results

Let as usual $\omega(n)$ and $\Omega(n)$ denote the number of distinct prime factors of n and the total number of prime factors of n, respectively. Let $P(n)$ denote the largest prime factor of an integer $n \geqslant 2$, and let $P(1)=1$. Several results involving sums of reciprocals of $P(n)$ and some related additive functions were obtained recently in [4], Ch. 6, [6], [7], [9] and [10]. Thus it was shown in [9] that

$$
\begin{align*}
& \sum_{n \leqslant x} 1 / P(n)=x \exp \left\{-(2 \log x \log \log x)^{1 / 2}+\right. \tag{1.1}\\
&\left.+O\left((\log x \log \log \log x)^{1 / 2}\right)\right\} .
\end{align*}
$$

The proof of this result depended on estimates for $\psi(x, y)$, the number of positive integers $n \leqslant x$ with $P(n) \leqslant y$. The connection is seen via the easy identity

$$
\begin{equation*}
\sum_{n \leqslant x} 1 / P(n)=1+\sum_{p \leqslant x} p^{-1} \psi\left(x p^{-1}, p\right), \tag{1.2}
\end{equation*}
$$

where p denotes a general prime throughout the paper. By using a better estimate for $\psi(x, y)$ (see [3]), the result (1.1) was slightly sharpened and more general sums were estimated in [10], namely

$$
S_{r}(x)=\sum_{n \leqslant x} 1 / P^{r}(n), \quad T_{r}(x)=\sum_{n \leqslant x, P^{2}(n) \mid n} 1 / P^{r}(n),
$$

Mathematics subject classifications (1980): $10 \mathrm{H} 15,10 \mathrm{H} 25$.
Key words and phrases: The largest prime factor of an integer, the number of prime factors of an integer, asymptotic formulas for summatory functions, the number of integers not exceeding x all of whose prime factors do not exceed y.

[^0]where $r \geqslant 0$ is an arbitrary, fixed real number. It was proved in [10] that
\[

$$
\begin{gather*}
S_{r}(x)=x \exp \left\{-(2 r)^{1 / 2}\left(\log x \log _{2} x\right)^{1 / 2}\left(1+g_{r-1}(x)+\right.\right. \tag{1.3}\\
\left.\left.+O\left(\log _{3}^{3} x / \log _{2}^{3} x\right)\right)\right\}
\end{gather*}
$$
\]

and

$$
\begin{align*}
T_{r}(x)=x \exp \{- & (2 r+2)^{1 / 2}\left(\log x \log _{2} x\right)^{1 / 2}\left(1+g_{r}(x)+\right. \tag{1.4}\\
& \left.\left.+O\left(\log _{3}^{3} x / \log _{2}^{3} x\right)\right)\right\}
\end{align*}
$$

where $\log _{k} x=\log \left(\log _{k-1} x\right)$ is the k-fold iterated logarithm and

$$
\begin{gathered}
g_{r}(x)=\frac{\log _{3} x+\log (1+r)-2-\log 2}{2 \log _{2} x}\left(1+\frac{2}{\log x}\right)- \\
-\frac{\left(\log _{3} x+\log (1+r)-\log 2\right)^{2}}{8 \log _{2}^{2} x}
\end{gathered}
$$

Recently H. Maier [11] and A. Hildebrand [8] obtained independently much better results concerning $\psi(x, y)$, which may be used in connection with our problems. It is now possible to obtain asymptotic formulas for the sums $S_{r}(x)$ and $T_{r}(x)$. We shall work out the details only for the sum in (1.1), namely $S_{1}(x)$. The other sums can be handled by the same method. We prove

THEOREM 1.

$$
\begin{equation*}
\sum_{n \leqslant x} 1 / P(n)=x \delta(x)\left(1+O\left(\left(\frac{\log \log x}{\log x}\right)^{1 / 2}\right)\right) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta(x)=\int_{2}^{x} \rho\left(\frac{\log x}{\log t}\right) t^{-2} d t \tag{1.6}
\end{equation*}
$$

and $\rho(u)$ is the continuous solution to the differential delay equation

$$
\begin{equation*}
u \rho^{\prime}(u)=-\rho(u-1) \tag{1.7}
\end{equation*}
$$

with the initial condition $\rho(u)=1$ for $0 \leqslant u \leqslant 1$.
Here $\rho(u)$ is the so-called Dickman-de Bruijn function, for which the latter [1] obtained the estimate

$$
\begin{equation*}
\rho(u)=\exp \left\{-u\left(\log u+\log _{2} u-1+\frac{\log _{2} u}{\log u}-\frac{1}{\log u}+O\left(\frac{\log _{2}^{2} u}{\log ^{2} u}\right)\right)\right\} . \tag{1.8}
\end{equation*}
$$

By comparing (1.3) and (1.5) (or by direct evaluati a with the aid of (1.8)) we find that

$$
\begin{equation*}
\delta(x)=\exp \left\{-\left(2 \log x \log _{2} x\right)^{1 / 2}\left(1+g_{0}(x)+O\left(\log _{3}^{3} x / \log _{2}^{3} x\right)\right)\right\} \tag{1.9}
\end{equation*}
$$

Although $\delta(x)$ is a fairly complicated function, (1.9) gives for most purposes a sufficiently sharp approximation. Moreover $\delta(x)$ is slowly oscillating, i.e. for any constant $C>0$ we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \delta(C x) / \delta(x)=1 \tag{1.10}
\end{equation*}
$$

which is obtained in $\S 3$. As a corollary of (1.5) and (1.10) we have, for example,

$$
\sum_{n \leqslant x} 1 / P(n) \sim \sum_{x<n \leqslant 2 x} 1 / P(n),
$$

which seems to be difficult to obtain without using finer information about $\psi(x, y)$. The notation $f(x) \sim g(x)$ means as usual that

$$
\lim _{x \rightarrow \infty} f(x) / g(x)=1
$$

and other notation used throughout the paper is also standard. For example, $f(x)=O(g(x))$ and $f(x) \ll g(x)$ both mean that $|f(x)| \leqslant C g(x)$ for some absolute $C>0$ and $x \geqslant x_{0}$, while $f(x)=o(g(x))$ means that

$$
\lim _{x \rightarrow \infty} f(x) / g(x)=0
$$

It seems interesting to investigate how much the sum in (1.1) changes when $1 / P(n)$ is replaced by $\omega(n) / P(n)$ or $\Omega(n) / P(n)$. This problem has already been investigated in [7], where it was shown that

$$
\left(\frac{\log x}{\log \log x}\right)^{1 / 2} \sum_{n \leqslant x} 1 / P(n) \ll \sum_{n \leqslant x} \Omega(n) / P(n) \ll(\log x \log \log x)^{1 / 2} \sum_{n \leqslant x} 1 / P(n)
$$

and the method would yield the same result if $\Omega(n)$ is replaced by $\omega(n)$. By using Theorem 1, we prove

THEOREM 2. There is a positive constant c such that

$$
\begin{gather*}
\sum_{n \leqslant x}(\Omega(n)-\omega(n)) / P(n) \sim c x \delta(x), \tag{1.11}\\
\sum_{n \leqslant x} \Omega(n) / P(n) \sim \sum_{n \leqslant x} \omega(n) / P(n) \sim(2 \log x / \log \log x)^{1 / 2} x \delta(x), \tag{1.12}
\end{gather*}
$$

where $\delta(x)$ is defined by (1.6).
The results (1.5) and (1.12) imply that in a certain sense the main contribution to the sums in (1.12) comes from those $n \leqslant x$ with about $(2 \log x / \log \log x)^{1 / 2}$ prime factors. This fact is interesting in view of the classical result of G. H. Hardy and S. Ramanujan (see [12]) that both the normal and average order of $\omega(n)$ and $\Omega(n)$ is $\log \log n$.

Theorem 2 shows that sums of $\omega(n) / P(n)$ and $\Omega(n) / P(n)$ behave similarly. On the other hand, quite a different situation arises when one estimates sums of $P(n)^{-\omega(n)}$ and $P(n)^{-\Omega(n)}$. The corresponding summatory functions turn out to be completely different, as shown by

THEOREM 3.

$$
\begin{gather*}
\sum_{n \leqslant x} P(n)^{-\omega(n)}=\exp \left\{(4+o(1))(\log x)^{1 / 2} /(\log \log x)\right\}, \tag{1.13}\\
\sum_{n \leqslant x} P(n)^{-\Omega(n)}=\log \log x+D+O(1 / \log x) . \tag{1.14}
\end{gather*}
$$

Here $D>0$ denotes an absolute constant that is effectively computable.
It seems interesting to compare (1.13) with the estimate

$$
\begin{equation*}
\sum_{n \leqslant x} 1 / \alpha(n)=\exp \left\{(2 \sqrt{2}+o(1))(\log x / \log \log x)^{1 / 2}\right\} \tag{1.15}
\end{equation*}
$$

where $\alpha(n)=\prod p$ is the largest square-free divisor of n. This result is due to N. G. de Bruijn [2] and was sharpened by W. Schwarz [13]. Since evidently

$$
\alpha(n) \leqslant P(n)^{\omega(n)},
$$

the sum in (1.13) is majorized by the sum in (1.15), but it turns out that even the logarithms of these sums are of a different order of magnitude. The sum in (1.13) is more difficult to estimate than the sum in (1.14), where the main contribution comes from primes.

For our last result, let $Q(n)$ denote the largest prime power which divides $n \geqslant 2$, and let $Q(1)=1$. One naturally expects sums of $1 / P(n)$ and $1 / Q(n)$ to behave similarly, and this is precisely what is established in

THEOREM 4. There is a constant $C>0$ such that

$$
\sum_{n \leqslant x} 1 / Q(n)=\left\{1+O\left(\exp \left(-C(\log x \log \log x)^{1 / 2}\right)\right)\right\} \sum_{n \leqslant x} 1 / P(n) .(1.16)
$$

§2. Proof of Theorem 1

We begin by establishing the identity (1.2). We have

$$
\begin{gathered}
\sum_{n \leqslant x} 1 Y P(n)=1+\sum_{p \leqslant x} 1 / p \sum_{n \leqslant x, P(n)=p} 1=1+\sum_{p \leqslant x} 1 / p \sum_{m \leqslant x / p, P(m) \leqslant p} 1= \\
=1+\sum_{p \leqslant x} p^{-1} \psi(x / p, p),
\end{gathered}
$$

so that (1.2) holds. To facilitate notation, let from now on

$$
L=L(x)=\exp \left\{(\log x \log \log x)^{1 / 2}\right\} .
$$

Using (1.2) and following the proof of (1.1) given in [9] we see that the contribution from the primes p with $p<L^{1 / 2}$ or $p>L$ is at most

$$
x L^{-3 / 2+o(1)} \quad(x \rightarrow \infty)
$$

Thus in view of (1.1) it suffices to consider only those values of p with $L^{1 / 2} \leqslant p \leqslant L$.

We now state the new result of A. Hildebrand [8] (H. Maier's theorem [11] is slightly weaker) mentioned in the introduction.

THEOREM (A. Hildebrand). The estimate

$$
\begin{equation*}
\psi\left(x, x^{1 / u}\right)=x \rho(u)\left(1+O_{\varepsilon}\left(\frac{u \log (u+1)}{\log x}\right)\right) \tag{2.1}
\end{equation*}
$$

holds uniformly in the range

$$
x \geqslant 3,1 \leqslant u \leqslant \log x /(\log \log x)^{5 / 3+\varepsilon},
$$

where ε is any fixed positive number.
The importance of this result lies in the wide range for $u . \mathrm{By} \mathrm{N} . \mathrm{G}$. de Bruijn [1] (2.1) was known to hold for $1 \leqslant u \leqslant(\log x)^{3 / 8-\varepsilon}$, but this range is not sufficient for our purposes.

Applying (2.1) to the $\psi(x / p, p)$ for $L^{1 / 2} \leqslant p \leqslant L$ we obtain the uniform estimate

$$
\psi(x / p, p)=\frac{x}{p} \rho\left(\frac{\log x}{\log p}-1\right)\left(1+O\left(\left(\frac{\log \log x}{\log x}\right)^{1 / 2}\right)\right)
$$

Thus from the above comments we have

$$
\begin{align*}
& \sum_{n \leqslant x} 1 / P(n)=\left(1+O\left(\left(\frac{\log \log x}{\log x}-\right)^{1 / 2}\right)\right) \sum_{L^{1 / 2} \leqslant p \leqslant L} x p^{-2} \rho\left(\frac{\log x}{\log p}-1\right) \\
& =\left(1+O\left(\left(\frac{\log \log x}{\log x}\right)^{1 / 2}\right)\right) \int_{L^{1 / 2}}^{L} x t^{-2} \rho\left(\frac{\log x}{\log t}-1\right) d \pi(t) \tag{2.2}\\
& =\left(1+O\left(\left(\frac{\log \log x}{\log x}\right)^{1 / 2}\right)\right) \int_{L^{1 / 2}}^{L} \frac{x}{t^{2} \log t} \rho\left(\frac{\log x}{\log t}-1\right) d t .
\end{align*}
$$

Using (1.7) the last integral becomes

$$
\begin{align*}
& \int_{L^{1 / 2}}^{L} \frac{-x \log x}{t^{2} \log ^{2} t} \rho^{\prime}\left(\frac{\log x}{\log t}\right) d t=\int_{L^{1 / 2}}^{L} \frac{x}{t} d \rho\left(\frac{\log x}{\log t}\right) \\
= & \frac{x}{L} \rho\left(\frac{\log x}{\log L}\right)-\frac{x}{L^{1 / 2}} \rho\left(\frac{\log x}{\log L^{1 / 2}}\right)+\int_{L^{1 / 2}}^{L} \frac{x}{t^{2}} \rho\left(\frac{\log x}{\log t}\right) d t . \tag{2.3}
\end{align*}
$$

Using (1.8) we see that the right-hand side of (2.3) is equal to

$$
x \delta(x)+O\left(x L^{-3 / 2+\varepsilon}\right)
$$

for any $\varepsilon>0$, hence Theorem 1 follows then from (2.2) and (2.3).

§3. Proof of Theorem 2

A positive integer m is called square-full if $p^{2} \mid m$ for every prime $p \mid m$. Let $s(n)$ denote the largest square-full divisor of n. Then we have

$$
\begin{equation*}
\Omega(n)-\omega(n)=\Omega(s(n))-\omega(s(n)) . \tag{3.1}
\end{equation*}
$$

To estimate the sum in (1.11) we first show that those n with $s(n)>\log ^{3} x$ or with $P^{2}(n) \mid n$ contribute only $o(x \delta(x))$ to the sum. To do this first note that, for $n \leqslant x$,

$$
\Omega(n)-\omega(n) \leqslant \frac{\log x}{\log 2}-1,
$$

hence

$$
\begin{equation*}
\sum_{n \leqslant x, P^{2}(n) \mid n}(\Omega(n)-\omega(n)) / P(n) \ll T_{1}(x) \log x=x L^{-2+o(1)}, \tag{3.2}
\end{equation*}
$$

where we used (1.4) with $r=1$.
Next note that there are $\sim C x^{1 / 2}$ square-full integers not exceeding x. Therefore using partial summation we obtain

$$
\begin{gather*}
\sum_{n \leqslant x, x(n) \geqslant L^{3}}(\Omega(n)-\omega(n)) / P(n) \ll \log x \sum_{n \leqslant x, s(n) \geqslant L^{3}} 1 \\
=\log x \sum_{s \geqslant L^{3}}^{\prime} \sum_{n \leqslant x, s(n)=s} 1 \leqslant x \log x \sum_{s \geqslant L^{3}}^{\prime} 1 / s \tag{3.3}\\
=x L^{-3 / 2+o(1)}=o(x \delta(x)),
\end{gather*}
$$

where \sum^{\prime} denotes a sum over square-full integers.
To estimate the sum in (1.11) for $s(n)<L^{3}$, we need the following
LEMMA. Uniformly for $x \geqslant 3$ and $1 \leqslant s \leqslant L^{3}$, we have

$$
\delta(x / s) \leqslant(1+o(1)) s^{2(\log \log x \log x)^{1 / 2}} \delta(x)
$$

Proof. We use the following result, which is Lemma $1-(v)$ in Hildebrand [8]:

$$
-\rho^{\prime}(u) / \rho(u) \leqslant \log \left(u \log ^{2} u\right) \quad\left(u \geqslant e^{4}\right)
$$

Integrating this inequality over $[u-\lambda, u]$ we obtain, for $0 \leqslant \lambda \leqslant u-e^{4}$,

$$
\rho(u-\lambda) / \rho(u) \leqslant\left(u \log ^{2} u\right)^{\lambda} .
$$

Thus for $1 \leqslant s \leqslant L^{3}$ and for large x we have

$$
\begin{gathered}
\delta(x / s)=\int_{2}^{x / s} t^{-2} \rho\left(\frac{\log x}{\log t}-\frac{\log s}{\log t}\right) d t \\
=(1+o(1)) \int_{L^{1 / 2}}^{L} t^{-2} \rho\left(\frac{\log x}{\log t}\right) \rho\left(\frac{\log x}{\log t}-\frac{\log s}{\log t}\right) / \rho\left(\frac{\log x}{\log t}\right) d t \\
\leqslant(1+o(1)) \int_{L^{1 / 2}}^{L} t^{-2} \rho\left(\frac{\log x}{\log t}\right)\left(\frac{\log x}{\log t} \log ^{2}\left(\frac{\log x}{\log t}\right)\right)^{\log s \log t} d t \\
\leqslant(1+o(1))\left(\frac{\log x}{\log L^{1 / 2}} \log ^{2}\left(\frac{\log x}{\log L^{1 / 2}}\right)\right)^{\log s \log L^{1 / 2}} \delta(x) \\
\leqslant(1+o(1))(\log x)^{\log s / \log L^{1 / 2}} \delta(x)=(1+o(1)) s^{2(\log \log x / \log x)^{1 / 2}} \delta(x),
\end{gathered}
$$

which establishes the lemma.
By Theorem 1 and the Lemma, we have

$$
\begin{align*}
& \sum_{n \leqslant x, \log g^{\prime} x<s(n)<L^{3}}(\Omega(n)-\omega(n)) \ll \log x \sum_{n \leqslant x, \log ^{3} x<s(n)<L^{3}} 1 / P(n) \\
& \leqslant \log x \sum_{\log ^{3} x<s<L^{3}} \sum_{n \leqslant x, s \mid n} 1 / P(n) \tag{3.4}\\
& \leqslant \log x \sum_{\log ^{3} x<s<L^{3}} \sum_{m \leqslant x / s} 1 / P(m) \ll \log x \sum_{\log ^{3} x<s<L^{3}}^{\prime}(x / s) \delta(x / s) \\
& \ll x \delta(x) \log x \sum_{s>\log ^{3} x}^{\prime} s^{-1+2(\log \log x \log x)^{1 / 2}} \ll x \delta(x) \log ^{-1 / 2} x .
\end{align*}
$$

Therefore to show (1.11) it will be sufficient to restrict the sum to those $n \leqslant x$ for which $P^{2}(n) \nmid n$ and $s(n) \leqslant \log ^{3} x$. Also, as in Section 2, we may assume $L^{1 / 2} \leqslant P(n) \leqslant L$. If $\sum^{\prime \prime}$ denotes a sum over integers k with the restrictions $P^{2}(k) \nmid k$ and $P(k) \geqslant L^{1 / 2}$, then by (3.1) we have

$$
\begin{align*}
& \sum_{n \leqslant x, s(n) \leqslant \log ^{3} x}^{\prime \prime}(\Omega(n)-\omega(n)) / P(n)=\sum_{s \leqslant \log ^{3} x x}^{\prime} \sum_{n \leqslant x, s(n)=s}^{\prime \prime}(\Omega(n)-\omega(n)) / P(n) \\
&= \sum_{s \leqslant \log ^{3} x}^{\prime}(\Omega(s)-\omega(s)) \sum_{m \leqslant x s,(m, s)=1}^{\prime \prime} \mu^{2}(m) / P(m) \\
&= \sum_{s \leqslant \log ^{3} x}^{\prime}(\Omega(s)-\omega(s)) \sum_{m \leqslant x / s}^{\prime \prime} 1 / P(m) \sum_{d^{2} \mid m x(s)} \mu(d) \tag{3.5}\\
&= \sum_{s \leqslant \log ^{3} x}^{\prime}(\Omega(s)-\omega(s)) \sum_{d} \mu(d) \sum_{\substack{k \leqslant x(d, x(s)) \leqslant s d^{2} \\
P(k)>P(d)}}^{\prime \prime} 1 / P(k) .
\end{align*}
$$

[^1]Here $\alpha(s)=\prod p$ and the last equality follows from the fact that $d^{2} \mid m \alpha(s)$ if ${ }^{p \mid s}$ and only if m is of the form $k d^{2} /(d, \alpha(s)$) (and so $P(m)=P(k)$ since $P^{2}(m)\left\{m, P(m) \geqslant L^{1 / 2}\right.$ and $\left.s \leqslant \log ^{3} x\right)$.

The last and innermost sum in (3.5) is majorized by x / d^{2}, so that the contribution to (3.5) by those $d>L^{3 / 2} / \log ^{3} x$ is $O\left(x L^{-3 / 2+o(1)}\right)$ and is thus negligible. For $\log ^{3} x \leqslant d \leqslant L^{3 / 2} / \log ^{3} x$ and $s \leqslant \log ^{3} x$ we have

$$
\log ^{6} x \leqslant s d^{2} /(d, \alpha(s)) \leqslant L^{3}
$$

so that from the proof of (3.4), the last sum in (3.5) for such a value of d is

$$
O\left(x \delta(x) d^{-2+2(\log \log x / \log x)^{1 / 2}}\right)
$$

Thus the contribution to (3.5) from these values of d is $\ll x \delta(x) \log ^{-1 / 2} x$, which is also negligible.

Hence we may restrict attention in (3.5) to those d with $d<\log ^{3} x$. For such d 's we have

$$
s d^{2} /(d, \alpha(s))<\log ^{9} x
$$

and so by Theorem 1 and (3.2) the last sum in (3.5) for these d 's is uniformly

$$
\begin{equation*}
(1+o(1)) \frac{x(d, \alpha(s))}{s d^{2}} \delta\left(\frac{x(d, \alpha(s))}{s d^{2}}\right) \tag{3.6}
\end{equation*}
$$

Note that from the definition of $\delta(x)$ it is possible to show that $\delta(x)$ is decreasing for $x \geqslant x_{0}$, so that using the Lemma we have $\delta(x / t)=(1+o(1)) \delta(x)$ uniformly for $1 \leqslant t \leqslant \log ^{9} x$. In particular, this remark implies that (1.10) holds. Thus (3.6) is

$$
(1+o(1)) \frac{x(d, \alpha(s))}{s d^{2}} \delta(x) .
$$

Putting this estimate in (3.5) we have

$$
\begin{aligned}
& \sum_{n \leqslant x, s(n) \leqslant \log ^{\prime} x}^{\prime \prime}(\Omega(n)-\omega(n)) / P(n)= \\
& =(1+o(1)) x \delta(x) \sum_{s \leqslant \log ^{3} x}^{\prime}(\Omega(s)-\omega(s)) \sum_{d<\log ^{3} x} \frac{(d, a(s)) \mu(d)}{s d^{2}} \\
& =(1+o(1)) \frac{6}{\pi^{2}} x \delta(x) \sum_{s \leqslant \log ^{3} x} \frac{\Omega(s)-\omega(s)}{s} \prod_{p \mid s} \frac{p}{p+1} \\
& =(1+o(1)) \frac{6}{\pi^{2}} x \delta(x) \sum_{s=1}^{\infty} \frac{\Omega(s)-\omega(s)}{s} \prod_{p \mid s} \frac{p}{p+1},
\end{aligned}
$$

since by multiplicativity

$$
\begin{gathered}
\sum_{d=1}^{\infty} \mu(d)(d, \alpha(s)) d^{-2}=\prod_{p}\left(1+\mu(p)(p, \alpha(s)) p^{-2}\right) \\
=\prod_{p \mid s}\left(1-\frac{1}{p^{2}}\right) \prod_{p \mid s}\left(1-\frac{p}{p^{2}}\right)=\frac{1}{\zeta(2)} \prod_{p \mid s}\left(1-\frac{1}{p}\right)\left(1-\frac{1}{p^{2}}\right)^{-1}=\frac{6}{\pi^{2}} \prod_{p \mid s} \frac{p}{p+1} .
\end{gathered}
$$

Thus from this calculation and (3.2), (3.3) and (3.4) we obtain (1.11) with the constant

$$
c=\frac{6}{\pi^{2}} \sum_{s=1}^{\infty} \frac{\Omega(s)-\omega(s)}{s} \prod_{p \mid s} \frac{p}{p+1}>0
$$

A more careful analysis shows that \sim in (1.11) can be replaced by $1+O\left((\log \log x)^{3 / 2} \log ^{-1 / 2} x\right)$, since for $1 \leqslant t \leqslant \log ^{12} x$ we obtain by following the proof of the Lemma

$$
\delta(x / t)=\left(1+O\left((\log \log x)^{3 / 2} \log ^{-1 / 2} x\right)\right) \delta(x)
$$

We now turn our attention to the proof of (1.12). From the proof of (1.1) or from the proof of Theorem 1 it may be seen that only the values of $n \leqslant x$ for which

$$
\begin{equation*}
L^{\sqrt{2} / 2-\varepsilon}<P(n)<L^{\sqrt{2} / 2+\varepsilon} \tag{3.7}
\end{equation*}
$$

for any fixed $\varepsilon>0$ make a non-negligible contribution to the sums in (1.12).

We next note that if $n \leqslant x / L^{2}$, then

$$
\sum_{n \leqslant x / L^{2}} \omega(n) / P(n) \leqslant \sum_{n \leqslant x / L^{2}} \Omega(n) / P(n) \ll x L^{-2} \log x=o(x \delta(x))
$$

so we may assume that

$$
\begin{equation*}
x / L^{2}<n<x \tag{3.8}
\end{equation*}
$$

Thus combining (3.7), (3.8) and using the trivial inequality $n \leqslant(P(n))^{\Omega(n)}$, we obtain

$$
\Omega(n) \geqslant(\sqrt{2}-2 \varepsilon)(\log x / \log \log x)^{1 / 2}
$$

and so for $x \geqslant x_{0}(\varepsilon)$ it follows that

$$
\begin{equation*}
\sum_{n \leqslant x} \Omega(n) / P(n) \geqslant(\sqrt{2}-3 \varepsilon)(\log x / \log \log x)^{1 / 2} \sum_{n \leqslant x} 1 / P(n) \tag{3.9}
\end{equation*}
$$

To estimate the sum of $\omega(n) / P(n)$ from above we use the classical elementary inequality of G. H. Hardy and S. Ramanujan ([12], p. 265):

$$
\begin{equation*}
\sum_{n \leqslant x, w(n)=k} 1 \leqslant \frac{E x(\log \log x+F)^{k}}{k!\log x} \tag{3.10}
\end{equation*}
$$

where $E, F>0$ are absolute constants. Using (3.10) we obtain that the number of $n \leqslant x$ with

$$
\begin{equation*}
\omega(n)>(\sqrt{2}+5 \varepsilon)(\log x / \log \log x)^{1 / 2} \tag{3.11}
\end{equation*}
$$

is at most $x L^{-\sqrt{2} / 2-2 \varepsilon}$. Thus the sum of $\omega(n) / P(n)$ for $n \leqslant x$ and such that (3.7) and (3.11) both hold is at most

$$
x \log x L^{-\sqrt{2}-\varepsilon}=o(x \delta(x))
$$

On the other hand, the sum of $\omega(n) / P(n)$ for $n \leqslant x$ and (3.11) failing is clearly at most

$$
\begin{equation*}
(\sqrt{2}+5 \varepsilon)(\log x / \log \log x)^{1 / 2} \sum_{n \leqslant x} 1 / P(n) \tag{3.12}
\end{equation*}
$$

Combining (3.9) and (3.12) with Theorem 1 and (1.11), we have (1.12), completing the proof of Theorem 2 . We finally remark that we can prove (1.12) without using the Hildebrand-Maier result on $\psi(x, y)$. However this result seems to be essential for the proof of (1.11).

§4. Proof of Theorem 3

We denote by $\sum(x)$ the sum in (1.13) and proceed first to derive the lower bound of the correct order of magnitude. In what follows p will always denote primes and p_{i} will denote the r-th prime. Let A be a large positive integer, and consider integers $m \leqslant x$ such that $\omega(m)=k$ and $P(m) \leqslant p_{(A+1) k}$, where $k=k(x)$ is an integer which will be suitably determined later. If

$$
\begin{equation*}
m=p_{i_{1}}^{a_{1}} \cdots p_{i_{k}}^{a_{k}} \tag{4.1}
\end{equation*}
$$

is the canonical decomposition of m, then there are $\binom{(A+1) k}{k}$ ways we can choose $p_{i_{1}} \ldots p_{i_{k}}=\alpha(m)$. Once $\alpha(m)$ is fixed, we can choose the exponents a_{1}, \ldots, a_{k} in (4.1) by considering positive integer solutions of

$$
a_{1} \log p_{i_{1}}+\ldots+a_{k} \log p_{i_{k}} \leqslant \log x .
$$

Note that the number of positive, integer solutions of the above inequality is certainly not less than the corresponding number of solutions of

$$
a_{1} \log p_{(A+1) k}+\ldots+a_{k} \log p_{(A+1) k} \leqslant \log x
$$

which is $\binom{v}{k}$, where $v=\left[\log x / \log p_{(A+1) k}\right]$. Therefore

$$
\begin{equation*}
\left.\sum(x) \geqslant \sum_{\mathrm{m} \leqslant x}(P(m))^{-k} \geqslant\binom{ v}{k}\binom{A k+k}{k} p \bar{a}^{-k}+1\right) k . \tag{4.2}
\end{equation*}
$$

To evaluate binomial coefficients which appear in the last inequality we shall use Stirling's formula in the form

$$
\begin{equation*}
n!=\exp (n \log n-n+\log \sqrt{2 \pi n}+o(1)) . \quad(n \rightarrow \infty) \tag{4.3}
\end{equation*}
$$

When $k, v \rightarrow \infty$ and $k=o(v),(4.3)$ gives

$$
\begin{aligned}
\log \binom{A k+k}{k} & =k(A+1) \log k(A+1)-k(A+1)-k A \log (k A)+k A- \\
& -k \log k+k+O(\log k) \\
= & k(A+1) \log (A+1)-k A \log A+O(\log \log x), \\
\log \binom{v}{k}= & v \log v-k \log k-(v-k) \log (v-k)+O(\log v) \\
= & k \log v-k \log k+k+o(k)+O(\log \log x) .
\end{aligned}
$$

From the prime number theorem we have $p_{r}=r(\log r+O(\log \log r)), \quad \log p_{r}=\log r+\log \log r+O(\log \log r / \log r)$, $\log \log p_{r}=\log \log r+O(\log \log r / \log r)$.

Hence from (4.2) we obtain

$$
\begin{align*}
\sum(x) \geqslant \exp & \left(O\left(\log _{2} x\right)\right) \exp \left\{k \log _{2} x-k \log k+k+o(k)-k \log _{2} p_{(A+1) k}+\right. \\
+ & \left.k((A+1) \log (A+1)-A \log A)-k \log p_{(A+1) k}\right\}= \\
= & \exp \left\{k \log _{2} x-2 k \log k-2 k \log _{2} k+2 k+o(k)+\right. \tag{4.4}\\
& \left.+O(k / A)+O(k \log A / \log k)+O\left(\log _{2} x\right)\right\},
\end{align*}
$$

where the o and O-notation is uniform in A.
Suppose now that $\varepsilon>0$ is given. Then (4.4) implies, for $k \geqslant k_{0}(\varepsilon)$,

$$
\begin{gathered}
\sum(x) \geqslant \exp \left(O\left(\log _{2} x\right)\right) \exp \{k(\log \log x- \\
-2 \log k-2 \log \log k+2 k+R(k, A))\},
\end{gathered}
$$

where for some $B>0$

$$
|R(k, A)|<\varepsilon / 3+B / A+B \log A / \log k .
$$

At this point we choose $A=\left[3 B \varepsilon^{-1}+1\right]$. Then for $k \geqslant k_{1}(\varepsilon)$ we have $B \log A / \log k<\varepsilon / 3$, hence for $k \geqslant \max \left(k_{0}, k_{1}\right)$

$$
\begin{equation*}
\sum(x) \geqslant \exp \left(O\left(\log _{2} x\right)\right) \exp (f(k)), \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
f(k)=k \log _{2} x-2 k \log k-2 k \log _{2} k+(2-\varepsilon) k, \tag{4.6}
\end{equation*}
$$

so that

$$
f^{\prime}(k)=\log _{2} x-2 \log k-2 \log _{2} k-2 / \log k-\varepsilon,
$$

and $f^{\prime \prime}(k)<0$ for k sufficiently large. This means that $f(k)$ attains its maximum for $k=k_{2}$, where $k_{2}=k_{2}(x)$ is the solution of $f^{\prime}(k)=0$, which yields

$$
\log x=k_{2}^{2} \log ^{2} k_{2} \exp \left(\varepsilon+2 / \log k_{2}\right), \log x=\left(\frac{1}{4}+o(1)\right) k_{2}^{2}(\log \log x)^{2}
$$

hence

$$
\begin{equation*}
k_{2}=k_{2}(x)=(2+o(1)) \log ^{1 / 2} x(\log \log x)^{-1}, \quad(x \rightarrow \infty) . \tag{4.7}
\end{equation*}
$$

Taking $k=k_{3}=\left[k_{2}(x)\right]$ we see that $k=o(v)$ holds (this is needed in the evaluation of $\binom{v}{k}$, and therefore from (4.5) and (4.6) we obtain

$$
\begin{gathered}
\sum(x) \geqslant \exp \left(O\left(\log _{2} x\right)\right) \exp \left((2+o(1)) k_{3}\right) \geqslant \\
\geqslant \exp \left(\left(4-\varepsilon_{1}\right) \log ^{1 / 2} x(\log \log x)^{-1}\right)
\end{gathered}
$$

for $x \geqslant x_{1}\left(\varepsilon_{1}\right), \varepsilon_{1}=\varepsilon_{1}(\varepsilon)$ and $\lim _{\varepsilon \rightarrow 0} \varepsilon_{1}=0$. Therefore we have proved the lower bound for $\sum(x)$.

In proving the upper bound for $\sum(x)$ we shall make use of

$$
\begin{gather*}
\psi\left(x, p_{t}\right)=\exp \left(t \log _{2} x-t \log t-t \log _{2} t+t+o(t)\right) . \\
\left(1 \ll t \leqslant \log ^{1-\varepsilon} x\right) \tag{4.8}
\end{gather*}
$$

Actually we need only the upper bound implied by (4.8), but the lower bound follows from a simple combinatorial argument (e.g. see [1] or [5]) which gives

$$
\begin{equation*}
\psi\left(x, p_{t}\right) \geqslant\binom{ t+[\log x / \log t]}{t} \tag{4.9}
\end{equation*}
$$

and then evaluating the binomial coefficient by (4.3) we arrive at the lower bound implied by (4.8). The upper bound could be also obtained from known results on $\psi(x, y)$, but it seems more appropriate to proceed directly. Note that $\psi\left(x, p_{t}\right)$ represents the number of lattice points $\left(a_{1}, \ldots, a_{t}\right) \in(N \cup\{0\})^{t}$ such that

$$
a_{1} \log p_{1}+\ldots+a_{t} \log p_{t} \leqslant \log x
$$

Each such lattice point lies in a "lower left corner" of a unit hypercube. If $\left(w_{1}, \ldots, w_{t}\right) \in\left(R e^{+}\right)^{t}$ is in one of these hypercubes, then

$$
\sum_{i \leqslant t} w_{i} \log p_{i} \leqslant \log x+\sum_{i \leqslant t} \log p_{i} \leqslant \log x+(1+\varepsilon) p_{t},
$$

by the prime number theorem. Thus $\psi\left(x, p_{t}\right)$ does not exceed the t dimensional volume of

$$
\left\{\left(w_{1}, \ldots, w_{t}\right) \in\left(R e^{+}\right)^{t}: \sum_{i \leqslant t} w_{i} \log p_{i} \leqslant \log x+(1+\varepsilon) p_{t}\right\},
$$

and consequently

$$
\begin{gather*}
\psi\left(x, p_{t}\right) \leqslant \prod_{i \leqslant t} \frac{\log x+(1+\varepsilon) p_{t}}{t!\log p_{i}}= \\
=\exp (-t \log t+t+o(t)+t \log (\log x+ \\
\left.\quad+(1+\varepsilon) p_{t}\right)-\sum_{i \leqslant t}^{\left.\log \log p_{i}\right)} \\
=\exp (t \log \log x-t \log t-t \log \log t+ \\
\left.\quad+t+o(t)+O\left(t p_{t} \log x\right)\right) . \tag{4.8}
\end{gather*}
$$

By hypothesis $p_{t} \leqslant \log ^{1-\varepsilon} x$, hence $O\left(t p_{t} / \log x\right)=o(t)$ and follows.

Having (4.8) at our disposal we may obtain the upper bound for $\sum(x)$ as follows. Let $\omega(n)=t, P(n)=p$ for n counted by $\sum(x)$. Then obviously $p \geqslant p_{t}$, and moreover for a fixed p there are $\binom{\pi(p)-1}{t-1}$ choices for the remaining $t-1$ prime factors of n. Once the t prime factors of n are known, there are at most $\psi\left(x, p_{t}\right)$ numbers with those prime factors counted by $\sum(x)$, giving

$$
\begin{equation*}
\sum(x) \leqslant \sum_{t \leqslant 2 \log x \times \log x} \psi\left(x, p_{t}\right) \sum_{p \leqslant s \leqslant x} p^{-t}\binom{\pi(p)-1}{t-1}, \tag{4.10}
\end{equation*}
$$

since $t=\omega(n) \leqslant 2 \log n / \log _{2} n \leqslant 2 \log x / \log _{2} x$. To estimate the inner sum in (4.10) we use the prime number theorem to obtain

$$
\begin{align*}
& \sum_{p, \leqslant p \leqslant x} p^{-t}\binom{\pi(p)-1}{t-1} \leqslant \sum_{p, \leqslant p \leqslant x} p^{-t}((1+\varepsilon) p / \log p)^{t-1} /(t-1)! \tag{4.11}\\
& \leqslant \frac{(1+\varepsilon)^{t-1}}{(t-1)!} \sum_{p, \leqslant n \leqslant x} n^{-1} \log ^{1-t} n \ll(1+\varepsilon)^{t}\left(t!\log ^{t-2} t\right)^{-1} .
\end{align*}
$$

To be able to use (4.8) we restrict t in (4.10) to the range $t_{0} \leqslant t \leqslant \log ^{1-\varepsilon} x$. The contribution of t 's for which $t<t_{0}$ is seen to be negligible by using the trivial bound

$$
\psi(x, y)<\left(\frac{\log x}{\log 2}+1\right)^{\pi(y)},
$$

while for the range $t>\log ^{1-\varepsilon} x$ we may use the estimates of N. G. de Bruijn [1] or the elementary estimate

$$
\psi(x, y)<\binom{\pi(y)+u}{u}^{1+\varepsilon}, \quad u=[\log x \log y]
$$

of [5] and the trivial inequality $\binom{n}{k} \leqslant n^{k} / k$!. For the range $t_{0} \leqslant t \leqslant \log ^{1-\varepsilon} x$ in (4.10) we use (4.8) to obtain a contribution which is

$$
\begin{gather*}
\ll \sum_{t_{0} \leqslant t \leqslant \log ^{\prime-A} x} \psi\left(x, p_{t}\right) \sum_{p_{1} \leqslant p \leqslant x} p^{-t}\binom{\pi(p)-1}{t-1} \\
\ll \log x \max _{t_{0} \leqslant t \leqslant \log ^{\prime--x}} \exp \left(t \log _{2} x-t \log t-2 t \log _{2} t+t+\right. \tag{4.12}\\
+o(t)-\log t!) \leqslant \log x \max _{t_{0} \leqslant t \leqslant \log ^{\prime-1} x} \exp (g(t)),
\end{gather*}
$$

where

$$
\begin{equation*}
g(t)=t \log \log x-2 t \log t-2 t \log \log t+(2+\varepsilon) t \tag{4.13}
\end{equation*}
$$

The function $g(t)$ differs from $f(t)$ (as defined by (4.6)) only that it has ε in place of $-\varepsilon$, and its maximal value is determined analogously by solving the equation $g^{\prime}(t)=0$. This gives the value

$$
t=t_{1}(x)=(2+o(1)) \log ^{1 / 2} x(\log \log x)^{-1}, \quad(x \rightarrow \infty)
$$

thus completing the proof of (1.13), since with the above value (4.12) gives

$$
\sum(x) \leqslant \exp \left((4+\varepsilon) \log ^{1 / 2} x(\log \log x)^{-1}\right)
$$

The proof of (1.14) is considerably simpler that the proof of (1.13). It is sufficient to prove

$$
\sum_{n>x}^{\prime} 1 /(P(n))^{\Omega(n)} \ll 1 / \log x
$$

where \sum^{\prime} denotes summation over composite n, since

$$
\begin{equation*}
\sum_{n \leqslant x} 1 / p^{\Omega(p)}=\sum_{p \leqslant x} 1 / p=\log \log x+B+O(1 / \log x) \cdot(B=0.26419 \ldots) \tag{4.14}
\end{equation*}
$$

Write

$$
S=\sum_{n>x}^{\prime} 1 /(P(n))^{\Omega(n)}=S_{1}+S_{2},
$$

say, where in S_{1} we have $P(n) \leqslant y$ and in $S_{2}, P(n)>y$, and $y=y(x)$ will be suitably determined in a moment. Using the trivial

$$
(P(n))^{\Omega(n)} \geqslant n
$$

and partial summation, we obtain

$$
\begin{equation*}
S_{1} \leqslant \int_{x}^{\infty} t^{-1} d \psi(t, y) \ll x^{-1} \psi(x, y)+\int_{x}^{\infty} \psi(t, y) t^{-2} d t \tag{4.15}
\end{equation*}
$$

From [1] one has, for $y \leqslant x$ and some absolute $C>0$,

$$
\begin{equation*}
\psi(x, y)<x \exp (-C \log x / \log y) \tag{4.16}
\end{equation*}
$$

so that (4.15) gives

$$
S_{1} \ll \exp (-C \log x / \log y)=1 / \log x
$$

if we choose

$$
y=y(x)=\exp (C \log x / \log \log x)
$$

To estimate S_{2} note that the number of n with $\Omega(n)=k$ and $P(n)=p$ is at most $\pi^{k-1}(p)$. If $\Omega(n)=2$ and $n>x$, then $P(n)>x^{1 / 2}$. From these elementary observations, we have

$$
\begin{aligned}
& S_{2} \leqslant \sum_{n>x . \Omega(n)=2}(P(n))^{-\Omega(n)}+\sum_{n>x, \Omega(n)>2, P(n)>y}(P(n))^{-\Omega(n)} \\
& \leqslant \sum_{p>x^{1 / 2}} p^{-2} \pi(p)+\sum_{k=3}^{\infty} \sum_{p>y} p^{-k} \pi^{k-1}(p) \\
& =\sum_{p>x^{1 / 2}} p^{-2} \pi(p)+\sum_{p>y} \pi^{2}(p) /\left(p^{3}-p^{2} \pi(p)\right) \\
& \ll \sum_{p>x^{1 / 2}} 1 /(p \log p)+\sum_{p>y} 1 /\left(p \log ^{2} p\right) \\
& \ll 1 / \log x+1 / \log ^{2} y \ll 1 / \log x
\end{aligned}
$$

using elementary estimates on the distribution of primes. Therefore

$$
S=S_{1}+S_{2} \ll 1 / \log x
$$

which proves (1.14). We finally remark that the error term $O(1 / \log x)$ is best possible since

$$
\sum_{n>x}^{\prime}(P(n))^{-\Omega(n)}>\sum_{p>x} p^{-2} \pi(p) \ll 1 / \log x .
$$

With more work we could replace the term $O(1 / \log x)$ in (1.14) with $(C+o(1)) / \log x$ for some positive constant C, but we do not undertake this here.

§5. Proof of Theorem 4

We write the summatory function of $1 / Q(n)$ as

$$
\begin{aligned}
\sum_{n \leqslant x} 1 / Q(n) & =\sum_{n \leqslant x, Q(n)=P(n)} 1 / Q(n)+\sum_{n \leqslant x, Q(n)=P^{*}(n), k>1} 1 / Q(n)+ \\
& +\sum_{n \leqslant x . Q(n) \neq P^{d}(n), k \geqslant 1} 1 / Q(n)=S_{1}+S_{2}+S_{3},
\end{aligned}
$$

say. By (1.4) with $r=1$ we have first

$$
\begin{equation*}
S_{2} \ll x \exp \left(-(2+o(1))\left(\log x \log _{2} x\right)^{1 / 2}\right) \ll L^{-1 / 2} \sum_{n \leqslant x} 1 / P(n) \tag{5.1}
\end{equation*}
$$

Next by writing

$$
\sum_{n \leqslant x, Q(n)=P(n)} 1 / Q(n)=\sum_{n \leqslant x} 1 / P(n)-\sum_{n \leqslant x, Q(n)>P(n)} 1 / P(n),
$$

we see that (1.16) follows from (5.1) and

$$
\begin{equation*}
\sum_{n \leqslant x, Q(n) \neq P^{k}(n), k \geqslant 1} 1 / P(n) \ll L^{-c} \sum_{n \leqslant x} 1 / P(n), \tag{5.2}
\end{equation*}
$$

where $C>0$ is some absolute constant. As in the proof of (1.12) we may consider only those n for which (3.7) holds. Since $Q(n)$ is the largest prime power dividing n, we may assume that $q^{a}=Q(n)>p=P(n)$ for some $a \geqslant 2$. Observe that in estimating the left-hand side of (5.2) we may also assume that $q^{a} \leqslant L^{4}$, since

$$
\sum_{q^{\prime}>L^{4}, a \geqslant 2} q^{-a} \ll L^{-2} .
$$

If $0<C_{1}<C_{2}$ are any two fixed constants, then from (1.8) and (2.1) or from earlier estimates on $\psi(x, y)$ (see [1], [3]) we have, for $L^{C_{1}} \leqslant y \leqslant L^{C_{2}}$ and $u=\log x / \log y$,

$$
\begin{equation*}
\psi(x, y)=x \exp (-(1+o(1)) u \log u), \quad(x \rightarrow \infty) \tag{5.3}
\end{equation*}
$$

In view of (1.2) and the remarks above it follows that we are left with $O(\log x)$ sums of the form

$$
\sum_{a}=\sum_{p}^{\prime} \sum_{p<q^{*} \leqslant L^{4}} p^{-1} \psi\left(x p^{-1} q^{-a}, p\right),
$$

where $a \geqslant 2$ is a fixed integer and \sum^{\prime} denotes summation over primes p which satisfy (3.7). Using (5.3) to estimate $\psi\left(x p^{-1} q^{-a}, p\right)$, we obtain

$$
\begin{gathered}
\sum_{a} \ll \sum_{p}^{\prime} x \exp \left\{-\left(2^{-1 / 2}-2 \varepsilon\right)\left(\log x \log _{2} x\right)^{1 / 2}\right\} p^{-2} \sum_{q^{*}>p} q^{-a} \\
\cdot \ll x L^{-\left(2^{-1 / 2}-2 \varepsilon\right)} \sum_{p}^{\prime} p^{-5 / 2} \ll x L^{-\left(5 \cdot 2^{-3 / 2}-5 \varepsilon\right)} .
\end{gathered}
$$

Since $5 \cdot 2^{-3 / 2}=2^{1 / 2}+\frac{1}{4} 2^{1 / 2}$, we obtain in view of (1.1)

$$
\sum_{a \geqslant 2} \sum_{a} \ll L^{-C(\varepsilon)} \sum_{n \leqslant x} 1 / P(n)
$$

for some $C(\varepsilon)>0$, if ε in (3.7) is sufficiently small. This proves (5.2) and completes the proof of (1.16). Presumably by methods similar to those used to prove Theorem 1 we could improve (1.16) and obtain an asymptotic formula for the sum

$$
\sum_{n \leqslant x}(1 / P(n)-1 / Q(n)) .
$$

Finally we remark that by methods similar to those used in the proof of Theorem 4 we may obtain

$$
\begin{equation*}
\sum_{2 \leqslant n \leqslant x} 1 / f(n)=\left\{1+\exp \left(-C(\log x \log \log x)^{1 / 2}\right)\right\} \sum_{2 \leqslant n \leqslant x} 1 / P(n) . \tag{5.4}
\end{equation*}
$$

Here $C>0$ is an absolute constant and $f(n)$ denotes either $\beta(n)=\sum_{p \backslash n} p$ or $B(n)=\sum_{\left.p^{\alpha}\right\rfloor \mid n} \alpha p$ (see [6], Ch. 6 and [7] for some results concerning these functions). Thus (5.4) and Theorem 1 provide an asymptotic formula for sums of reciprocals of $\beta(n)$ and $B(n)$.

REFERENCES:

[1] N. G. de Bruijn, On the number of positive integers $\leqslant x$ and free of prime factors $>y$, Nederl. Akad. Wetensch. Proc. Ser. A 13 (1951), 50-60 and ibid. II 28 (1966), 239-247.
[2] On the number of integers $\leqslant x$ whose prime factors divide n, Illinois J. Math. 6 (1962), $137-141$.
[3] E. R. Canfield, P. Erdös and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
[4] J.-M. De Koninck and A. Ivić, Topics in arithmetical functions, Mathematics Studies 43, North-Holland, Amsterdam, 1980.
[5] P Erdös and J. H. van Lint, On the number of positive integers $\leqslant x$ and free of prime factors $>y$, Simon Stevin 40 (1966), 73-76.
[6] P. Erdös and A. Ivić, Estimates for sums involving the largest prime factor of an integer and certain related additive functions, Studia Sci. Math. Hungar. 15 (1980), 183-199.
[7] \quad, On sums involving reciprocals of certain arithmetical functions, Publ. Inst. Math. (Beograd) 32 (1982), 49-56.
[8] A. Hildebrand, On the number of positive integers $\leqslant x$ and free of prime factors $>y$, J. Number Theory, 22 (1986), $289-307$.
[9] A. Ivić, Sums of reciprocals of the largest prime factor of an integer, Arch. Math. 36 (1980), 57-61.
[10] A. Ivic and C. Pomerance, Estimates of certain sums involving the largest prime factor of an integer, Coll. Math. Soc. J. Bolyai 34, Topics in classical number theory, North-Holland, Amsterdam, 1984, 769-789.
[11] H. Maier, On integers free of large prime divisors, preprint.
[12] S. Ramanujan, Collected Papers, Chelsea, New York, 1962.
[13] W. Schwarz, Einige Anwendungen Tauberscher Sätze in der Zahlentheorie B, J. Reine Angew. Math. 219 (1965), 157 - 179.
(Received September 14, 1984)

[^0]: * Research supported in part by a grant from the National Science Foundation.

[^1]: 3 Glasnik matematički

