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§1. Introduction

Let v(n) denote the number of distinct prime factors of n . In Part I of this paper
[5], we studied the equation

(1 .1)

	

n+v(n) = in +v(m), n - m

and generalizations where v is replaced with a more general arithmetic function . In
this part, we study the distribution of the n for which v (n) ti v (n+1) and the n for
which 0 (n) _ 0 (n + 1), where <P is Euler's function .

It seems reasonable to conjecture that there is a positive constant c, such that the
number of n --x with
(1 .2)

	

v(n) = v(n+1)

is (e,+o(1))x1Vlog log x . Indeed, from the Erdős-Kac theorem, most integers n
satisfy
(1 .3)

	

1 v (n) - log log nj -_ K Vlog log n

where K is some large constant . In fact, the asymptotic density of the n which satisfy
(1 .3) is exactly

1

	

rh
J e- t 2 / 2 dt .

~2n -K

which is nearly 1 if K is large . Thus if n and n+1 both satisfy (1 .3) and if we view
v(n) and v(n+l) as "independent events", then the "probability" that (L2) holds
should be at least (2K Vlog log n)-1 . Summing these probabilities would then give
order of magnitude x1f log log x solutions n of (1 .2) with n-x, thus supporting the
conjecture. A refinement of this heuristic argument even suggests that c 1 =(2 ~7r)- r

It is not even known, however, if (1 .2) has infinitely many solutions . Our princi-
pal result in this paper is that a slight weakening of (1 .2) has at least the "correct"
order of magnitude for the number of solutions n--x .

THEOREM 1 . There are absolute constants c2, c. :~-0 such that for x-3, the
number of nix with
(1 .4)

	

Jv(n)-v(n+l)J = c,
is at least c,xIVIog log x .
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The proof of Theorem 1 is based on the fundamental lemma of the combina-
torial sieve. By using Selberg>s lower bound sieve (see Halberstam and Richert [6],
Theorem 7.4 which gives Lemma 1 below with u= 4 .43) and a more careful argument,
Theorem I can be proved with c2 =3. However, the proof would be longer and not
involve any essentially new ideas, so we present here only the simpler version in
Theorem 1 .

It is to be remarked that our proof of Theorem 1 easily gives the same result
with Q in place of v, where 0(n) is the number of prime factors of n counting multi-
plicity . If d(n) denotes the number of divisors of n, our proof also shows that the
number of n=x with d(n)/d(n+1)=2i where i is an integer with lij-c2 is at least
c,xlViog log x . Recently, Heath-Brown [7] proved that d(n)=d(n+l) has at
least c~x/(log x)' solutions n-x where c4>0. He announced that his method also
works for S2(n)=S~(n+l) . It is not unlikely that some refinement of his idea would
also work for (1 .2) .

A result somewhat weaker than Theorem 1 can be immediately obtained using a
special case of a theorem of Barban and Vinogradov (see Elliott [2], Theorem 20 .1) .
From this theorem, for x>10' and z>0,

1
X

#{n -x: w(n+l)-v(n)l z} 2loglogx} _

z
0/2

	

(1+	 g g log	_ ~~ f e- dt+D ( log log x

	

e 212 2 log log log log x

Applying this result to values of z near 0 gives

#~n -- x : w(n--1)-v(n)l ~ c,log log log+

	

x

	

xlog log logx
log log log log x

	

}!log log x log log log log x

for some constant c5 >0. We are endebted to R . R. Hall and G. Tenenbaum for this
observation .

Some changes in the proof of Theorem i give the following result which we state
without proof.

THEOREM 1' . For each positive integer k, there are absolute constants c2(k),
c 3 (lc)>0 such that for x-3, the number of n_x with

max {v(n), v(n+l), . . ., v(n+k))-min {v(n), v(n+l), . . ., v(n+k)}

	

c2 (k)

is at least c.(k)x/(loglog x) k t2 .

In the third paper in this series, we shall complement Theorem 1 with an upper
bound result of the same order of magnitude and also give an upper bound for the
frequency of solutions of (1 .1) .

We shall complete this paper with a result concerning Euler >s function 0(n) .
In [3], it is shown that the asymptotic density of the n with 0(n)< 0(n+1) is 1/2
and the same for the n with -h(n)>O(n+l). Thus as a corollary, the number of
n-x with
(1 .5)

	

0(n) = 0(n+ 1)
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is o(x). The following result implies, for example, the stronger assertion that the
solutions of (1 .5) have a bounded sum of reciprocals .

THEOREM 2. For large x, the number of solutions of (1 .5) not exceeding x is at
most x/exp {(log x)I 11) .

The proof of Theorem 2, which is based on the argument in [8] ; can also be used
to show the same result for the equation a (n)=u(n+1), where a is the sum of the
divisors function . We conjecture that for every c>0 and x-xo(e) the equations
0 (n) = (P (n + 1), a (n)=a(n+1) each have at least xI- ` solutions n-x. We cannot
prove, however, that there are even infinitely many solutions for either equation .

§2 . Preliminaries for Theorem 1

In this section, we record three results which will be used in the proof of Theo-
rem 1 .

LEMMA 1 . Let p o (n) denote the least odd prime factor of n if n is not a power of 2
and let po(2 k)=1 . Then there are real numbers u>1, xo , and cs >0 such that if
a, b, ao , b o are nonnegative integers satisfying

ab 0, abo -ao b = I

and if x=max (xo , a", b"), then

#(n x : po((an+a o)(bn+bo)) > x1l", (an+a o)(bn+bo) 0 ab mod 2} T

ab

	

x
>c' 0(a)(P(b) log' x .

PROOF . This follows from the "fundamental lemma" of the combinatorial sieve
(see Halberstam and Richert [6], Theorem 2.5) . Note that if 20aó, then the sieve
result implies that we may insist that (an+a o)(bn+bo) be odd, while if 2~ab, then
(an+a o)(bn+bo) is even for all n .

LEMMA 2. Let 7r (x, t) denote the number of nix with v(n)=t. Then uniformly
for x--3 and integers t satisfying

(2.1)

	

~t-log log x1 _ (log log x)213,
we have

n(x, t) =
e_cz/

	

x

	

1 +~(
(e+cal

	

+0((loglogx) _I)
~27r )log log x

	

l vlog log x

where c _is defined by the equation : t=log log x + c Vlog log x.

PROOF . From a result of Sathe [9] and Selberg [10], for any B>0 we have uni-
formly for x--3 and integers t with 1-_ t-B loglog x,

( )
=

x (log log X)'-1

	

t-1 _

	

t

	

ll
n x, t

	

logx

	

(t -1) !
	 -F

log log x 1 + 4 (log log x)2 11
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where

F(z) _

If t satisfies (2.1), then

F (lo t l x) = 1 +0
(	lei	 +0 ((log log x)

g log

	

}flog log x

P. ERD6S, C . POMERANCE AND A . SÁRKÖZY

I(1+z) i(l+
pz

1 )(1-pf ..

(log logx)t-1 _ e _c _12

	

log x

	

Ic+c3 1

t-1)!

	

-
	 - 1+0	)+O((loglogx) -1

(

	

)),j127z y log log x

	

( }flog log x

which proves the lemma. Note that a somewhat weaker version of this lemma follows
from [4] .

LEMMA 3 . Let us put
1

S(n)
PIn P

There are numbers x l and d, q :;>0 such that if x-x l ,
nitegers n --x with

(2 .2)

	

S(n) -- p and 1 v (n) -log log xj _ d j/log log x .

PROOF . For any t, let D(t) denote the asymptotic density of the integers n with
S(n)--t . By the Erdős-Wintner theorem (see Elliott [2], Theorem 5 .1) D(t) exists
for every t . It is easy to see that D(t) is strictly increasing on [0, -) . Thus
D(1/10) >0 .

By the Erdős-Kac theorem (see Elliott [2], Theorem 12.3) the number of n :x
with w(n) -log log xl >d Vlog log x is

2 rx
(	 J e- t 2 J 2 dt+o(1))X.
V2~ d

Let O-g-D(1/10) be arbitrary and choose d so that
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d

	

(10)

Then for large x, at least qx integers n=x satisfy (2.2) .

then there are at least qx
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§3. Proof of Theorem 1

Basically, the idea of the proof of Theorem 1 is to construct many pairs n, n+1
from a fixed choice of integers a, b where bln, aln+l, v(a)=v(b), and v(n/b),
v ((n + 1)la) are small. Then v (n) ti v (n + 1) . To show there are many such n for a
given choice of a, b, we use Lemma 1 . To show there are many pairs a, b, we use
Lemmas 2 and 3 .

Let x be large . Let u ::- 1 denote the number defined in Lemma 1 and let v =u +2 .
Let sd denote the set of integers a satisfying

(3 .1)

	

a -= xli °, S(a) =' 110 , w (a) -log log xj - 2d Vlog log x ,

where S and d are defined in Lemma 3 . Then (with >i given in Lemma 3)

3.2

	

l

	

n()

	

aCA a
= 2v tog x .

Indeed, if x1141<y x lw and x is large, then by Lemma 3, the number of members of
sá7 that do not exceed y is at least ilY . (We use the fact that log log y=log log x+
+O(1)). Thus (3 .2) follows from partial summation .

For aE,4, let 93(a) denote the set of integers b with

(3 .3)

	

b = x 17 ', (a, b) = 1, v (b) = v (a) .

Finally, for aEstl and bE_q(a), let g(a, b) denote the number of integer solutions
Y1 ~ Y2 of

(3.4)

	

ay,-bye = 1, 0 < Y1 -
X

, ho(YIY2) > xll ab y, y, mod 2 .

For such a quadruple a, b, y1 , Y2 let

(3 .5)

	

n = by2i n+1 = ay, .

Then n+l -x and by (3.1), (3 .3), and (3 .4), we have (a, yI)=(b, y 2)=1 . Thus from
(3.3), (3 .4), and (3 .5)

w(n+l)-v(n)l = w(a)+v(Y1)-v(b)-v(Y2)1 = w(YI)-V(Y2)1 < v+1 .

We shall then take c 2 =v+1 in Theorem i .
We next note that for a given integer n, there is at most one quadruple a, b, yl, y,

satisfying (3.1), (3 .3), (3 .4), and (3.5) . Thus if f(x) denotes the number of n :x
satisfying (1 .4) with c 2 = v + 1, then

(3 .6)

	

.f(x) - Z Z g(a, b) .
� E d b E M(a)

Note that Lemma I immediatel gives a lower bound for each g(a, b) . Indeed,
if positive integers I , , satisf a 1 -b e=1, then l , Y2 are of the form

I = bm+bo , 2 = and+a o ,
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where in =0, 1, 2, . . .,

0 b o < b, 0 - a s < a, and abo -ba o = 1 .

Thus from Lemma 1,
ab

	

x/ab

	

-

	

x
g(a, b

	

C6	
O(a)O(b) log2 (x/ab)

	

1 ` cc ab log2 x .
Therefore, from (3.6)

x

	

1

	

1
(3.7)

	

f(x)

	

c6 log, x a

	

a b« (a) b .

We now estimate the inner sum . If R(a)( ) denotes the number of members of
M(a) below , then, for - xll",

(a) ( ) _

ir( , v(a))-- ( , v(a))+7r( , v(a)-1) .
pla

	

P

	

P

For x14"< -x11 " and p-h ,

7r
p

, v (a)) - 7r
(P

, v (a) - 1)
r l

7r ( , v (a))

uniforml , b Lemma 2 and (3.1) . Therefore for large x, and x 114"< -1 11

M(a)( ) ' (1-_Y, 3) n( , v(a))-2 Z = ( 1-35(a))7r( , v(a»+0( ) .
Pia P

	

Pi a - P
P Y 3'

Thus from (3 .1), we have

(a) ( ) ' 2 n ( , v (a))

for large x and x114v< -x11 From this inequalit , (3 .1), and Lemma 2, we have

1 > (4 V 27r vel,"

	

logxI

	

)-I	

bEA(a) b

	

loglog x

for large x. Combined with (3.2), and (3.7), we thus have

x

f (x)

	

/log log x
which was to be proved .
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4. Proof of Theorem 2

In this section, we outline the proof of Theorem 2 . It is nearl the same as the
proof in [8] dealing with amicable numbers .

For simplicit of notation, we put

1 = exp (log x) 113 , L = exp
18

(log x)23 log log x .

Let P(n) denote the largest prime factor of n . From deBruijn's estimate [1], the num-
ber of n=x with P(n)<L2 is o(x11) . Thus we ma assume that

(i) P(n) L2 and P(n+ 1) - L 2 .

It is eas to see that the number of n-x divisible b a non-trivial power exceed-
ing 1 3 is o(x11), so we ma assume that

(ü) if ka divides n or n+I where a=2, then ka ., 1 3.

Now we show that we ma assume that

(iii) n1P(n) L, (n+I)1P(n+1) - L .

Let n=mp, n+1=m'p' where p=P(n), p'=P(n+1) . From (i), (ü), and (1 .5) we
have

fi(m)(P - 1) = OW)(P -1)-

Using this equation and mp+1=m'p', we have

(4.1)

	

p'(fi(m)in'-m(P(m')) = 45(m)-mO(W)+mfi(m) .

Assuming n-4, (1 .5) implies that m>1 and m'>1 . Thus the parenthetical ex-
pression in (4.1) is not 0, for otherwise

0(m) _ 0(m')
M

	

m' '

contradicting (m, m') =1, m ::- 1, m' ::- 1 . Thus m, m' determine p' and p. So the
number of n-x for which (1 .5), (i), and (ü) hold, but (iii) fails is at most the number
of pairs m, m' where either

m < L, m' -- (x+ 1)1L 2 or m :!s: x1L 2, m ' -- L,
which is O(x1L)=o(x11) .

Continuing with the notation m=n1P(n), m'=(n+1)1P(n+1), we now show
we ma assume that

(iv) P(O(m)) - 1', P(45(m )) __ 1'.

Suppose P(fi(m))<1' . We have
(4.2)

	

fi(m) _ ff (q - t)qa -I = a 1 a 2 . . . a„
q JIm

where q denotes prime and each ai is some q-1 or q . Thus the function fi not onl
maps m to the integer fi(m) but also gives a factori ation of fi(m) as aia2 . . .a,

257
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(order of factors is unimportant) where at most one a i =1 . It is eas to see (cf. [8])
that there are never 3 distinct integers ml , m 2i m3 such that not onl are 0(1n,)=
_ O(m2)= O(m3), but the factori ations a1 a2 . . . at given b (4.2) are the same .

If f(k) denotes the number of unordered factori ations of k into factors exceed-
ing 1, then the number of unordered factori ations of k into factors where at most
one factor is 1 is 2f(k) (for k>1) . Let N( ) denote the number of m with
1<O(m)-- and P(O(m))--P . Thus

N( ) r 4 Z f(k) .
k

P(k)<14
This sum is identical with the sum in the first displa on p . 186 in [8] . From the argu-
ment there (see (6)), for all large x and --L,
(4.3)

	

N( ) - /1 , .

If n-x satisfies (L5) and (0-(iii), then

L

		

n

	

xm =P(n) - P(n)
Thus the number of such n with the first inequalit in (iv) failing is b (4 .3) at most

N(xlp) --

	

x = o(x/1) .
p-x/L

	

p-:-x/L p1
Similarl , the number of n which the second inequalit in (iv) fails is o(x/1) . Thus we
ma assume (iv) .

Finall , we ma assume that
(v) P(n)

	

(n+l) .
Indeed, the case P(n)-P(n+]) can be treated in the same wa so that there is no
loss of generalit in assuming (v) .

Let n=mp, n+1=m'p' where p=P(n), p'=P(n+l) and assume n-x,
n satisfies (1 .5) and (i)-(v) . From (iv) there is a prime r--14 with rjo(m), so that
r (11)= (n+1) . Thus from (ü) there are primes q, q' with qjm, q'jn+1 with
q==-q' -1 mod r . Thus
(4.4)

	

n+ I = mp+ I - 0 mod q' .

Since mjn, q'jn+l , we have (m, q')=1, so that (4.4) pulse in a certain residue class
a(m, q) mod q' . Also, p>q' b (v) . Thus the number of n-x which satisf (1 .5)
and (i)-(v) is at most

Z 2Y Z

	

2Y 1=
r914 q=1(r) ms0(q) q'-1(r) p=a(m,T)(4')

qsx m5 q-X+1 q'-p--x/m

ZZ Z	X «Z .2 xlogx «
r q m q' mq

	

r q , n

	

rm

X log, x

	

x log3 x x log 3 x« 	«	«	= o(xf l) .r q

	

rq

	

r2

	

14

This completes the proof of Theorem 2 .
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