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ON SUMS INVOLVING RECIPROCALS OF THE LARGEST
PRIME FACTOR OF AN INTEGER
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Abstract . Sum of reciprocals of P(n), the largest prime factor of n, is precisely
evaluated asymptotically . Asymptotic formulas for some related sums, involving the
function 0 (n) and w (n) (the number of distinct and the total number of prime factors of
n) are also derived.

§l. Introduction and statement of results

Let as usual w (n) and 0(n) denote the number of distinct prime
factors of n and the total number of prime factors of n, respectively . Let
P (n) denote the largest prime factor of an integer n~ 2, and let P (1)=1 .
Several results involving sums of reciprocals of P (n) and some related
additive functions were obtained recently in [4], Ch . 6, [6], [7], [9] and
[10] . Thus it was shown in [9] that

1] 1/P(n)=xexp {- (2logxloglogx)'i'+
n<x +0 ((l og Xl og l og l og X )1/2)

The proof of this result depended on _estimates for ~ (x, y), the
number of positive integers n 5 x with P (n) ,< y. The connection is seen
via the easy identity

Y 1/P (n)=1 + E p-'0 (xP - ',p),

	

(1 .2)
n_x

	

p_.x

where p denotes a general prime throughout the paper . By using a
better estimate for 0 (x, y) (see [3]), the result (1 .1) was slightly sharpe-
ned and more general sums were estimated in [10], namely

S,, (x) - Y 1/Pr (n),

	

Tr (x) -

	

Y,

	

1/Pr (n),
n_<x

	

n<x,P'(n)In
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where r>,0 is an arbitrary, fixed real number . It was proved in [10] that

S r (x) = x exp { - (2r)1 /2 (109 X 1092 x)1 / 2 0
+9r-1 (X)+

	

(1 .3)

+ O (log' x/log' x))}
and

Tr (x) = x exp { - (2r +2)1 / 2 (log x 1092 x) 1 /2 (1 +gr (x) +
(1 .4)

+ 0 (log' x/log' x))},

where log, x =log (logk_, x) is the k-fold iterated logarithm and

gr(x)_ log, x + log (1+r)-2-log2C
l+

2
21092 x

	

log x

(1093 x+log (1 +r)-log 2)2

Recently H . Maier [11] and A . Hildebrand [8] obtained indepen-
dently much better results concerning t (x, y), which may be used in
connection with our problems . It is now possible to obtain asymptotic
formulas for the sums Sr (x) and T, (x) . We shall work out the details
only for the sum in (L1), namely S, (x) . The other sums can be handled
by the same method. We prove

THEOREM 1 .

((loglogx) 1 /2

1/P (n)=x8 (x) 1+O
log x

where

b (x
) fo

log t
t-2

dt,

	

(1 .6)
g

2
and p (u) is the continuous solution to the differential delay equation

up , (u)=-p (u- 1)

	

(1.7)

with the initial condition p (u)=1 for 0~ u < 1 .

Here p (u) is the so-called Dickman-de Bruijn function, for which
the latter [1] obtained the estimate

(

	

1092 u

	

1

	

Clog2 u
p(u)=exp{-uClogu+log,u-1+ logu logu

+0
1og2u

	

(1 .8)
l

	

(u --+ oo )

By comparing (1.3) and (1 .5) (or by direct evaluati_ a with the aid of
(1 .8)) we find that

ó(x)=exp{-(2 logxlo9 z x)'' 2 (1+g o (x)+O(log3x/1092x))} . (1 .9)

n~s

8log' x

(1 .5)
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Although 6 (x) is a fairly complicated function, (1 .9) gives for most
purposes a sufficiently sharp approximation . Moreover 8 (x) is slowly
oscillating, i .e. for any constant C > 0 we have

lim 6 (Cx)/8 (x)=_1,

	

(1 .10)

which is obtained in §3 . As a corollary of (1 .5) and (1 .10) we have, for
example,

1/P (n) - Y 1/P (n),
nix

	

x<n62x

which seems to be difficult to obtain without using finer information
about 0 (x, y). The notation f (x) - g (x) means as usual that

lim f (x)/g (x)=1,
X -X1

and other notation used throughout the paper is also standard . For
example, f(x) = 0(g (x)) and f (x) << g (x) both mean that If (x)I < Cg (x)
for some absolute C > 0 and x > x o , while f (x) = o (g (x)) means that

lim f(x)/g (x)=0 .
x~x

It seems interesting to investigate how much the sum in (L1)
changes when 1/P (n) is replaced by co (n)IP (n) or Q (n)IP (n) . This
problem has already been investigated in [7], where it was shown that

log x

	

1iz
1/P (n) << Q ( )lP (n) << (log x log log x)r 12

	

1/P (n),
log log x

n<x

and the method would yield the same result if Q (n) is replaced by co (n) .
By using Theorem 1, we prove

THEOREM 2 . There is a positive constant c such that

Y, (Q (n)-w (n))/P (n)-cx 6 (x),

	

(111)
n5x

Q (n)/P (n) - I m (n)/P (n) -(2log x/log log x)'iz x8 (x), (1 .12)

where b (x) is defined by (1 .6) .

The results (1 .5) and (1 .12) imply that in a certain sense the main
contribution to the sums in (1 .12) comes from those n,<x with about
(2 log x/log log x)r iz prime factors. This fact is interesting in view of the
classical result of G . H. Hardy and S. Ramanujan (see [12]) that both
the normal and average order of w (n) and 0 (n) is log log n .

Theorem 2 shows that sums of w (n)/P (n) and 0 (n)/P (n) behave
similarly . On the other hand, quite a different situation arises when one
estimates sums of P (n)- ' ( " ) and P(n) -11(" ) . The corresponding summa-
tory functions turn out to be completely different, as shown by

n<-x n<x
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THEOREM 3.

P (n)-w(") =exp {(4+o (l)) (logx) i /2/(loglogx) },

	

(1 .13)
n<x

P(n) -92(") = loglogx+D+0(1/logx) .

	

(1 .14)
n<x

n< x

Here D > 0 denotes an absolute constant that is effectively computable .

It seems interesting to compare (1 .13) with the estimate

1] 1/a(n)=exp{(2-/2+o(1))(logx/loglogx) )/2 },

	

(1 .15)

where a (n)=fl p is the largest square-free divisor of n . This result is
Pln

due to N . G . de Bruijn [2] and was sharpened by W . Schwarz [13] .
Since evidently

a (n) _< P (n) w( " ) ,

the sum in (1 .13) is majorizéd by the sum in (1 .15), but it turns out that
even the logarithms of these sums are of a different order of magnitude .
The sum in (1 .13) is more difficult to estimate than the sum in (1 .14),
where the main contribution comes from primes .

For our last result, let Q (n) denote the largest prime power which
divides n>2, and let Q(t)=1 . One naturally expects sums of 1/P (n)
and 1/Q (n) to behave similarly, and this is precisely what is established
in

THEOREM 4. There is a constant C > 0 such that

I 1/Q(n)={1+0(exp(-C(logxloglogx) i/2 ))} Y_ 1/P(n).(L16)
n<x

	

n<x

§2. Proof of Theorem 1

We begin by establishing the identity (1 .2) . We have

Y_ IyP(n)=1+Y_ 1/p Y_ t=1+Y- 1/p

	

I

	

1=
n <,x

	

P<x

	

n<x,P(n)=P

	

P< .r

	

m<x;P.P(m)5P

=1 + Y_ p
i

(X/p, P),
P<x

so that (1 .2) holds. To facilitate notation, let from now on

L=L (x)=exp I (log xloglogx) i / 2 } .

Using (1 .2) and following the proof of (1 .1) given in [9] we see that
the contribution from the primes p with p < L' /2 or p > L is at most

xL 3/2+0(1)

	

(X- Do) .
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Thus in view of (1 .1) it suffices to consider only those values of p
with Lt /2 <, p < L .

We now state the new result of A . Hildebrand [8] (H. Maier's
theorem [11] is slightly weaker) mentioned in the introduction .

THEOREM (A. Hildebrand) . The estimate

~(x,xt1°)=xP(u)(I+OE(
ulog(+1)))

	

(2 .1)
log

x

holds uniformly in the range

x% 3, 1< u S log x/(log log x)s/3+E

where E is any fixed positive number .

The importance of this result lies in the wide range for u . By N . G .
de Bruijn [1] (2.1) was known to hold for 1<-u5(log x) 3 I a

_E but this
range is not sufficient for our purposes .

Applying (2 .1) to the ~ (x/p, p) for L' /2 < p,< L we obtain the
uniform estimate

p (log p

	

((log

og g

	

/X )l z))
(x/P, P) =- P lo X 1 1 + 0

Thus from the above comments we have

	 gY1/P (n)= 1 + O
((l og log

	 x
' /z

~~

	

xp zp (lo109X_ 1)
g

	 x

	

gP
n~x

	

L' 12 Sp-<L
L

g g

	

1/2
=(1 + O dolog

x x) )) J
xt zp

(l

logx

og t
	 -1) d7z (t)

	

(2 .2)

L' /z
L

=(1 +O
((loglogx t/z

	

x

	

(logx _
1)dtI

log x ) )) f tz log t
P log t

L' 12

Using (1 .7) the last integral becomes
L

	

L

x log x

	

log x

	

_ x

	

logx
f t z logz t

P log t )
dt f

t
dp

(log t )
L' 12

	

L

	

L

	

(2.3)

x

	

log x

	

x

	

log x

	

x log x
- L P log L

	

Ll z p (log L1/2)+ f tz p ( log t ) dt .
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Using (1,8) we see that the right-hand side of (2 .3) is equal to

xb (x) + 0 (xL 3/2+e)

for any f:>0, hence Theorem 1 follows then from (2 .2) and (2,3),

§3. Proof of Theorem 2

A positive integer m is called square-full if p2 lm for every prime
pl m . Let s (n) denote the largest square-full divisor of n . Then we have

Q (n)-o) (n)=Q (s (n))-o) (s (n)) .

	

(3.1)

To estimate the sum in (L 11) we first show that those n with
s (n) > log' x or with p2 (n)In contribute only o (xb (x)) to the sum. To do
this first note that, for n,<x,

log x
~(n)-~(n)vlog 2

hence

Y_

	

(Q(n)-c) (n))/P (n)<<T, (x)Iogx=xL-,+°(i)

	

(3 .2)

n< x, p2 (n)In

where we used (1 .4) with r=1 .

Next note that there are _CX 1 / 2 square-full integers not exceeding
x . Therefore using partial summation we obtain

(Q(n)-(o(n))/P (n)«logx

	

Y

	

1
n~x,sp0%L'

	

n_x,s(n)~_ L 3
=Iogx I,

	

I

	

1,<xlogx Y, I/s

	

(3.3)
saL' nsx .s(n)-

	

s3 L'

=xL-3/2+0(1)=0 (Xb (x)),

where Y' denotes a sum over square-full integers .

To estimate the sum in (1 .11) for s (n) < L3 , we need the following

LEMMA . Uniformly for x-3 and I < s < L 3 , we have

b (X/s) < ( 1 + 0 (1)) s2 noglogx Jog xr' ó (x)
.

Proof. We use the following result, which is Lemma 1-(v) in
Hildebrand [8]

- P' (u)/P (u) < log (u log e u)

	

(u >,- e4 ) .

Integrating this inequality over [u-~, u] we obtain, for 0 n u-e4 ,

P (u - ;, )/P (u) (u log , u)>. .
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Thus for I < s ~< L 3 and for large x we have

L

~ (I+0(1))
f

t-2t)(logx) (logx log2(logx ))log s/log t

dt
log t

	

log t

	

log t

log log

	

log, /log L-

(1 +o (1))
(log	 Lt/2 loge (log LlX/z ))

	

8 (x)

(I +O (1))
(l og X)logs/log L"2S (X)=(I +0 (1))

S 2 (log logx/logs) 12 a (X),

which establishes the lemma .

By Theorem 1 and the Lemma, we have

(Q (n)-c)(n)) « log x

	

1/P (n)
n< .c, to s

	

( I<!.'

	

n<s,log'x<s(~U<L'

51ogx Y'

	

I/P(n)
Jog'x<s<L' n<x, sln

log x

	

1/P (m) << íog x

	

(_X/S) ó (X/s)

log'x<s<L 3 m<x/s

	

log'x<s<L'

«x8(x)log

	

1+2(loglog .c/logx)1z « xb (x) log-' /2x ~~ S _

	

x .
s>log' x

Therefore to show (1 .11) it will be sufficient to restrict the sum to
those n _< x for which p2 (n)fn and s (n) <- log 3 x . Also, as in Section 2,
we may assume L 1 ' 2 < P (n) -< L. If I" denotes a sum over integers k
with the restrictions p2

(k) . k and P (k),>L t / 2 , then by (3 .1) we have

I

	

(Q (n)-w (11))íP (n)=
I '

	

~„
(Q (n)-(o (n))/P (n)

n<x,s(n)dog's

	

,<log, , n<x,(")=x

log
	 x

log s
b(x/s)=

	

t-
J

	

2p
log t log s

dt

L

(

	

2p (log x) (log x log s) , (log x
dt

log t
= f +00))

	

t-

	

P log t log t F log t
L' z

_ y (Q (s) - w (s))

	

µ` (M)//P (m)
in5~,s, l m.s l =1

_

	

(Q (s) -w (s))

	

1/P (m) ~ µ (d)
s< log' x

	

d'1ms (s)

Y (~ (s) -w (s)) µ (d)

	

1/P (k)
s<log'x

	

d

	

k<x(d,a(s»,sd~
P(k) >P(d)

1 Glasnik mxtcmaiicki

2

(3 .5)
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Here a (s)=fjp and the last equality follows from the fact that

dz l ma (s) if Pánd only if m is of the form kd z /(d, a(s)) (and so
P (m) = P (k) since p2

(m)~m, P (m) ~ L' 12 and s,< log' x) .
The last and innermost sum in (3.5) is majorizéd by x/d z , so that

the contribution to (3 .5) by those d>L3/2/log 3 x is 0 (xL-3iz+°(') ) and is
thus negligible . For log 3 x < d < L 3 z

/log 3 x and s log3 x we have

log' x < sd2/(d, a (s)) < L3 ,

so that from the proof of (3 .4), the last sum in (3 .5) for such a value of
d is

0 (xb (x) d-2 +2
(log log x,Ilogx)' z ) .

Thus the contribution to (3 .5) from these values of d is

<< x6 (x) log-' iz x, which is also negligible .

Hence we may restrict attention in (3.5) to those d with d < log' x .
For such d's we have

sdz /(d, a (s)) < log' x,

and so by Theorem 1 and (3.2) the last sum in (3.5) for these d's is

uniformly

0+00)) x
(d,2(s))

á (x
	 (d, (s)) f .

	

( 3 .6)

Note that from the definition of ó (x) it is possible to show that 6 (x) is
decreasing for x > xo , so that using the Lemma we have
6 (x; t) _ (1 + o (1)) á (x) uniformly for l < t - log y x. In particular, this
remark implies that (1 .10) holds . Thus (3 .6) is

(1 +o (1)) x
(d, az (s)) 8 (x) .d

Putting this estimate in (3 .5) we have

I„

	

(Q (n)-co (n))/P (n)=

n<x,s(n)<Iog'x

(d, a (s)) p (d)

,12
,<log 3 ,

	

d<Iog3x

	

s
=(1+o(1))XS(x) ~, (Q(s)-co(s)) Y

6

	

S2 (s)-c0 (s)
11

p
=(1+0(1))z x8(x) 1

s<log3 x

	

S

	

PISP +1

6

	

x' ~-w
=(1+0(1)) 2x8(x)

	

(s)

	

(s)	P
11yir s=1

	

S

	

PISP+ 1



since by multiplicativity
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x

µ (d) (d, a (s))
d-z

= [1 (1 +µ (P) (P, a (s)) P-2 )

1 \

	

p\

	

1

	

1

	

1

	

6

	

p
=j1C1 --

Fl('--1=  HC1
C1

=
Pls

	

P~ PIs

	

P~

	

(2) nls

	

P

	

P~

	

7~ PISP+ 1

Thus from this calculation and (3.2), (3 .3) and (3 .4) we obtain (1 .11)
with the constant

6 Q(s)-co(s) P
7[ s=t

	

S

	

p l s p+l

A more careful analysis shows that - in (1 .11) can be replaced by
1 + 0 ((log log x)3 iz log- 1/2 x), since for 1 < t < log' x we obtain by follo-
wing the proof of the Lemma

6 (x/t) _ (1 + O ((log log x)3/a log- t iz X))6 (x) .

We now turn our attention to the proof of (1 .12) . From the proof
of (1 .1) or from the proof of Theorem 1 it may be seen that only the
values of n < x for which

L-~z iz-E
<P(n)<L`2

iz+E(3.7)
for any fixed r>0 make a non-negligible contribution to the sums in
(1 .12) .

We next note that if n < x/L 2 , then

Y, w (n)/P (n) < I Q (n)/P (n) << xL-a log x=o (x8 (x)),

so we may assume that

x/L2 < n < x .

	

(3 .8)

Thus combining (3 .7), (3 .8) and using the trivial inequality
n< (P (0' '"', we obtain

and so for x > x o (E) it follows that

0 (n)/P (n)> (-,,/2- 3E) (log x/loglog x) t '2

	

1/P (n) .

	

(3 .9)
n5e

	

n<x

To estimate the sum of m (n)/P (n) from above we use the classical
elementary inequality of G . H . Hardy and S . Ramanujan ([12], p. 265) :

Y,

	

1 <
Ex (log log x +F)'

	

(3 .10)
n<x .(On)=k

	

kllogx

0 (n) > (,,/2 - 2E) (log x/log log x )1/2 ,
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where E, F>0 are absolute constants . Using (3 .10) we obtain that the
number of n,-x with

w(n)>(-\/2+Sf)(logx/log log x) l i 2

	

(3 .11)

is at most xL - `h ' 2-2 E . Thus the sum of co (n)/P (n) for nS x and such
that (3 .7) and (3.11) both hold is at most

x log xL_ -~
z -
E=o (xd (x)) .

On the other hand, the sum of w(n)/P(n) for n-x and (3 .11)
failing is clearly at most

(\/2+5e)(log x/log log x) 1 z Y 1/P(n) .

	

(3 .12)

Combining (3 .9) and (3.12) with Theorem 1 and (l .ll), we have
(1 .12), completing the proof of Theorem 2 . We finally remark that we
can prove (1 .12) without using the Hildebrand-Maier result on 0 (x, y) .
However this result seems to be essential for the proof of (1 .1 I) .

§4. Proof of Theorem 3

We denote by I (x) the sum in (1 .13) and proceed first to derive
the lower bound of the correct order of magnitude . In what follows p
will always denote primes and p ; will denote the r-th prime . Let A be a
large positive integer, and consider integers m < x such that w (m) = k
and P (m) < p, A+ „ k , where k= k (x) is an integer which will be suitably
determined later . If

m =K . . .pk

	

(4 .1)

(
(A+I)kl

is the canonical decomposition of m, then there are

	

J
ways we

k
can choose p il . . . p ik =x (m) . Once a (m) is fixed, we can choose the
exponents a l , . . . , a k in (4 .1) by considering positive integer solutions of

a l log p il + . . . + a k log pik _< log x .

Note that the number of positive, integer solutions of the above
inequality is certainly not less than the corresponding number of
solutions of

al log P( .a+u k+ . . . +a k log Pw ri,k-log x,

which is ~k~, where v=[logx/Iogp (A+ 1 ) k] . Therefore

(x)
>

	

(P (M)) k>(u)CAk+kl
k

p(A+uk .

M-<"

	

k

	

k
(4.2)
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To evaluate binomial coefficients which appear in the last inequali-
ty we shall use Stirling's formula in the form

n! = exp (n log n - n + log \/27rn + o (1)) .

	

(n->co)

	

(4.3)

When k, v-- ,Do and k=o(v), (4 .3) gives

logC
Akk k1

=k(A+1)logk(A+1)-k(A+1)-kAlog(kA)+kA-

- klog k+k+0 (log k)

=k(A+1)log(A+1)-kAlogA+0(loglogx),

log
(k)=r

loge- klog k- (r- k) log (r- k) + 0 (log v)

=klogr-klogk+k+o(k)+0(log logx) .

From the prime number theorem we have

p,=r (log r+ O (log log r)),

	

log p, =log r+log log r+ O (log log r/log r),

log log p,=log log r+ 0 (log log r/log r) .

Hence from (4 .2) we obtain

(x) > exp (0 (loge x)) exp {k 1092 x- k log k+ k +o (k)- k log e p,A+ „ k+

+ k ((A + 1) log (A + 1)- A log A)- k log p,A+,l

	

)kJ
k ) =

(4 .4)

=exp {k loge x-2klog k-2klog2 k+2k+o (k)+

+ 0 (k/A) + 0 (k log A/log k) + O (log e x) },

where the o and 0-notation is uniform in A .

Suppose now that e > 0 is given . Then (4.4) implies, for k > k o (e),

(x) > exp (0 (loge x)) exp {k (log log x -

-2log k-2loglog k+2k+R (k,A))},

f' (k)=1og 2 x-21og k-21og2 k-2/log k- s,

where for some B > 0

IR(k, A)I<r/3+B/A+B log A/logk .

At this point we choose A =[3Bs-i + I] . Then for k> k, (r) we
have B log A/log k < e/3, hence for k > max (k o , k,)

I (x) >exp (0 (log e x)) exp (I(k)), (4.5)

where
f(k ) =klog 2 x-2klogk-2klog 2 k+(2-e)k, (4 .6)

so that
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and f' (k) <0 for k sufficiently large . This means that f (k) attains its
maximum for k = kz , where k z = kz (x) is the solution of f' (k) =0, which
yields

1
logx=kzlog2 kz exp(E+2/logk2 ), logx=

4
+0(1) kz(loglogx) 2 ,

hence

kz =kz (x)=(2+o(1)) log' /2 x(log logx) - '

	

(x -+ 00) .

	

(4.7)

Taking k=k3=[kz(x)] we see that k=o(u) holds (this is needed in
V

the evaluation of k , and therefore from (4.5) and (4 .6) we obtain

I (x) > exp (O (log, x)) exp ((2 +o (1)) k3 )

exp ((4 - E,) log' iz x (log log x) - ' ),

for x-x, (E,), E, =E, (E) and lim E, =0. Therefore we have proved the
c-0

lower bound for Y, (x) .

In proving the upper bound for Y (x) we shall make use of

(x, p,) =exp W092 x - t log' - t 1092 t + t + o (t)) .

(1«t5log' -Ex)

	

(4.8)

Actually we need only the upper bound implied by (4 .8), but the
lower bound follows from a simple combinatorial argument (e.g . see [1]
or [5]) which gives

t+ [log x/log t]
~(x,p,)%

	

t

	

(4 .9)

and then evaluating the binomial coefficient by (4 .3) we arrive at the
lower bound implied by (4 .8) . The upper bound could be also obtained
from known results on O (x, y), but it seems more appropriate to
proceed directly . Note that O (x, p,) represents the number of lattice
points (a,, . . . , a,) E (N U {0})` such that

a, log p, + . . . +a, log p, <log x .

Each such lattice point lies in a "lower left corner" of a unit
hypercube . If (w,, . . ., w,)E(Re + ) t is in one of these hypercubes, then

I w; log Pi -logx+I log P i -logx+(1+E)p,,

by the prime number theorem . Thus O (x, p,) does not exceed the t-
dimensional volume of

w,)E(Re +)' :

	

w,logp i 51ogx+0+E)p, },
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and consequently
log x+ (1 +E) p t

0 (x, pt) H
i

	

t! tos r

	

g pi
=exp(-tlogt+t+o(t)+t log (1ogx+

+(1+E)p,)-~ log log p i )
<t

=exp (t log log x- t log t- t log log t+

+t+o (t)+O (tp,/logx)) .

By hypothesis p t < logt _E x, hence O (tpt/log x)=o (t) and (4 .8)
follows .

Having (4.8) at our disposal we may obtain the upper bound for
(x) as follows . Let w (n) = t, P (n) = p for n counted by (x) . Then

obviously p > pt , and moreover for a fixed p there are ~~ (p)
-1\

choices
t-1

for the remaining t- 1 prime factors of n . Once the t prime factors of n
are known, there are at most 0 (x, pt ) numbers with those prime factors
counted by (x), giving

(x)
~1\

~

	

Y-

	

~ ( x, p,) I p

	

7 (p) -

1t,<p5x

	

r-2logr!logz x

	

p,

since t =w (n) < 2 log n/log z n < 2 log x/log z x . To estimate the inner sum
in (4.10) we use the prime number theorem to obtain

~~ (p) -1

)
P `

	

5 ~ p-`((1+E)p/log p)`-t/(t-1)!
P,6PSs

	

t- 1

	

P, -< P y x

< (1+E)` -t Y_ n -t logt- 'n«(1 +ey(tllog` -2 t) -t
(t

	

1)! P,-<n<-x

(4.10)

(4.11)

To be able to use (4.8) we restrict t in (4 .10) to the range
to -< t < logt -E x. The contribution o f is for which t < t o is seen to be
negligible by using the trivial bound

n (v)

Y) < (logg 2 + 1

	

,

while for the range t > logt -E x we may use the estimates of N . G. de
Bruijn [1] or the elementary estimate

1+E
(x, Y) < (~

(y)+U

	

u = [log x/log Y]
u
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of [5] and the trivial inequality (")ynk/k! . For the range

to -< t -< log' -` x in (4 .10) we use (4.8) to obtain a contribution which is

«

	

1

	

0 (x , p t ) I P-t
(

7(P) - 11
i„St<log' - 's

	

p,-P 5,

	

t - 11

<<logx max exp (tlog z x-tlogt-2tlogz t+t+
t„St51og' ' x

+o(t)-logt!)-logx max exp (y (t)),
t„-<i51og'-,x"

where

g(t)=tloglogx-2tlogt-2tloglogt+(2+E)t .

	

(4.13)

The function g (t) differs from f (t) (as defined by (4.6)) only that it
has E in place of -E, and its maximal value is determined analogously
by solving the equation g' (t)=0. This gives the value

t=t 1 (x)=(2+o(1))log' /2 x (log log .x) - ',

	

(x-+ a)

thus completing the proof of (1 .13), since with the above value (4 .12)
gives

I (x),< exp ((4 + E) log't' x (log log x) - ' ) .

The proof of (1.14) is considerably simpler that the proof of (1 .13) .
It is sufficient to prove

where I' denotes summation over composite n, since

Ilp f "=~ 1/p=loglogx+B +0 (1 /log x) . (B=0.26419 . . .)(4 .14)

Write
S=~ IJP(n))"(")=St+Sz,

n > .x

say, where in S I we have P (n) - y and in Sz , P (n) > y, and y = y (x) will
be suitably determined in a moment . Using the trivial

(P (n))n
and partial summation, we obtain

11(P (n»""' )"« 1/log x,

x

	

f

SI < , t - 'd~(t, y) « x - ' ~ (x> 3')+ f ~ ( t, y) t-2dt .

	

(4.15)

(4.12)

.x

From [1] one has, for y - x and some absolute C>0,

0 (x, y) < x exp ( - C log x/log y),

	

(4 .16)



1

so that (4.15) gives

S i «exp ( -C log x/log y) =1/1og x,

if we choose

1' = y (x) =exp (C log x/iog log x) .

To estimate S 2 note that the number of n with Q(n)=k and
P(n)=p is at most 7rk- r (p) . If Q(n)=2 and n > x, then P(n)>x' i2 .
From these elementary observations, we have

S2
y

	

Y,

	

(p (n)) -JIn) +

	

Y

	

(P (n))
"sz(n)

n>x .2(0) 2

	

n>x,2(n)>2,P(n)>c
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x

p 21r(p)+

	

p-k7rk-t
(p)

p-
21r

(p) +

	

1r2
(p)l(p3 - p27r (p))

P

<<

	

1/(p log p) +

	

1/(p log e p)
P>3'

< 1/logx+1/log 2 y<<1/log/logx,

using elementary estimates on the distribution of primes . Therefore

S= S t + S2 << 1/log x,

which proves (1 .14) . We finally remark that the error term O (1 /log x) is
best possible since

Y_' (P (n)) - ~ 0 > Y- P -2 7r (p)« 1/log x .
n>x

	

p>z

With more work we could replace the term O (1/log x) in (1 .14)
with (C +o (1))/log x for some positive constant C, but we do not
undertake this here .

§5. Proof of Theorem 4

We write the summatort' function of I IQ (it) as

I/Q (n) =

	

Y

	

1/Q (n) +

	

Y,

	

1 /Q (n) +
,, -<,

	

n-.x,Q(n)=P(n)

	

nS,.Q(n)=P°(n),k>1

+

	

Y

	

1/Q (n)=St+S2+ S3,
"<-Q(n1-P,10,A -~' I

say. By (1 .4) with r =1 we have first

S2 «xexp(-(2+o(1))(logxlog 2 x) 1 2 )<<L_
r2

	

1/P(n) . (5 .1)
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Next by writing

1/Q (n)=

	

1/P (n)-

	

Y

	

1/P (n),
n<xQ(n)=PIn)

	

n<x

	

n~-,Q(n)>P(n)

we see that (1 .16) follows from (5.1) and

Y_

	

1/P (n) «
L-c

I I/P (n),

	

(5 .2)
n<x .Q(n) .l"Inl .k>l

	

n<,

where C>0 is some absolute constant . As in the proof of (1 .12) we may
consider only those n for which (3.7) holds . Since Q (n) is the largest
prime power dividing n, we may assume that qa=Q (n) > p=P (n) for
some a ~ 2. Observe _that in estimating the left-hand side of (5 .2) we may
also assume that qa < L4 , since

Y q -a « L -2 .

If 0 < C r < C 2 are any two fixed constants, then from (1 .8) and (2 .1)
or from earlier estimates on t (x,y) (see [1], [3]) we have, for
L`~ < y < Lc, and u =log x/log y,

0(x,y)=xexp(-(1+o(1))ulogu),

	

(X- 00 .

	

(5 .3)

In view of (1 .2) and the remarks above it follows that we are left
with O (log x) sums of the form

~a = Y_' Y p -i 0(xp -i q -a,P),

where a_>2 is a fixed integer and I' denotes summation over primes p

which satisfy (3.7) . Using (5 .3) to estimate i (xp - 'q- °, p), we obtain

Y- a «I'xexp -(2-112-2E)(logxlog'x)i/2}p-2 Y_ q
- a

P

	

4 °>P
«xL-(2 '2-2e)Y'P-5/2«xL (52 312 -5c) .

P

Since 5 . 2-3)2 =2r )2 +1 2'/2 we obtain in view of (1 .1)

L«L-c(' ) Y 11P(n)
a>2

	

n<x

for some C (E) > 0, if s in (3 .7) is sufficiently small . This proves (5 .2) and
completes the proof of (1 .16) . Presumably by methods similar to those
used to prove Theorem 1 we could improve (1 .16) and obtain an
asymptotic formula for the sum

Y, (1/P (n) - I/Q (n)) .
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Finally we remark that by methods similar to those used in the
proof of Theorem 4 we may obtain

y 1/,f(n)= ( l+exp(-C(logxloglogx) ti2 )} I 11P (n) . (5 .4)
-„< r

	

2Sn-s

Here C > 0 is an absolute constant and f (n) denotes either
(n)=I p or B(n)= I ap (see [6], Ch . 6 and [7] for some results

p(n

	

P'lIn
concerning these functions) . Thus (5.4) and Theorem 1 provide an
asymptotic formula for sums of reciprocals of /3 (n) and B (n) .
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