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ON SUMS INVOLVING RECIPROCALS OF THE LARGEST
PRIME FACTOR OF AN INTEGER

P. Erdos, A. Ivi¢ and C. Pomerance*,
Budapest, Beograd and Athens, Ga, USA

Abstract. Sum ol reciprocals of P(n), the largest prime factor ol n, is precisely
evaluated asymptotically. Asymptotic formulas for some related sums, involving the
function @ (n) and @ (n) (the number of distinct and the total number of prime factors of
n) are also derived.

§1. Introduction and statement of results

Let as usual w(n) and Q(n) denote the number of distinct prime
factors of n and the total number of prime factors of n, respectively. Let
P (n) denote the largest prime factor of an integer n=2, and let P(1)=1.
Several results involving sums of reciprocals of P (n) and some related
additive functions were obtained recently in [4], Ch. 6, [6], [7], [9] and
[10]. Thus it was shown in [9] that

Y 1/P (n)=xexp {— (2log x loglog x)** +
nEx ”nl.
+ 0 ((log xlogloglog x)'?)}. ;

The proof of this result depended on estimates for ¥ (x,y), the
number of positive integers n<x with P (n)<y. The connection is seen
via the easy identity

Y /Pm)=1+% p "y (xp~',p) (1.2)

nEx PEX

where p denotes a general prime throughout the paper. By using a
better estimate for ¥ (x, y) (see [3]), the result (1.1) was slightly sharpe-
ned and more general sums were estimated in [10], namely

S,(x)=Y /P'(n), T,(x)= Y 1/P(n).

nsx n€x, P (n)n
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where r=0 is an arbitrary, fixed real number. It was proved in [10] that
S, (x)=xexp { — (2r)! (log xlog, x)'* (1 +4,_ (x)+

(1.3)
+ 0 (log3 x/log} x))}

and
T,(x)=xexp {—(2r+2)"? (log xlog, x)'? (1 +g, (x)+
+ 0 (log3 x/log3 x)) },
where log, x=log (log, _, x) is the k-fold iterated logarithm and

_logy x+log(l +r)—2—log2(I 5 2 )
B 2log, x log x

(1.4)

g, (x)

(log, x +log (1 +7)—log 2)?
8log? x '

Recently H. Maier [11] and A. Hildebrand [8] obtained indepen-
dently much better results concerning ¥(x,y), which may be used in
connection with our problems. It is now possible to obtain asymptotic
formulas for the sums S, (x) and 7, (x). We shall work out the details
only for the sum in (1.1), namely S, (x). The other sums can be handled
by the same method. We prove

THEOREM 1,

1/P(n)=x6(x)| 1+0 — ; (1.5)
log x

nsx

where

X

o
5H}=Ip(DgY)FQdL (1.6)
log t

2

and p () is the continuous solution to the differential delay equation
up' (w)y=—pu—1) (1.7)
with the initial condition p (u)=1 for 0Su<I.

Here p (u) is the so-called Dickman-de Bruijn function, for which
the latter [ 1] obtained the estimate

logyu 1 log; u }
p(u) exp{ u(]ogu+ og, u logu logu (logzu )

(u—c0)

By comparing (1.3) and (1.5) (or by direct evaluati. a with the aid of
(1.8)) we find that

S (x)=exp | — (2log xlog, x)' % (1 +¢, (x) + O (log3 x/log; x))}. (1.9)
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Although & (x) is a fairly complicated function, (1.9) gives for most
purposes a sufficiently sharp approximation. Moreover 8 (x) is slowly
oscillating, i.e. for any constant C >0 we have

lim & (Cx)/3 (x)=1, (1.10)

which is obtained in §3. As a corollary of (1.5) and (1.10) we have, for
example,

Y 1P~ ¥ 1/Pn)

nEx x<nslx

which seems to be difficult to obtain without using finer information
about i (x, y). The notation f(x)~ g (x) means as usual that

lim f (x)/g (x)=1,

and other notation used throughout the paper is also standard. For
example, f(x)=0(g (x)) and f(x)<g (x) both mean that |f(x)| < Cg (x)
for some absolute C >0 and x = x,, while f(x)=0(g(x)) means that

lim f(x)/g (x)=0.

It seems interesting to investigate how much the sum in (1.1)
changes when [/P(n) is replaced by w(n)/P(n) or @(n)/P(n). This
problem has already been investigated in [7], where it was shown that

(ogs) 2P 01%) )
1/P(n)< ) Q(n)/P (n)<(logxloglogx)"' 1/P(n),
loglog x

nEx n=x nex

and the method would yield the same result if Q (n) is replaced by w (n).
By using Theorem 1, we prove

THEOREM 2. There is a positive constant ¢ such that
Y (Q(n)—w(n)/P(n)~cxd(x), (1.11)

nEx

Y Q(n)/P(n)~ Y @(n)/P(n)~(2logx/loglogx)'*xd (x), (1.12)

where J (x) is defined by (1.6).

The results (1.5) and (1.12) imply that in a certain sense the main
contribution to the sums in (1.12) comes from those n<x with about
(2log x/log log x)'? prime factors. This fact is interesting in view of the
classical result of G. H. Hardy and S. Ramanujan (see [12]) that both
the normal and average order of w (n) and Q (n) is loglog n.

Theorem 2 shows that sums of @ (n)/P (n) and @ (n)/P (n) behave
similarly. On the other hand, quite a different situation arises when one
estimates sums of P (n)”®™ and P (n) ?". The corresponding summa-
tory functions turn out to be completely different, as shown by
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THEOREM 3.
Y P(n)"“™=exp {(4+0(1))(logx)'?/(loglogx)},  (1.13)
Y P(n)"?"=loglogx+ D+ 0 (1/logx). (1.14)

n<x

Here D>0 denotes an absolute constant that is effectively computable.
It seems interesting to compare (1.13) with the estimate
Y 1a(n)=exp {(2+/2+0(1)) (logx/loglogx)' 2}, (L.15)
REX

where a(n)=[]p is the largest square-free divisor of n. This result is

| .
due to N. G. de Bruijn [2] and was sharpened by W. Schwarz [13].
Since evidently
2 (n) <P (n)*™,
the sum in (1.13) is majorized by the sum in (1.15), but it turns out that
even the logarithms of these sums are of a different order of magnitude.

The sum in (1.13) is more difficult to estimate than the sum in (1.14),
where the main contribution comes from primes.

For our last result, let Q (n) denote the largest prime power which
divides n=2, and let Q(1)=1. One naturally expects sums of 1/P (n)
and 1/Q (n) to behave similarly, and this is precisely what is established
in

THEOREM 4. There is a constant C >0 such that

Y 1/Q(n)={1+0 (exp (— C (log xloglogx)'?))} ¥ 1/P (n).(1.16)

nEx nEx

§2. Proof of Theorem 1

We begin by establishing the identity (1.2). We have

Y ypm)=1+Y 1/p Y 1=1+31p X 1=

nsx pEX nsx, Pinj=p pEx m=x/p.Pimi=p
-1 ;
=1+ p 'Y (x/p.p).
PEX

so that (1.2) holds. To facilitate notation, let from now on
L=L (x)=exp {(log xloglog x)'2}.

Using (1.2) and following the proof of (1.1) given in [9] we see that
the contribution from the primes p with p<L'? or p> L is at most

g, At (x—o00).
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Thus in view of (1.1) it suffices to consider only those values of p
with L'2<p<[L,

We now state the new result of A. Hildebrand [8] (H. Maier’s
theorem [11] is slightly weaker) mentioned in the introduction.

THEOREM (A. Hildebrand). The estimate
¥ (x, x'™)=xp (u}(1+02(%)) (2.1)
holds uniformly in the range
x=3, 1<u<logx/(loglogx)*? "¢,
where € is any fixed positive number.

The importance of this result lies in the wide range for u. By N. G.
de Bruijn [1] (2.1) was known to hold for 1<u<(logx)*®~¢, but this
range is not sufficient for our purposes.

Applying (2.1) to the Y (x/p, p) for L'?*<p<L we obtain the
uniform estimate

x [logx loglog x\'*?
lf’(x;’p.p]=-p( 5 —l)(l+0(( i ) ))
p \logp log x

Thus from the above comments we have

112
Y re=(1+0((525)")) ), w0 (er-1)
log x logp

nsx L'P<p<L

L
172
log x log

i
L

! [ 1/2 I X
(1+0((0g ng) ))lex p(—og"—l dr.
log x t“logt logt

JAk

Using (1.7) the last integral becomes

L L
—xlogx (!ng) jx (logx)
il - 8 il O [ P L
J‘ t*log?t 4 logt ap log t
Y (2.3)

L,
% (logx) % (logx ) ‘[x (logx)
L \iogZ) 17 \iog 7)™ | Z”\itogr
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Using (1.8) we see that the right-hand side of (2.3) is equal to
x0 (x)+ 0 (xL™3727F)

for any £>0, hence Theorem 1 follows then from (2.2) and (2.3).

§3. Proof of Theorem 2

A positive integer m is called square-full if pz|m for every prime
p|m. Let s(n) denote the largest square-full divisor of n. Then we have

Q(n)—wn)=2(s(n))—w(s(n)). (3.1)

To estimate the sum in (1.11) we first show that those n with
s(n)>log® x or with P? (n)|n contribute only o (x4 (x)) to the sum. To do
this first note that, for n<x,

log
Q{n}—w{n}é—gg—t— L,
log2

hence

Y (Qm)—wm)/P(n)<T, (x)logx=xL 2", (3.2)

n<x. P (nln

where we used (1.4) with r=1.

Next note that there are ~Cx'? square-full integers not exceeding
x. Therefore using partial summation we obtain

Y o @m-wm)Pmn<logx Y 1

nEx (M2 L2 n<xsin=L?
=logx Y Y 1<xlogx Y 1/s (3.3)
s# L' asx.sin) =5 =1

=xL 3R+ oW = (x5 (x))
where E' denotes a sum over square-full integers.
To estimate the sum in (1.11) for s (n) < L?, we need the following
LEMMA. Uniformly for x=3 and 1 <s<L>, we have
3 (x/s)< (1 +0(1))s2lorlosxoex’ 5 (),

Proof. We use the following result, which is Lemma 1—(v) in
Hildebrand [8]:

—p (u)/p (W) <log (ulog® u) (u=e?).
Integrating this inequality over [u— 4, u] we obtain, for 0S A<u—¢*,

p(u—A)/p(w)<(ulog® u)*.
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Thus for 1<s<L?and for large x we have

B

logx logs
5{,\-;5):J rlp( £ ~—g)dr
logr logt

lo lo log:
Iogr logr logt
| 1 5 log s/logt
<(1+o(1) J (—g)(o—g\ (Dg“)) dt
ogt/\logt logt

iDg\f log s/log L' )
<(l+011)}( Lm (long 1)) d(x)

{“_'_O(]}}“Og t}h’ag\lﬂ&.f_l l+0(1:‘} Q"iloblogring\l' (){Y)

which establishes the lemma.

By Theorem 1 and the Lemma, we have

5 (Q(n)—wi(n)=logx 3 1/P(n)

3
ngyx, log' x<sni< 1’ nExlog! y<sinl <

<logx Y’ >  1/Pi(n)
log' x<s< L nsx, sin (3‘4}
<logx Y/ Y yPmy<logx Y (x/s)d(x/s)
log? x <5 <L’ mExjs logdx<s< i
,l 2

< xd(x)log 2 x.

s 1+ 2{loglog x/log x

<xd(x)logx Y’

i=log'x

Therefore to show (1.11) it will be sufficient to restrict the sum to
those n=x for whu.h Pztn)J(n and s (n)<log’ x. Also, as in Section 2,
we may assume L'*<P(m)<L. If z denotes a sum over integers k
with the restrictions P"‘ (k)fk and P (k)=L'7?, then by (3.1) we have

Y’ (Q(n)—wm)/Pn)= 3 YU (@) —w(n)/P(n

n< x, sini=log’ x s= o’y n=xosinl=4

= Z (Q(s)—w(s)) E 1w (m)/P(m)

v ot x M=y mos)=1
; 3.5
=Y @G)-wis) Y 1/Pm Y apd) 5:2)
s loptx mE s lmais)
=Y @e)-w@E)Xud Y 1P(k).
s<logx d k< x(d, x(8) sd
Pikli=FP(d)

T Glasmk matemuanicki
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Here rx(s}:[_[p and the last equality follows from the fact that
dzlma{s) if pa‘;nd only if m is of the form kd*/(d,«(s)) (and so
P (m)=P (k) since P*(m)}m, P(m)=L"* and s<log® x).

The last and innermost sum in (3.5) is majorized by Ix/dz‘ so that
the contribution to (3.5) by those d > L*?/log® x is O (xL " 3?*°M) and is
thus negligible. For log® x<d<L*?/log* x and s<log® x we have

log® x<sd*/(d, x(s)) < L°,
so that from the proof of (3.4), the last sum in (3.5) for such a value of
dis

0 {xa { ’C}d 24 2{log log x/log x)' ’)

Thus the contribution to (3.5) from these values of d is
< xd (x)log ' x, which is also negligible.
Hence we may restrict attention in (3.5) to those d with d <log” x.
For such d's we have
sd*/(d, x(s)) <log® x,

and so by Theorem 1 and (3.2) the last sum in (3.5) for these d's is
uniformly

(I+o(1)) (3.6)

x(d, x(s)) % (x (d, o (5}})
sd® sd* ’

Note that from the definition of 4 (x) it is possible to show that 6 (x) is
decreasing for xZ2x, so that using the Lemma we have
3(x/t)=(1+0(1))d(x) uniformly for 1<t<log’x. In particular, this
remark implies that (1.10) holds. Thus (3.6) is

{Sll
})——— !
ol Jl d 0 (x)

Putting this estimate in (3.5) we have
Y (@m)-wn)Pn)=
n<x,s(nslog’x

, d.a(s) p(d
~(alilitd T el T B
s<log’ x d<log'x Sd

Lo Q) -wls) o P
_{1+o(l)}|n2x5[x]s€£,x = ,E!p+l

Q(s)—w(s) p
- 1)) — xd .
(140 nnzr (x 1,21 : ﬂpﬂ
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since by multiplicativity

E s))d? ﬂ{1+utp) (P (s)p?)

=5{('—%),1,1(1-§»)=ﬁ.s(l—ﬁ)(l—;—z) S

Thus from this calculation and (3.2), (3.3) and (3.4) we obtain (1.11)
with the constant

Q(s)—wi(s)
S

6 P
== I1 > 0.

Plsp+]

x

A more careful analysis shows that ~ in (1.11) can be replaced by
1+ 0 ((loglog x)**log ™! x), since for 1<:<log'? x we obtain by follo-
wing the proof of the Lemma

d(x/t)=(14+0 ((loglog x)**log™'? x)) d (x).

We now turn our attention to the proof of (1.12). From the proof
of (1.1) or from the proof of Theorem 1 it may be seen that only the
values of n<x for which

LRGP (g LB (3.7)

for any fixed ¢>0 make a non-negligible contribution to the sums in
(1.12).

We next note that if n<x/L?, then

Y wm/Pm<s Y Q(n)/P(n)<xL ?logx=o0(xd(x)),

nEx/L* n€x/L?

so we may assume that

x/[*<n<x. (3.8)

Thus combining (3.7). (3.8) and using the trivial inequality
n<(P(n)*"™, we obtain

Q(n)=(v/2—-2¢) (log x/log log x)' 2,
and so for x=x, (&) it follows that

Y, Q(n);‘P[n)?{\/i—le,\(logx_floglogx)“z > 1/P(n). (3.9)

nEx nEx

To estimate the sum of @ (n)/P (n) from above we use the classical
elementary inequality of G. H. Hardy and S. Ramanujan ([ 12]. p. 265):

)

n=xawin)=k

, k
lgEx{loglogx+F)

3.10
k!log x : )
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where E, F>0 are absolute constants. Using (3.10) we obtain that the
number of n<x with

w(n) >{\/'5 +5¢) (log x/log log x)' 2 (3.11)

is at most xL~¥2-2%_ Thus the sum of @ (n)/P (n) for n<x and such
that (3.7) and (3.11) both hold 1s at most

xlog.\'L“’5"=o(x6|x]J.
On the other hand, the sum of w(n)/P(n) for n<x and (3.11)

failing is clearly at most

(v/2+5¢) (log x/loglog x)'* 3 1/P (n). (3.12)

nSx

Combining (3.9) and (3.12) with Theorem 1 and (1.11), we have
(1.12), completing the proof of Theorem 2. We finally remark that we
can prove (1.12) without using the Hildebrand-Maier result on i (x. y).
However this result seems to be essential for the proof of (1.11).

&4, Proof of Theorem 3

We denote by Y (x) the sum in (1.13) and proceed first to derive
the lower bound of the correct order of magnitude. In what follows p
will always denote primes and p, will denote the r-th prime. Let A be a
large positive integer, and consider integers m<x such that w(m)=k
and P(m)<p, ., Where k=k(x) is an integer which will be suitably
determined later. If

m=p§'l'---p;‘f (4.1)

i (A+1)k
is the canonical decomposition of m, then there are ( K ways we

can choose p; ...p, =x(m). Once x(m) is fixed, we can choose the
exponents a,..... a, in (4.1) by considering positive integer solutions of

a, log Pyt ... ta log pikélog X.

Note that the number of positive, integer solutions of the above
inequality is certainly not less than the corresponding number of

solutions of

ay ]qum#llk+ .. ta, IOgPu i higlog-‘-'

v
which is (k)’ where v=[log x/logp,.,,.]. Therefore

Yx)=Y {P[m]]“‘2(;)('“(:");9:15“;. 4.2)

mex
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To evaluate binomial coefficients which appear in the last inequali-
ty we shall use Stirling’s formula in the form

n!=exp{nlogn—n%—log\fﬁ+o{l)J‘ (n—0) (4.3)

When k, v— o0 and k=o(v), (4.3) gives

Ak+k
]08( P )=k{A+l}logk(A+l}—k{A+I]—kAlog(kA}+ kd—
—klogk+k+ 0 (logk)

=k(A+1)log(A+1)—kAlog A+ O (loglog x),
]og(i):;«}og1~_klogk—[1:—k}1oglp_k)+0.:_|0gr]

=klogv—klogk+k+o(k)+ O (loglog x).

From the prime number theorem we have
p,=r(logr+0(loglogr)), log p,=logr+loglogr+ 0 (loglogr/logr).
loglogp,=loglogr+ 0 (loglog r/logr).

Hence from (4.2) we obtain
Y (x)=exp (O (log, x))exp {klog, x— klog k+k+o (k)—klog, p i1+
+k((A+1)log(A+1)—Alog A)—klogp i) =
=exp {klog, x—2klog k—2klog, k+2k+o (k) +
+0 (k/A)+ O (klog Aflog k) + O (log, x) |,

where the o and O-notation is uniform in A.

(4.4)

Suppose now that £¢>0 is given. Then (4.4) implies, for k= k, (&),
Y (x)=exp (O (log, x))exp {k (loglog x —
—2log k—2loglog k+2k+R (k,A))},
where for some B>0
|R (k, A)| <&/3+B/A+Blog A/log k.

At this point we choose 4=[3Be '+1]. Then for k=k, (£) we
have Blog A/log k <&/3, hence for k=max (k. k,)

Y (x)=exp (O (log, x)) exp (f (k)), (4.5)
where
f(k)=klog, x—2klog k—2klog, k+(2—¢) k, (4.6)
so that
Jk)=log,x—2log k—2log, k—2/log k—e,
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and " (k)<O0 for k sufficiently large. This means that f(k) attains its
maximum for k=k,, where k, =k, (x) is the solution of /" (k)=0. which
yields

1
log x = k3 log? k,exp (e +2/log k), log x =(‘—1+ o(l }) k2 (log log x)?,
hence
k,=k,(x)=(2+0(1))log'*x(loglogx)~",  (x—®). (47
Taking k=k,=[k, (x)] we see that k=0 (v) holds (this is needed in

the evaluation of i) and therefore from (4.5) and (4.6) we obtain

Y (x)=exp (O (log, x))exp (2+0(1)) k)=

1/2

Zexp ((4—¢,)log'? x (loglog x) 1),

for x=x, (¢,), &, =¢, (¢) and lim & =0. Therefore we have proved the
e—=0
lower bound for Y (x).

In proving the upper bound for ) (x) we shall make use of

W (x,p,)=exp(tlog, x—tlogt—tlog, t+t+o(t))

(1<t<log' *x) (4.8)

Actually we need only the upper bound implied by (4.8), but the
lower bound follows from a simple combinatorial argument (e.g. see [1]
or [5]) which gives

t+[log x/log r]) 49)

t

!I/LW;)?(

and then evaluating the binomial coefficient by (4.3) we arrive at the
lower bound implied by (4.8). The upper bound could be also obtained
from known results on W (x,y), but it seems more appropriate to
proceed directly. Note that  (x,p,) represents the number of lattice
points (ay, . ... a,)€(NU {0})" such that

a logp, + ... +alogp <logx.

Each such lattice point lies in a “lower left corner” of a unit
hypercube. If (w,...., w,)€ (Re™ ) is in one of these hypercubes, then

Y w;logp,<logx+Y logp,<logx+(1+¢)p,
fE-4 =t

by the prime number theorem. Thus v (x,p,) does not exceed the (-
dimensional volume of

H Cm— w)e(Re* ) : Y w;logp,<logx+(1+¢&)p,},

=t
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and consequently

logx+(1+¢)p,
w (x'!p:}g“n 4_—i=

i tTngPI

=exp(—tlogt+t+o(t)+rlog(logx+
+(1+¢)p,)— Y loglogp,)

=t
=exp (tloglogx—tlogt—tloglogt+
+t+o0(t)+0 (tp,/log x)).

By hypothesis p,<log' *x. hence O (tp/logx)=0(t) and (4.8)
follows.

Having (4.8) at our disposal we may obtain the upper bound for
Y (x) as follows. Let @ (n)=t, P(n)=p for n counted by ) (x). Then

w(p)—1
) )choices

obviously p=p,, and moreover for a fixed p there are (

for the remaining ¢t — 1 prime factors of n. Once the t prime factors of n
are known, there are at most ¥ (x. p,) numbers with those prime factors
counted by Y (x), giving

(p)—1
Yo Y yxp) Y p"(ﬂp} ) (4.10)

1=2log x/log, x nEpEX t—1

since t=w (n)<2logn/log, n<2log x/log, x. To estimate the inner sum
in (4.10) we use the prime number theorem to obtain

(p)—1 ' .
2 p"(n{p_l )‘@ Y. p ' ((L+e)pllogp) ! /(1—1)!
pEpEx nEpsx

(4.11)

— 2 ntlogt Tt ne(L+e) (tllog P
(=1 pEnsx

To be able to use (4.8) we restrict ¢ in (4.10) to the range
to<t<log' ~“x. The contribution of f's for which r<t, is seen to be

negligible by using the trivial bound
log x )
Yix, )< +11 3
log 2

while for the range r>log' *x we may use the estimates of N. G. de
Bruijn [ 1] or the elementary estimate

1+e
w{x,ylé(n(wr") . u=[logx/logy]

u
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of [5] and the trivial inequality (:)éﬂ"fk!. For the range

foérélogi"x in (4.10) we use (4.8) to obtain a contribution which is

(p)—1
< Z W (x.p,) Z p-l(?'f(:") )

o=t %log' "x REpEN t=1i
<logx max exp(tlog,x—tlogt—2tlog,t+t+ (4.12)
pErslog' *x
+o(r)—logt!)<logx max explg(r)).
thEr<log' ' x
where
g(t)=tloglogx—2tlogt—2tloglogt+(2+¢)t. (4.13)

The function g (t) differs from f(¢) (as defined by (4.6)) only that it
has ¢ in place of — &, and its maximal value is determined analogously
by solving the equation g’ (t)=0. This gives the value

1=t (x)=(2+o(1))log'?x (loglog x)~", (x—x)
thus completing the proof of (1.13), since with the above value (4.12)
gives
Y (x)<exp((4+¢)log'? x (loglog x)~*).

The proof of (1.14) is considerably simpler that the proof of (1.13).
It is sufficient to prove

Z' 1/(P(n)"" < 1/log x.

>y

where } " denotes summation over composite n. since

Z 1/pe= Z I/p=loglogx+B+0(1/logx). (B=0.26419 ...)(4.14)
Py

p\"\.n
Write
S=Y"1/(P(n))?"'=S,+85,,

n>x

say, where in §; we have P(n)<y and in S,, P(n)>y, and y=y(x) will
be suitably determined in a moment. Using the trivial

(P(n)?™=n

and partial summation, we obtain

e 8

S, <o 'dgr, yy<<x ' (x, y)+ § vy 2. (4.15)

X

From [ 1] one has, for y<x and some absolute C>0,

Y (x,y)<xexp(—Clogx/logy). (4.16)
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so that (4.15) gives
S, <exp(—Clogx/log y)=1/log x.
if we choose
y=y(x)=exp(C logx/loglog x).

To estimate S, note that the number of n with Q(n)=k and
P(n)=p is at most *~!(p). If Q(n)=2 and n>x, then P(n)>x""
From these elementary observations, we have

;< Y P+ ¥ (P

n=x.2in=2 n=x 2 >2 Pin)=y
<Y pilnp+ X Lo
peal? k=3 p>y
=Y plnp)+ X 7 (p)(p'-p'n(p)
p=xt? p=y
< Z [(plogp)+ Y. 1/(plog®p)
p=x? p=y

< 1/log x+1/log* y< 1/log x,
using elementary estimates on the distribution of primes. Therefore
§=8§,+8,<1/log x,
which proves (1.14). We finally remark that the error term O (1/log x) is

best possible since

X (P(n) ®"> ) pin(p)<1/log x.

n>x pEx

With more work we could replace the term O (1/logx) in (1.14)
with (C+o(1))/logx for some positive constant C, but we do not
undertake this here.

§5. Proof of Theorem 4

We write the summatory function of 1/Q (n) as

Y 1/0m= 1/0 (n)+ ¥ 1/Q (n)+

nEx n=x, Qinl=Pin) n=x. Q=P n k=1

+ Y 1/Q (n)=5,+85,+85;,

rri-\.t_}(lr]zf“iul.p"?fl
say. By (1.4) with r=1 we have first

S, <xexp(—(2+0 (1)) (logxlog,x)' ?)< L™ '? Y 1P(n). (5.1)

nEX
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Next by writing
Y  em=Y 1/P(m)— Yy  1/P(n),

n=x, Qin)=Fn) nEx n=x,Q{n)=Pin)
we see that (1.16) follows from (5.1) and
3 1/P(n)<L Y 1/P(n), (5.2)

n=x,Qin)=Pin) k=1 n=x

where C >0 is some absolute constant. As in the proof of (1.12) we may
consider only those n for which (3.7) holds. Since Q (n) is the largest
prime power dividing n, we may assume that ¢"=Q (n)>p=P (n) for
some a=2. Observe that in estimating the left-hand side of (5.2) we may
also assume that ¢“< L*, since

Y 4l

> a22

If0<C, <C, are any two fixed constants, then from (1.8) and (2.1)
or [rom earlier estimates on ¥ (x,y) (see [1], [3]) we have, for
LY<y<L%and u=logx/logy,

W (x,y)=xexp(—(l+o(l1))ulogu), (x—o0). (5.3)

In view of (1.2) and the remarks above it follows that we are left
with O (log x) sums of the form

Ye=2' Y pWixp'q“p),

P opeq"sL*
where a=2 is a fixed integer and Z denotes summation over primes p

which satisfy (3.7). Using (5.3) to estimate W (xp~lg % p), we obtain
Y, <Y xexp{—(27"'2—2¢)(logxlog,x)'?}p72 Y q°°
P q'=p

_@:XL—EE":—hIZ'p—ﬁlrz{{xL—[ﬁ'T'"—Sr.i_
P

1
Since 5-2732=2172 +12‘ 2 we obtain in view of (1.1)

Y YL AT 1P

a=zl n=x
for some C (&) >0, if £ in (3.7) is sufficiently small. This proves (5.2) and
completes the proof of (1.16). Presumably by methods similar to those
used to prove Theorem 1 we could improve (1.16) and obtain an
asymptotic formula for the sum

>, (1/P(n)=1/Q (n)).

nEX
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Finally we remark that by methods similar to those used in the
proof of Theorem 4 we may obtain

Y 1/f(n)={1+exp(—C (logxloglogx)'?)} > 1/P(n). (5.4)

lEnsx 2Ensx

Here C>0 is an absolute constant and f(n) denotes either
B(n)=Y por B(n)= Y ap (see [6]. Ch. 6 and [7] for some results

|n

concerﬁinng these fungtljons). Thus (5.4) and Theorem 1 provide an
asymptotic formula for sums of reciprocals of f(n) and B (n).
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