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1. Introduction

Let {εn}16n<N be a finite sequence with each εn ∈ {0, ±1}, and write
a

b
=

∏

16n<N

( n

n + 1

)εn

,

where the fraction is in its smallest terms. Now, define A(N) as the maximal value
of a as {εn}16n<N runs through all possible 3N−1 sequences of 0,±1. (One might
also consider the maximal value of b, but this is the same.) We obviously have
A(N) 6 N !, hence log A(N) 6 N log N for all N . In [6], it is shown by an elegant
“near-tiling” of the integers in [1, N ] with triples n, 2n, 2n + 1 that

log A(N) 6
{

2
3 + o(1)

}

N log N.

Further, a brief argument of M. Langevin is presented that

log A(N) > {log 4 + o(1)}N.

Our aim in this article is to establish the true order of magnitude for log A(N).
Put

k(c) := 1 + 2 log(1 − 2c) −
2

c
log

(

1 +
2c2

1 − 3c

)

,

K(c) := 2

∫ c

0

k(u) du, K := max
0<c<1/5

K(c) ≈ 0.107005.

Theorem 1.1. For large N , we have

(1·1) log A(N) > {K + o(1)}N log N.

Let P (n) denote the largest prime factor of a positive integer n with the
convention that P (1) = 1. The lower bound (1·1) is an easy consequence of the
estimate stated in the following result.

Theorem 1.2. For c ∈ [0, 1], x > 1, let S(x, c) denote the number of those

integers n not exceeding x such that min{P (n), P (n + 1)} > x1−c. Then, for any

fixed c0 ∈]0, 1
5 [ and uniformly for c ∈ [0, c0], x → ∞, we have

(1·2) S(x, c) 6 2x

∫ c

0

log
( 1 − v

1 − v − 2c

) dv

1 − v
+ o(x).

Remark. Under a suitable strong form of the Elliott–Halberstam hypothesis, we
get the better bound

(1·3) S(x, c) 6 x

∫ c

0

log
( 1 − v

1 − v − c

) dv

1 − v
+ o(x).

Note that (1·1) follows from (1·2) by selecting εn = 1 if P (n) > N1−c and
P (n) > P (n + 1), εn = −1 if P (n + 1) > N1−c and P (n + 1) > P (n) and εn = 0
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in all other cases. Indeed, with these choices for εn, we obtain that for each prime
p > N1−c > N1/2, the exponent on p in the prime factorization of the rational
number A(N)/B(N) is

∑

n<N
P (n)=p

2 −
∑

n<N
P (n+1)>P (n)=p

2 −
∑

n<N
P (n−1)>P (n)=p

2.

Thus,

log A(N) >
∑

n6N

P (n)>N1−c

2 log P (n) −
∑

n6N

P (n),P (n+1)>N1−c

2 log min{P (n), P (n + 1)}.

We have

∑

n6N

P (n),P (n+1)>N1−c

2 log min{P (n),P (n + 1)} =

∫ c

0

(1 − u) logN dS(N, u)

= (log N)
{

(1 − c)S(N, c) +

∫ c

0

S(N, u) du
}

,

and since the number of n < N with P (n) > N 1−c is −N log(1−c)+o(N) uniformly
for 0 6 c 6 1/2,

∑

n<N
P (n)>N1−c

log P (n) = cN log N + o(N).

We thus obtain

log A(N) > 2(log N)
{

cN − (1 − c)S(N, c) −

∫ c

0

S(N, u) du + o(N)
}

> 2N(log N)
{

g(c) + o(1)
}

,

where we have set

g(c) := c− (1− c)f(c)−

∫ c

0

f(u) du, with f(u) := 2

∫ u

0

log
( 1 − v

1 − v − 2u

) dv

1 − v
.

We check by computation that g′(c) = k(c). This implies the desired estimate.
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2. Proof of Theorem 1.2

We employ the Rosser–Iwaniec sieve. A sightly better bound could be obtained
from a more sophisticated sieve method, but we do not pursue such improvement
here. We refer to [4], [5] for a complete reference of the Rosser-Iwaniec coefficients
and merely recall the property we shall use. We denote by γ the Euler constant,
and we let p run over primes.

Lemma 2.1. Let Q denote a set of primes, let z > 2 and write Q(z) :=
∏

p6z, p∈Q
p.

There exists a sequence {λd}
∞
d=1 of real numbers, vanishing for d > z or µ(d) = 0,

satisfying λ1 = 1, |λd| 6 1, and

µ ∗ 1 6 λ ∗ 1,

and such that for any number α > 0,

∑

d|Q(z)

λdw(d)

d
6

∏

p6z
p∈Q

(

1 −
w(p)

p

){

2eγ + Oα

( 1

(log z)1/3

)}

,

uniformly for all multiplicative functions w satisfying

0 < w(p) < p (p ∈ Q),(i)

∏

u<p6v, p∈Q

(

1 −
w(p)

p

)−1

6
log v

log u

(

1 +
α

log u

)

(2 6 u 6 v 6 z).(ii)

If n is counted by S(x, c), then n = ap1 = bp2 − 1, where p1 and p2 are primes
greater than x1−c. Then a and b are obviously coprime, and moreover 2|ab. We
need an upper bound for the number Z(a, b) of admissible pairs (p1, p2) for given
a, b. Let C be a sufficiently large constant and set z := (x/a)1/2b−1(log x)−C . If Q

is the set of all primes not dividing a and with {λd}
∞
d=1 the sequence from Lemma

Lemma 2.1, we plainly have

Z(a, b) 6
∑

p16x/a
ap1≡−1 (mod b)

µ ∗ 1
(

(ap1 + 1)/b, Q(z)
)

6
∑

d|Q(z)

λd

∑

p16x/a
ap1≡−1 (mod bd)

1.

Let us put, for real y > 2 and integers q, l with q > 1,

π(y; q, l) :=
∑

p6y
p≡l (mod q)

1, E(y; q) := max
(l,q)=1

|π(y; q, l) − li(y)/ϕ(q)|.
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We apply Lemma 2.1 to the multiplicative function d 7→ dϕ(b)/ϕ(bd). Using the
fact that (a, bd) = 1 for each d | Q(z), and noticing that c bounded below 1/5
ensures that z > b when x is large enough, we deduce that

(2·1) Z(a, b) 6 M(a, b) + R(a, b)

with
R(a, b) :=

∑

d6z

E(x/a; bd)

and

M(a, b) :=
∑

d|Q(z)

λd li(x/a)

ϕ(bd)

6 {2eγ + o(1)}
li(x/a)

ϕ(b)

∏

p6z
p - ab

(

1 −
1

p − 1

)

∏

p6z
p|b

(

1 −
1

p

)

= {2eγ + o(1)}
li(x/a)

b

∏

p6z
p - ab

(p − 2

p − 1

)

.

Now we observe that, uniformly as x tends to ∞ and a, b vary in the specified
ranges,

∏

p6z
p>2

(p − 2

p − 1

)

= 2
∏

p6z
p>2

p(p − 2)

(p − 1)2

∏

p6z

(

1 −
1

p

)

∼
2e−γ

A log z

where

A :=
∏

p>2

(

1 +
1

p(p − 2)

)

.

Therefore, writing

h(n) :=
∏

p|n
p>2

(p − 1

p − 2

)

,

we obtain that the estimate

(2·2) M(a, b) 6
{8 + o(1)}h(ab)x

Aab log(x/a) log(x/ab2)

holds uniformly for a 6 xc, b 6 xc, (a, b) = 1, as x → ∞.
Let τ(m) denote the number of divisors of m. By the Bombieri–Vinogradov

theorem, we have, with Xa := (x/a)1/2(log x)−C ,
∑

b6xc

R(a, b) 6
∑

m6Xa

τ(m)E(x/a; m)

�

{

∑

m6Xa

E(x/a; m)
∑

m6Xa

τ(m)2E(x/a; m)

}1/2

�
x

a(log x)2
,
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where we have used the trivial estimate E(x/a; m) � x/am and the well-known
fact that

∑

m6x τ(m)2/m � (log x)4. Therefore, we obtain from (2·1) and (2·2)

(2·3)

S(x, c) 6
∑

a6xc, b6xc

(a,b)=1, 2|ab

Z(a, b)

6
8 + o(1)

A
x

∑

a6xc

h(a)

a log(x/a)

∑

b6xc

2|ab
(b,a)=1

h(b)

b log(x/ab2)
+ O

( x

log x

)

.

We have for ν = 0 or 1

(2·4)
∑

b>1
(b,a)=1

h(2νb)

bs
= H(s)Ga(s)ζ(s) (<e s > 1)

where

H(s) :=
∏

p>2

(

1 +
1

ps(p − 2)

)

, Ga(s) :=
(

1 −
ε(a)

2s

)

∏

p|a
p>2

(

1 − p−s

1 + p−s/(p − 2)

)

,

with ε(a) = 1 if a is even, ε(a) = 0 if a is odd. The functions H and Ga

can be analytically continued to the half-plane <e s > 0. Note that H(1) = A,
Ga(1) = 2−ε(a)h(a)−1. By Selberg–Delange estimates (see [7], chap. II.5), (2·4)
yields in turn

∑

b6y
(b,a)=1

h(2νb) ∼
Ay

2ε(a)h(a)
(y → ∞),

and

∑

b6xc

(a,b)=1, 2|ab

h(b)

b log(x/ab2)
=

A

4h(a)
log

( 1 − va

1 − 2c − va

)

+ o(1) (x → ∞)

and va := (log a)/ logx. Carrying this back into (2·3), we arrive at

S(x, c) 6 {2 + o(1)}x
∑

a6xc

1

a log(x/a)
log

( 1 − va

1 − 2c − va

)

= {2 + o(1)}x

∫ c

0

log
( 1 − v

1 − 2c − v

) dv

1 − v
.

ut

We remark that with a little more care, the bound 1/5 in the theorem may be
replaced with 1/3.
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3. Further remarks

In [2] it is shown that if N is large, than for at least 0.0099N values of n 6 N
we have P (n) > P (n + 1), and for at least 0.0099N values of n 6 N we have
P (n) < P (n + 1). It follows from Theorem 1.2 that each inequality occurs on a set
of integers n of lower asymptotic density

log

(

1

1 − c

)

− 2

∫ c

0

log
( 1 − v

1 − v − 2c

) dv

1 − v

for each value of c with 0 < c < 1/5. The maximum of this expression is greater
than 0.05544 so we have majorized the result from [2]. Presumably, the set E of
integers n with P (n) > P (n + 1) has asymptotic density 1/2. A general theorem
of Hildebrand [3] also implies that E has positive lower asymptotic density, but we
did not check the numerical value that can be derived from this result.

In [2] it is shown that P (n) < P (n + 1) < P (n + 2) holds infinitely often, and
it was conjectured that so too P (n) > P (n + 1) > P (n + 2) holds infinitely often.
This conjecture was recently proved by Balog in [1].

We observe that the maximal value A(N) corresponds to a sequence ε =
{εn}16n<N where εn ∈ {−1, 1}.

Proposition 3.1. Let N > 1. There exists {εn}16n<N ∈ {−1, 1}N−1 such that

A(N)

B(N)
=

∏

16n<N

( n

n + 1

)εn

.

Remark. Let A0,1(N) (respectively A−1,1(N), A−1,0(N)) the maximum of numera-
tors where the exponents εn are restricted to {0, 1} (respectively {−1, 1}, {−1, 0}).
By the proposition, we have A−1,1(N) = A(N) and

log A0,1(N) = 1
2 log A(N) + O(log N) = log A−1,0(N) + O(log N).

For example, if {εn}16n<N ∈ {0, 1}N−1, we have {2εn − 1}16n<N ∈ {−1, 1}N−1.
Since the constant sequence −1 gives the numerator N , we deduce the result.

Proof. Take a sequence {εn}16n<N ∈ {−1, 0, 1}N−1 where some εn = 0. Write the
associated product as A/B with (A, B) = 1. If we let εn = 1, the new numerator is

A

(A, n + 1)
×

n

(B, n)
,

while if we let ε = −1, the new numerator is

A

(A, n)
×

n + 1

(B, n + 1)
.
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Assuming both of these expressions are smaller than A, we obtain

n < (A, n + 1)(B, n) and n + 1 < (A, n)(B, n + 1).

Multiplying these inequalities and using (A, B) = (n, n + 1) = 1 we obtain

n(n + 1) < (AB, n(n + 1)),

a contradiction. So we may choose εn ∈ {±1} without decreasing the associated
numerator. With this method we can replace each 0 value with ±1 and the value
of the associated numerator will not decrease. ut
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