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Conjecture (Erdős, 1950): For each

number B, one can cover Z with finitely

many congruences to distinct moduli all

> B.

Erdős (1995):

“Perhaps this is my favorite problem.”
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Early origins

Are there infinitely many primes of the form

2n − 1?

Euclid: n must be prime, but this is not

sufficient.

For example, 22 − 1, 23 − 1, 25 − 1, 27 − 1

are prime, but 211 − 1 = 23 × 89.
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Euclid: If 2n − 1 is prime, then 2n−1(2n − 1)

is perfect. (That is, it is equal to the sum

of its proper divisors.)

Euler: All even perfect numbers are in

Euclid’s form.
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Primes of the form 2n − 1 are called

Mersenne primes. There are 44 of them

known, the largest being

232582657 − 1.

See www.mersenne.org .
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Early origins, cont’d

Are there infinitely many primes of the form

2n + 1?

Fermat: A necessary condition is that n is a

power of 2. He conjectured this is also

sufficient.
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For example,

21 + 1, 22 + 1, 24 + 1, 28 + 1, 216 + 1

are all prime.

Euler: 232 + 1 = 641 × 6700417.
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No other Fermat primes are known; 22k
+ 1

is composite for k = 5,6, . . . ,32 and for

many higher, sporadic values of k.

Gauss, Wantzel: A regular n-gon is

constructible with straight-edge and

compass if and only if n is a power of 2

times a product of distinct Fermat primes.
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A mathematician’s credo:

If you can’t solve it, generalize!

For each odd number k, are there infinitely

many primes of the form 2n + k?

OK, way too hard! Lets try:
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For each odd number k, there is at least

one prime of the form 2n + k.

(conjectured by de Polignac in 1849)
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61 + 2 = 63, {3,7}.

Mod 3, the powers of 2 are 2,1,2,1, . . .

(period 2).

So,

n ≡ 1 (mod 2) ⇒ 61 + 2n ≡ 0 (mod 3).
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Mod 7, the powers of 2 are 2,4,1,2,4,1, . . .

(period 3).

So,

n ≡ 1 (mod 3) ⇒ 61 + 2n ≡ 0 (mod 7).
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Also

61 + 22 = 65, {5,13}.

Mod 5, powers of 2 are 2,4,3,1, . . .

(period 4).

So,

n ≡ 2 (mod 4) ⇒ 61 + 2n ≡ 0 (mod 5).
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Conclude:

61 + 2n is composite for

n ≡ 1 (mod 2),

n ≡ 1 (mod 3),

n ≡ 2 (mod 4).
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n ≡ 1 (mod 2):

1,2,3,4,5,6,7,8,9,10,11,12, . . .

n ≡ 1 (mod 3):

1,2,3,4,5,6,7,8,9,10,11,12, . . .

n ≡ 2 (mod 4):

1,2,3,4,5,6,7,8,9,10,11,12, . . .
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n ≡ 1 (mod 2), n ≡ 1 (mod 3), or

n ≡ 2 (mod 4):

1,2,3,4,5,6,7,8,9,10,11,12, . . .

And, 61 + 28 = 317, a prime.

So de Polignac is still safe, but not for long.
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Lets automate the idea:

p period of powers of 2

3 2

5 4

7 3

13 12

17 8

241 24
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We can use the moduli 2, 4, 3, 12, 8, 24 to

cover Z:

Every n ∈ Z is either

1 (mod 2), 2 (mod 4),

1 (mod 3), 8 (mod 12),

4 (mod 8), 0 (mod 24).
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So, if k simultaneously is

−21 (mod 3), − 22 (mod 5),

−21 (mod 7), − 28 (mod 13),

−24 (mod 17), − 20 (mod 241),

then gcd(2n + k,3 · 5 · 7 · 13 · 17 · 241) > 1 for

all n.
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We also ask for k to be odd. By the magic

of the Chinese Remainder Theorem, we can

find an infinite arithmetic progression of

such numbers k:

k ≡ 9262111 (mod 11184810).

In particular, 2n +9262111 is composite for

all n.
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Erdős (1950): de Polignac’s conjecture is

false.

Note, the same calculations show that

k · 2n + 1 is composite for all n for the same

values of k. Sierpiński had a short paper

about such k in 1960.
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An odd number k with k · 2n + 1 composite

for all n is now known as a Sierpiński

number. They are useful in finding factors

of large Fermat numbers.

Conjecture (Selfridge): The least

Sierpiński number is k = 78557.
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In 2002, for all but 17 values of k < 78557,

a prime had been found of the form

k · 2n + 1. Thus began the website

www.seventeenorbust.com (Helm and Norris).

Now there are just 6 remaining values of k

for which no prime is known:

10223, 21181, 22699, 24737, 55459, 67607.
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They’ve only been looking for primes

k · 2n + 1 with n > 0, so my contribution:

k n k n

10223 − 19 21181 − 28

22699 − 26 24737 − 17

55459 − 14 67607 − 16389

Seventeen or bust? Busted!
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Unsolved:

Erdős: If k is a Sierpiński number, must the

sequence of least prime factors of k · 2n + 1

be bounded?

Filaseta, Finch, Kozek: Is the sequence of

least prime factors of 5 · 2n + 1 unbounded?
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Erdős: Lets forget about powers of 2 and

just look for congruences that cover Z.

For example: 0 (mod 1)

Another example: 0 (mod 2), 1 (mod 2)

Too easy!
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Insist that the moduli be distinct and > 1.

Example: 0 (mod 2), 0 (mod 3),

1 (mod 4), 1 (mod 6), 11 (mod 12)

What about least modulus > 2?, > 3?, . . .
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Conjecture (Erdős, 1950): For each

number B, one can cover Z with finitely

many congruences to distinct moduli all

> B.

Erdős (1995):

“Perhaps this is my favorite problem.”
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Records:

least modulus discovered by

9 Churchhouse (1968)

18 Krukenberg (1971)

20 Choi (1971)

24 Morikawa (1981)

25 Gibson (2006)

36 Nielsen (2007)
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Erdős, Selfridge: Is there a covering of Z

with distinct odd moduli > 1?

Erdős: Yes.

Selfridge: No.
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Note: 0 (mod 2), 1 (mod 2) exactly covers

Z in that each n satisfies exactly one

congruence.

Erdős: Can one exactly cover Z with

distinct moduli > 1?

Mirsky, Newman, Znam: No.
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Say {ai (mod bi)}, i ≤ k, exactly covers Z.

Numbers ≡ a (mod b) are represented by

za + za+b + za+2b + · · · =
za

1 − zb
.

So,

k
∑

i=1

zai

1 − zbi
=

1

1 − z
,

and the largest bi is 1 or is repeated.
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Note: A covering {ai (mod bi)} is exact iff
∑

1/bi = 1.

Can one have a covering with distinct

moduli bi > 1 and
∑

1/bi arbitrarily close

to 1?
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Yes, take progressions 2i−1 (mod 2i) for

i = 1,2, . . . ,1000, say. This covers

everything except 0 (mod 21000).

Cover this with 0 (mod 2 · 21000),

0 (mod 3 · 21000), etc., where we are

copying over the 0 (mod 2), 0 (mod 3),

etc. covering from before.
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Similarly, one can find coverings with

distinct moduli with least modulus 3, and

with least modulus 4, with the moduli

reciprocal sum arbitrarily close to 1.

What about least modulus 5, or larger?
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Conjecture (Erdős, Selfridge). For each N

there is a B: if {ai (mod bi)} is a covering

with distinct moduli > B, then
∑

1/bi > N .

Theorem. Yes.

(Filaseta, Ford, Konyagin, P, Yu 2007).
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Corollary. For each K > 1, there is some

B0 so that for B ≥ B0 there is no covering

with distinct moduli from [B, KB].

Conjecture (Erdős, Graham). For each

K > 1, there are dK > 0, B0 such that for

B ≥ B0 and for any congruences with

distinct moduli from [B, KB], at least

density dK of Z remains uncovered.
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Theorem. Yes.

(Filaseta, Ford, Konyagin, P, Yu 2007).

In fact, any dK with 0 < dK < 1/K works.

For example, if B is large, at most 1/2 + ε

of Z can be covered with congruences with

distinct moduli from [B,2B].
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In analogy to the Lovász local lemma:

Suppose we have moduli b1, . . . , bt. Let

α =
∏

(

1 −
1

bi

)

, β =
∑

i<j
gcd(bi,bj)>1

1

bibj
.

Then no matter the choice of residues, at

least α − β of Z remains uncovered.
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