where
\[e = \sum_{j=r+1} 1/q_j. \]

Now, by letting \(N \to +\infty \) in
\[\{1 - F_N(x) - F_N(-x)\} = \{1 - F_{r+1,N}(x) - F_{r+1,N}(-x)\}, \]
we get from (4)
\[|\Delta(x) - \Delta_{r+1}(x)| \leq 2e, \]
that is,
\[|\Delta(x)| \leq |\Delta_{r+1}(x)| + 2e \leq e^{-2(1-e)} + 2e. \]

A passage to the limit, as \(r \to +\infty \), yields (12).

References

Received on 18.9.1964
and in revised form on 7.5.1965

(1457)
In fact a slightly stronger result can be proved. Namely, by an argument outlined below, (1.4) holds for every
\[C > 2 - 2 \log(e - 1)^{-1} = 1.090096128 \ldots. \]

Concerning the lower bound (1.3), a very minor alteration in the Erdős–Hall proof immediately gives (1.3) for every \(A < 1/\log 9 = 0.455119613 \ldots \). In addition, another improvement can be made and this is discussed below. Probably there is an asymptotic formula for \(V(x) \), but I do not know what function to suggest as a choice.

2. **Proof of the theorem.** We begin with some notation. The letter \(p \) shall always denote a prime. Let
\[\Omega(n) = \sum_{\nu(n,p) = 1} 1, \quad \omega(n) = \sum_{p|n} 1. \]
Define \(w(x) \) by the equation
\[V(x) = \frac{x}{\log x} w(x) \]
and let
\[W(x) = \sup_{2 \leq y \leq x} w(y). \]
Let \(\beta \) be an arbitrary but fixed number with
\[1 - \frac{\log 2}{2} < \beta < 1. \]
(2.1)
Corresponding to the choice of \(\beta \), let \(k \geq 3 \) be a fixed large integer and \(\delta > 0 \) fixed such that
\[1 - \beta^k (1 - \delta) > \frac{2}{\log 2}. \]
(2.2)
The proof is organized into five lemmas and a final argument. The first four lemmas treat cases that turn out to be negligible. The heart of the proof can be found in the fifth lemma and in its exploitation in the final argument.

Before the first lemma, we record that from [6], Th. 328, there is an absolute constant \(c \) such that if \(\varphi(n) \leq x \) and \(x \geq 3 \), then
\[n \leq cx \log \log x. \]
(2.3)
Lemma 1. The number \(V_{1}(x) \) of distinct values of \(\varphi(n) \leq x \) such that either (i) \(\Omega(n) \leq k + 1 \), (ii) \(n \leq x/\log x \), or (iii) \(d^2 \) for some \(d \geq \log x \) is \(O(V(x)) \).

Proof. From [6], Th. 437, and (2.3) the number of \(\varphi(n) \) in category (i) is \(O(x \log \log x)^{k+1} / \log x \). The number of \(\varphi(n) \) in category (ii) is obviously
\[O(x/\log x), \]
while the number of \(\varphi(n) \) in category (iii) is \(O(x \log x/\log x) \), from (2.3). Our lemma thus follows from (1.3).

Lemma 2. The number \(V_2(x) \) of distinct values of \(\varphi(n) \leq x \) such that \(n \) is divisible by a prime \(p > \exp(\log x)^{\beta^k} \) with \(\Omega(p - 1) \leq (1 - \delta) \log \log p \) is
\[o\left(\frac{x}{\log x} W(x)\right). \]

Proof. Let \(\mathcal{P} \) denote the set of primes \(p > \exp(\log x)^{\beta^k} \) and \(\Omega(p - 1) \leq (1 - \delta) \log \log p \). If \(\varphi(n) \leq x \) and \(n \) is divisible by a prime \(p \in \mathcal{P} \), we may assume from Lemma 1 that \(n = mp \) where \(p \neq m \) and \(\varphi(m) > 1 \). Therefore \(\varphi(n) = (p-1) \varphi(m) \) and \(p \leq x/2 + 1 \). The number of distinct values of \(\varphi(n) \leq x \) associated in this way to \(p \) is thus at most \(V(x/(p-1)) \) and so
\[V_2(x) \leq \sum_{p \in \mathcal{P}} V\left(\frac{x}{p-1}\right) + O(V(x)) \]
(2.4)
\[= \sum_{p \in \mathcal{P}} \frac{x}{(p-1) \log (x/(p-1))} W(x/(p-1)) + O(V(x)) \]
\[\leq xW(x) \sum_{p \in \mathcal{P}} \frac{1}{(p-1) \log (x/(p-1))} + O(V(x)). \]
From Erdős [2], there is a \(\beta' > 0 \) such that the number of members of \(\mathcal{P} \) up to \(x \) is \(O(x/\log x)^{\gamma' + \delta} \). For notational simplicity, let \(\gamma = \beta' \). We have by partial summation
\[\sum_{p \in \mathcal{P}} \frac{1}{(p-1) \log (x/(p-1))} \leq \int_{\exp(\log x)^{\beta^{k}}}^{x^{2}} \frac{dt}{t (\log x - \log t) (\log t)^{\gamma' + \delta}} \]
\[\leq (\log x)^{-\gamma' + \delta} \int_{\exp(\log x)^{\beta^{k}}}^{x^{2}} \frac{dt}{(\log x - \log t) \log t} \]
\[= (\log x)^{-\gamma' + \delta} \int_{\exp(\log x)^{\beta^{k}}}^{x^{2}} \frac{dt}{(\log x - \log t) \log t} \]
\[\leq \log x \log x \]
\[\leq (\log x)^{\gamma' + \delta}. \]
From (2.4), we thus have \(V_2(x) = o(xW(x)/\log x) \).

For \(i \geq 1 \), let \(P_i(n) \) denote the \(i \)th largest prime factor of \(n \) if \(\Omega(n) \geq i \). Otherwise, let \(P_i(n) = 1 \).

5 – Acta Arithmetica XLVII, 1
Lemma 3. The number $V_3(x)$ of distinct values of $\varphi(n) \leq x$ such that

$$(2.5) \quad P_i(n) > \exp\left(\frac{(\log x)^{\beta_i-1}}{\log \log x}\right) \quad \text{for} \quad i = 1, \ldots, k$$

is $O(xW(x)\log x)$.

Proof. Let n be such that $\varphi(n) \leq x$ and (2.5) holds. Let $p_i = P_i(n)$. From Lemma 1 we may assume that p_1, \ldots, p_k are distinct. From Lemma 2, we may assume that

$$\Omega(p_i - 1) > (1 - \delta) \log \log p_i \quad \text{for} \quad i = 1, \ldots, k.$$

Therefore from (2.2)

$$\Omega(\varphi(n)) \geq \sum_{i=1}^{k} \Omega(p_i - 1) > (1 - \delta) \frac{1 - \beta_i}{1 - \beta} \log x - k \log \log x \geq \frac{2}{\log 2} \log x$$

for x large. From Nicolas [7], the number of integers $m \leq x$ with $\Omega(m) > (2/\log 2) \log x$ is $O(x/\log x) = o(V(x))$. The lemma thus follows.

It is to be remarked that Lemma 3 could equally well exploit Lemma 1 in [3] rather than the Nicolas result.

Lemma 4. The number $V_4(x)$ of distinct values of $\varphi(n) \leq x$ where n is divisible by a number $m \geq \exp\left(\log x\right)^{\beta}$ with $P_1(m) \leq m^{1+\log x}$ is $o(V(x))$.

Proof. The number of $m \leq x$ with $P_1(m) \leq m^{1+\log x}$ is at most $\Psi(z, z^{1+\log x})$, where $\Psi(x, y)$ denotes the number of $n \leq x$ with $P_1(n) \leq y$. From de Bruijn [1], we have

$$\Psi(z, z^{1+\log x}) = z \exp\left(\frac{1}{\log 2} \log x \log \log x\right)$$

uniformly for $z \geq \exp\left(\log x\right)^{\beta}$. Therefore, by partial summation, the number of $n \leq cx \log x \log x$ divisible by such an $m \geq \exp\left(\log x\right)^{\beta}$ is $o(V(x))$.

Lemma 5. The number $V_5(x)$ of distinct values of $\varphi(n) \leq x$ such that

$$(2.6) \quad P_i(n) \leq \exp\left(\frac{(\log x)^{\beta_i-1}}{\log \log x}\right)$$

for some $i = 1, \ldots, k$ satisfies

$$(2.6) \quad V_5(x) \leq \sum_{j=1}^{k} \frac{x(\log x)^{j}}{\log x} W(\exp\left(\log x\right)^{j}) + o(V(x)).$$

Proof. For $i = 1, \ldots, k$, let $V_{S,i}(x)$ denote the number of distinct values of $\varphi(n) \leq x$ such that (2.6) holds for i, but fails for $i = 1, \ldots, i-1$. As in the proof of Lemma 4, from de Bruijn [1], $V_{S,i}(x) = o(V(x))$. Say now $2 \leq i \leq k$, $\varphi(n) \leq x$, and (2.6) holds for i, but fails for $i = 1, \ldots, i-1$. Let

$$q = P_1(n) \ldots P_{i-1}(n), \quad m = n/q.$$

Since $P_i(m) \leq \exp\left(\frac{(\log x)^{\beta_i-1}}{\log \log x}\right)$, from Lemma 4 we may assume

$$(2.7) \quad m \leq \exp\left(\log x\right)^{\beta_i-1}.$$

From Lemma 1 and (2.7) we may assume $(q, m) = 1$ and

$$(2.8) \quad q \geq \frac{x}{\log x \cdot \exp\left(\log x\right)^{\beta_i-1}}, \quad \varphi(q) \leq x/2.$$

For a fixed q, the number of distinct values of $\varphi(n) \leq x$ with $n = qm$ $(q, m) = 1$, and m satisfying (2.7) is at most

$$\min\left\{W\left(\frac{x}{\varphi(q)}, W(\exp\left(\log x\right)^{\beta_i-1})\right)\right\}.$$

Thus if \sum' denotes a sum over q composed of $i-1$ primes exceeding $\exp\left(\log x\right)^{\beta_i-2}/\log \log x$ and satisfying (2.8), then

$$V_{S,i}(x) \leq \sum' \frac{x}{\varphi(q) \log (x/\varphi(q))} W(\exp\left(\log x\right)^{\beta_i-1}) + o(V(x))$$

$$\leq \sum' \frac{x(\log x)^{j-1}}{(i-2)!} + o(1) \frac{x(\log x)^{j-1}}{\log x} W(\exp\left(\log x\right)^{\beta_i-1}) + o(V(x))$$

$$\leq \frac{x(\log x)^{j-1}}{\log x} W(\exp\left(\log x\right)^{\beta_i-1}) + o(V(x)).$$

Summing over i, we have the lemma.

Proof of the theorem. From the lemmas, we have

$$(1 + o(1)) \frac{x}{\log x} W(x) \leq \sum_{j=1}^{k-1} \frac{x(\log x)^{j}}{\log x} W(\exp\left(\log x\right)^{j}).$$

Thus for $x \geq x_0$,

$$W(x) \leq 2 \sum_{j=1}^{k} \frac{x(\log x)^{j}}{\log x} W(\exp\left(\log x\right)^{j}).$$

Replacing the sum with its largest term, we have for some $1 \leq j_1 < k$,

$$(2.9) \quad W(x) \leq 2k (\log x)^{j_1} W(\exp\left(\log x\right)^{j_1}) \quad \text{for} \quad x \geq x_0.$$

We iterate the inequality (2.9). Thus there is some $1 \leq j_2 < k$ with

$$W(x) \leq (2k)^{j_2} (\log x)^{j_1 + j_2} W(\exp\left(\log x\right)^{j_1 + j_2}).$$

After t iterations we have

$$(2.10) \quad W(x) \leq (2k)^{t} (\log x)^{j_1 t} W(\exp\left(\log x\right)^{j_1 t})$$

for some t.
where Σ_2, Σ_1 are abbreviations for
\[\sum_{1 \leq \ell < \ell_1} j_{\ell} h_{\ell}, \quad \sum_{\mu = 1}^t j_\mu, \]
respectively, and each $j_\mu \in \{1, \ldots, k - 1\}$. We continue this iteration until
\[(\log x)^{a_1} \leq \alpha_0. \]
Thus we choose τ so that
\[\sum_{\mu = 1}^t j_\mu = \frac{\log \log \log x}{\log \beta} + O(1). \]
Since
\[\sum_{1 \leq \ell < \ell_1} j_{\ell} h_{\ell} = \frac{1}{2} \left(\sum_{\mu = 1}^t j_\mu \right)^2 - \frac{1}{2} \sum_{\mu = 1}^t j_\mu \]
and each $j_\mu \in \{1, \ldots, k - 1\}$, we thus have
\[\sum_{1 \leq \ell < \ell_1} j_{\ell} h_{\ell} = \frac{(\log \log \log x)^2}{2 \log^3 \beta} + O(\log \log \log x). \]
Therefore, from (2.10) we have
\[W(x) \leq \exp \left\{ - \frac{(\log \log \log x)^2}{2 \log \beta} + O(\log \log \log x) \right\}. \]
Since we may choose β arbitrarily close to $1 - (\log 2)/2$, we have the theorem.

3. An improvement. I indicate now how the theorem can be strengthened to the assertion that (1.4) holds for every $C > (2 - 2 \log (e - 1))^{-1}$. Indeed, the proof follows the same general outline as in Section 2. The first change is that $\log (2)/2$ appearing in (2.1) is replaced by $1/e$ and the number $2/\log 2$ appearing in (2.2) is replaced with e. Thus β can be chosen arbitrarily close to $1 - 1/e$.

Let $\omega_\varepsilon(n)$ denote the number of distinct prime factors of n that exceed $\log x$. The next change is in Lemma 2, where we replace $\Omega(p - 1)$ with $\omega_\varepsilon(p - 1)$. From the arguments in Erdős [2], there is a $\delta' = \delta'(\delta) > 0$ such that the number of primes $p \leq x$ with
\[\omega_\varepsilon(p - 1) \leq (1 - \delta) \log \log p \]
is $O(x/(\log x)^{1 + a''})$. Thus we can use the same proof as for Lemma 2.

The last change is in the proof of Lemma 3. We replace Ω with ω_ε, but it is not immediately obvious that we can write
\[\omega_\varepsilon(\varphi(n)) \geq \sum_{i = 1}^k \omega_\varepsilon(p_i - 1). \]
However, the numbers $\varphi(n) \leq n$ divisible by some d^2 with $d > \log x$ are negligible as in the proof of Lemma 1. Thus we may ignore those values $\varphi(n)$ where (3.1) fails. Thus we will have
\[\omega(\varphi(n)) \geq \omega_\varepsilon(\varphi(n)) > e \log \log x. \]
But from the Hardy–Ramanujan inequality [5], the number of integers $m \leq y$ with $\omega(m) > e \log \log x$ is $O(y/\log x) = O(\sqrt{y})$.

The rest of the proof proceeds in exactly the same way. We finally arrive at (2.11) where $\beta > 1 - 1/e$ is arbitrary, which proves the stronger assertion.

4. An improved lower bound. Let $0 < \beta < 1$ and consider the set of integers M_κ of the form $(p_1 - 1)(p_2 - 1) \cdots (p_j - 1)$ where $j \leq k$, the p_i's are primes, and for each $i = 2, \ldots, j$,
\[(p_1 - 1)(p_2 - 1) \cdots (p_{i - 1} - 1) < \exp((\log p_i)^2). \]
Further suppose that uniformly for all $k < 100 \log \log \log y$,
\[\sum_{\substack{m_1, m_2 \leq y \\ m_1, m_2 \in M_\kappa}} \frac{(m_1, m_2)}{m_1 m_2} = \frac{(\log y)^{1 + \omega(1)}}{2 \log \beta} + O(1) \]
holds for all $y \geq 20$. Then from the proof given in [4] it follows that (1.3) holds for all $A < -1/(2 \log \beta)$.

It is remarked in [4] that
\[\sum_{\substack{m_1, m_2 \leq y \\ m_1, m_2 \in M_\kappa}} \frac{(m_1, m_2)}{m_1 m_2} = O((\log y)^3) \]
holds where there is no requirement that $m_1, m_2 \in M_\kappa$. Thus (4.1) holds with $\beta = 1/3$ and so the proof in [4] gives (1.3) for all $A < 1/\log 9$.

By using the restriction $m_1, m_2 \in M_\kappa$, we can show (4.1) for a larger choice of β and thus prove (1.3) for larger values of A. We begin by making the harmless requirement that the primes p_i used in the construction of the set M_κ be "normal" primes in that
\[\omega(p - 1) \approx \Omega(p - 1) \approx \log \log p. \]
Thus if $m \in M_\kappa$, then (as in Section 3)
\[\omega(m) \approx \Omega(m) \approx \frac{1 - \beta}{1 - \beta^2} \log \log m \]
for some $j \leq k$, so that $(d(m)$ counts the number of divisors of $m)$
\[d(m) \approx (\log m)^{j - \beta^j(j - 1 - \beta)} m^{1/2}. \]
We shall therefore assume that if $m \in M_\kappa$ and $m \leq y$, then
\[(4.2) \quad d(m) \leq (\log y)^{2(1 - \beta)}. \]
Thus,

\[
\sum_{m_1 < n} \sum_{m_2 < n} \frac{(m_1, m_2)}{m_1 m_2} \leq \sum_{m_1 < n} \frac{1}{d(m_1)} \sum_{m_2 < n} \frac{1}{m_2 d(m_2)}.
\]

If we majorize the inner sum trivially by \((\log y)/d\), we obtain

\[
\sum_{m_1, m_2 < n} \frac{(m_1, m_2)}{m_1 m_2} \leq \log y \sum_{m < n} \frac{d(m)}{m} \leq (\log y)^{1 + \log 2(1 - \beta)} \sum_{m < n} \frac{1}{m},
\]

using (4.2). But from (1.1) this last sum is \((\log y)^{n(1)}\). Thus if we choose \(\beta\) so that

\[
\frac{1}{\beta} = 1 + \log 2 \quad 1 - \beta
\]

we have (4.1). This leads to the value

\[
\beta = \frac{1}{2}(2 + \log 2 - \sqrt{4 \log 2 + \log^2 2})
\]

and establishes (1.3) for every \(A < 0.617122930\ldots\).

References

The weighted linear sieve and Selberg’s \(L^{2}\)-method

by

G. Greaves (Cardiff)

1. Introduction. In the weighted linear sieve we study sequences \(\mathcal{A} = \mathcal{A}_X\), depending on a real parameter \(X \geq 2\), which satisfy certain general conditions of the type described by Halberstam and Richert [5]. The conditions specified in this paper are labelled \((\Omega_1), (\Omega_2), (R), (D)\) below. As usual these are chosen with due regard to applicability on one hand (cf. the examples provided in [5], for example), and on the other hand to the requirements of a workable proof of a result of the type established in this paper. The object of the exercise is to deduce, for a suitably small integer \(R \geq 2\), that the sequence \(\mathcal{A}\) contains many numbers having no more than \(R\) prime factors.

In [3] the present author obtained an improvement on the results previously known on this problem via a study of expressions of the type

\[
\sum_{d \mid a} \mu(d) \chi_a^+(d) \{ (W(1) - \sum_{p \mid d} w(p)) \},
\]

where \(w(p)\) was a ‘weight’ function of the type appearing in earlier approaches to this problem (see Chapter 9 of [5], for example) and \(\chi_a^+(d)\) was the ‘characteristic’ function appearing in Iwaniec’s and Rosser’s version (see [7], [9]) of Brun’s sieve. Thus in the case \(w(p) = 0\) the expression (1.1) reduces to the corresponding expression studied in [7], [9]. In this "unweighted" context an essentially equivalent result had been obtained by Jurkat and Richert [10] (see also Chapter 8 of [5]), using a method in which the well-known \(L^2\)-device of Selberg played a significant rôle. In this paper we replace the expression \(\chi_a^+(d)\) in (1.1) by the expression implicit in the paper of Jurkat and Richert. We shall see that in the problem of the weighted linear sieve the expressions are not equivalent, in that we shall obtain an improvement, in certain cases, upon the result in the author’s earlier paper [2]. At the same time the result obtained falls short of that which seems to be generally conjectured to be true, and which would be best possible.

Received on 10.12.1984
and in revised form on 11.2.1985 (1477)