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1. Introduction

Notice that every integer n satisfies at least one of the congruences

n ≡ 0 (mod 2), n ≡ 0 (mod 3), n ≡ 1 (mod 4), n ≡ 1 (mod 6), n ≡ 11 (mod 12).

A finite set of congruences, where each integer satisfies at least one them, is called a
covering system. A famous problem of Erdős from 1950 [4] is to determine whether
for every N there is a covering system with distinct moduli greater than N . In
other words, can the minimum modulus in a covering system with distinct moduli
be arbitrarily large? In regards to this problem, Erdős writes in [6], “This is perhaps
my favourite problem.”

It is easy to see that in a covering system, the reciprocal sum of the moduli is
at least 1. Examples with distinct moduli are known with least modulus 2, 3, and
4, where this reciprocal sum can be arbitrarily close to 1; see [10], §F13. Erdős
and Selfridge [5] conjectured that this fails for all large enough choices of the least
modulus. In fact, they made the following much stronger conjecture.

Conjecture 1. For any number B, there is a number NB, such that in a covering
system with distinct moduli greater than NB, the sum of reciprocals of these moduli
is greater than B.

A version of Conjecture 1 also appears in [7].
Whether or not one can cover all of Z, it is interesting to consider how much of

Z one can cover with residue classes r(n) (mod n), where the moduli n come from
an interval (N, KN ] and are distinct. In this regard, Erdős and Graham [7] have
formulated the following conjecture.
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Conjecture 2. For each number K > 1 there is a positive number dK such that
if N is sufficiently large, depending on K, and if we choose arbitrary integers r(n)
for each n ∈ (N, KN ], then the complement in Z of the union of the residue classes
r(n) (mod n) has density at least dK .

In [6], Erdős writes with respect to establishing such a lower bound dK for the
density, “I am not sure at all if this is possible and I give $100 for an answer.”

A corollary of either Conjecture 1 or Conjecture 2 is the following conjecture
also raised by Erdős and Graham in [7].

Conjecture 3. For any number K > 1 and N sufficiently large, depending on K,
there is no covering system using distinct moduli from the interval (N, KN ].

In this paper we prove strong forms of Conjectures 1, 2, and 3.
Despite the age and fame of the minimum modulus problem, there are still many

more questions than answers. We mention a few results. Following earlier work of
Churchhouse, Krukenberg, Choi, and Morikawa, Gibson [9] has recently constructed
a covering system with minimum modulus 25, which stands as the largest known
least modulus for a covering system with distinct moduli. As has been mentioned,
if ri (mod ni) for i = 1, 2, . . . , l is a covering system, then

∑
1/ni ≥ 1. Assuming

that the moduli ni are distinct and larger than 1, it is possible to show that equality
cannot occur, that is,

∑
1/ni > 1. The following proof (of M. Newman) is a gem.

Suppose that
∑

1/ni = 1. If the system then covers, a density argument shows
that there cannot be any overlap between the residue classes, that is, we have an
exact covering system. We suppose, as we may, that n1 < n2 < · · · < nl and each
ri ∈ [0, ni − 1]. Then

1
1 − z

= 1 + z + z2 + · · · =
l∑

i=1

(
zri + zri+ni + zri+2ni + . . .

)
=

l∑
i=1

zri

1 − zni
.

The right side of this equation has poles at the primitive nl-th roots of 1, which
is not true of the left side. Thus, there cannot be an exact covering system with
distinct moduli greater than 1 (in fact, the largest modulus must be repeated).

Say an integer H is “covering” if there is a covering system with distinct moduli
with each modulus a divisor of H exceeding 1. For example, 12 is covering, as
one can see from our opening example. From the above result, if H is covering,
then σ(H)/H > 2, where σ is the sum-of-divisors function. Benkoski and Erdős [2]
wondered if σ(H)/H were large enough, would this condition suffice for H to be
covering. In [11], Haight showed that this is not the case. We obtain a strengthening
of this result, and by a shorter proof.

If n1, n2, . . . , nl are positive integers and C = {(ni, ri) : i = 1, 2, . . . , l} is a set of
ordered pairs, let δ = δ(C) be the density of the integers that are not in the union
of the residue classes ri (mod ni). If n1, n2, . . . , nl are pairwise coprime, there is
no mystery about δ. Indeed, the Chinese remainder theorem implies that for any
choice of residues r1, r2, . . . , rl,

δ =
l∏

i=1

(1 − 1/ni),

which is necessarily positive if each ni > 1.
One central idea in this paper is to determine how to estimate δ when the moduli

are not necessarily pairwise coprime. We note that for any n1, n2, . . . , nl, there is
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a choice for r1, r2, . . . , rl such that

(1.1) δ ≤
l∏

i=1

(1 − 1/ni).

Indeed, this is obvious if l = 1. Assume it is true for l, and say we have chosen
residues r1, r2, . . . , rl such that the residual set R has density δ satisfying (1.1). The
residue classes modulo nl+1 partition any subset of Z, and in particular partition R,
so that at least one of these residue classes, when intersected with R, has density at
least δ/nl+1. Removing such a residue class, the residual set for the l+1 congruences
thus has density at most

δ − δ/nl+1 = (1 − 1/nl+1)δ ≤
l+1∏
i=1

(1 − 1/ni).

Thus, the assertion follows.
Note that ∏

N<n≤KN

(1 − 1/n) = �N�/�KN� → 1/K as N → ∞,

so that dK in Conjecture 2 must be at most 1/K. We show in Section 4 that any
number d < 1/K is a valid choice for dK .

A key lemma in our paper allows us to almost reverse the inequality (1.1) for δ.
Namely we show that for any choice of residues r1, r2, . . . , rl,

(1.2) δ ≥
l∏

i=1

(1 − 1/ni) −
∑
i<j

gcd(ni,nj)>1

1
ninj

.

We then maneuver to show that under certain conditions the product is larger than
the sum, so that no choice of residue classes ri allows a covering. As kindly pointed
out to us by the referee, the inequality (1.2) bears a resemblance to the Lovász
Local Lemma but seems to be independent of it. We shall discuss this connection
more in the next section.

If S is a finite set of positive integers, let δ−(S) be the minimum value of δ(C)
where C runs over all choices of {(n, r(n)) : n ∈ S}. That is, we are given the
moduli n ∈ S, and we choose the residue classes r(n) (mod n) so as to cover as
much as possible from Z; then δ−(S) is the density of the integers not covered.
Furthermore, let

α(S) =
∏
n∈S

(1 − 1/n),

so that (1.1) implies we have δ−(S) ≤ α(S). With this notation we now state our
principal results.

Theorem A. Let 0 < c < 1/3 and let N be sufficiently large (depending on c). If
S is a finite set of integers n > N such that∑

n∈S

1
n
≤ c

log N log log log N

log log N
,

then δ−(S) > 0.
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Theorem B. For any numbers c with 0 < c < 1/2, N ≥ 20, and K with

1 < K ≤ exp(c log N log log log N/ log log N),

if S is a set of integers contained in (N, KN ], then

δ−(S) = (1 + o(1))α(S)

as N → ∞, where the function “o(1)” depends only on the choice of c.

Theorems A and B are proved in Section 4. Using Lemma 3.4 below, we can
make the o(1) term in Theorem B explicit in terms of N and c. Both Theorems A
and B, as well as several other of our results, are proved in a more general context
of multisets S or, equivalently, where multiple residue classes are allowed for each
modulus. Note that Theorems A and B prove Conjectures 1 and 2, respectively,
and so Conjecture 3 as well.

In the context of Theorem B, if we relax the upper bound on the largest modulus,
we are able to construct examples of sets of integers S with least member arbitrarily
large and where δ−(S) is much smaller than α(S). Proved in Section 5, this result
might be interpreted as lending weight towards the existence of covering systems
with the least modulus being arbitrarily large.

Similar to the definition of δ−(S), let δ+(S) be the largest possible density for a
residual set with S being a set of (distinct) moduli. It was shown by Rogers (see
[13], pp. 242–244) that for any finite set of positive integers S, the density δ+(S)
is attained when we choose the residue class 0 (mod n) for each n ∈ S. That
is, δ+(S) is the density of integers not divisible by any member of S. There is
an extensive literature on estimating δ+(S) when S consists of all integers in an
interval (see e.g. [8] and Chapter 2 of [14]). In particular, it is known from early
work of Erdős [3] that for each ε > 0 there is some η > 0, such that if S is the set of
integers in (N, N1+η], then δ+(S) ≥ 1 − ε for all large N . In fact, we almost have
an asymptotic estimate for 1 − δ+(S) for such a set S: Among other results, it is
shown in Theorem 1 of [8] that for 0 < η < 1/2 and N ≥ 21/η, δ+(S) is between
1 − c1η

θ(log 1/η)−3/2 and 1 − c2η
θ(log 1/η)−3/2, where c1, c2 are positive absolute

constants and where θ = 1 − (1 + log log 2)/ log 2 = 0.08607 . . ..
In the above example with η > 0 fixed, we have δ−(S) ≤ α(S) = (1+o(1))N−η =

o(1), while for large N , δ+(S) is bounded away from 0. If the residue classes are
chosen randomly, should we expect the density of the residual set to be closer to
δ−(S), α(S), or δ+(S)? We show in Sections 5 and 6 that for any finite integer set
S, the average (and typical) case has residual density close to α(S).

Finally we mention a problem we have not been able to settle. Is it true that
for each positive number B, there are positive numbers ∆B , NB , such that if S is a
finite set of positive integers greater than NB with reciprocal sum at most B, then
δ−(S) ≥ ∆B? If this holds it would imply each of Conjectures 1, 2, and 3. For
more problems and results concerning covering systems, the reader is directed to
[16] and [18].

2. A basic lemma and Haight’s theorem

To set some notation, we shall always have n a positive integer, with P (n) =
P+(n) the largest prime factor of n for n > 1 and P (1) = 0. We shall also let
P−(n) denote the least prime factor of n when n > 1, and P−(1) = +∞. The
letter p will always represent a prime variable. We use N, K, Q to represent real



SIEVING BY LARGE INTEGERS AND COVERING SYSTEMS OF CONGRUENCES 499

numbers, usually large. We use the Vinogradov notation 	 from analytic number
theory, so that A 	 B is the same as A = O(B), but it is cleaner to use in a chain
of inequalities. In addition, A 
 B is the same as B 	 A. All constants implied
by this notation are absolute and bounds for them are computable in principle. If
S is a multiset and we have some product or sum with n ∈ S, it is expected that n
is repeated as many times in the product or sum as it appears in S.

Let C be a finite set of ordered pairs of positive integers (n, r), which we interpret
as a set of residue classes r (mod n). We say such a set is a residue system. Let
S = S(C) be the multiset of the moduli n appearing in C. We call the number of
times an integer n appears in S the multiplicity of n. By R(C) we denote the set
of integers not congruent to r (mod n) for any (n, r) ∈ C. Since R(C) is a union
of residue classes modulo the least common multiple of the members of S(C), it
follows that R(C) possesses a (rational) asymptotic density, which we denote by
δ(C). If C = {(n1, r1), . . . , (nl, rl)}, then we set

α(C) =
∏

n∈S(C)

(
1 − 1

n

)
=

l∏
j=1

(
1 − 1

nj

)
, β(C) =

∑
i<j

gcd(ni,nj)>1

1
ninj

.

Note that α(C) depends only on S(C), so it is notationally consistent with α(S)
from Section 1.

Lemma 2.1. For any residue system C, we have δ(C) ≥ α(C) − β(C).

Proof. Let α = α(C) and β = β(C). We use induction on l. If l = 1, then β = 0
and the statement is trivial. Let l > 1; we will describe an induction step from l−1
to l. We denote C ′ = {(n1, r1), . . . , (nl−1, rl−1)},

α′ = α(C ′) =
l−1∏
j=1

(
1 − 1

nj

)
, and β′ = β(C ′) =

∑
i<j≤l−1

gcd(ni,nj)>1

1
ninj

.

By the induction supposition,

(2.1) δ(C ′) ≥ α′ − β′.

Let C ′′ = {(nj , rj) : j < l, gcd(nj , nl) = 1}, so that

(2.2) δ(C ′′) ≤ δ(C ′) +
∑

nj∈S(C′\C′′)

1
nj

= δ(C ′) +
∑
j<l

gcd(nj ,nl)>1

1
nj

.

The density of integers covered by the residue class rl (mod nl) but not covered by
rj (mod nj) for every nj ∈ S(C ′′) is equal to δ(C ′′)/nl. Therefore,

δ(C ′) − δ(C) = density{n ≡ rl (mod nl) : n ∈ R(C ′)}
≤ density{n ≡ rl (mod nl) : n ∈ R(C ′′)} = δ(C ′′)/nl,
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so that, by (2.1) and (2.2),

δ(C) ≥ δ(C ′) −
(

δ(C ′) +
∑
j<l

gcd(nj ,nl)>1

1
nj

)
1
nl

=
(

1 − 1
nl

)
δ(C ′) −

∑
j<l

gcd(nj ,nl)>1

1
njnl

≥
(

1 − 1
nl

)
(α′ − β′) − (β − β′) ≥

(
1 − 1

nl

)
α′ − β = α − β.

This completes the proof of the lemma. �
Remark 1. The proof of Lemma 2.1 actually gives the better bound

δ(C) ≥ α(C) −
∑
i<j

gcd(ni,nj)>1

1
ninj

∏
u>j

(
1 − 1

nu

)
.

Remark 2. The referee has pointed out to us that Lemma 2.1 can be formulated
in a more general way involving a finite number of events in a probability space.
In particular suppose that E1, E2, . . . , El are events in a probability space with the
property that if Ei is independent individually of the events Ej1 , Ej2 , . . . Ejk

, then
it is independent of every event in the sigma algebra generated by Ej1 , Ej2 , . . . , Ejk

.
Then

(2.3) P
(⋂l

i=1 Ei

)
≥

l∏
i=1

P(Ei) −
∑

1≤i<j≤l
Ei,Ej dependent

P(Ei)P(Ej).

We can retrieve Lemma 2.1 from this statement if we let Ei be the event that
an integer n is in the residue class ri (mod ni). Indeed, Ei is independent of Ej

if and only if ni and nj are coprime. The extra condition involving the sigma
algebra is easily seen to hold (and was used strongly in our proof). The proof of
(2.3) is the same as that of Lemma 2.1, namely an induction on l. This result
bears a resemblance to the Lovász Local Lemma (for example, see [1]) and in some
situations may be stronger.

There is a very interesting negative result of Haight [11]. As in the introduction,
we say an integer H is covering if there is a covering system with the moduli being
the (distinct) divisors of H that are larger than 1. It is shown in [11] that there
exist integers H that are not covering, yet

∑
d|H 1/d = σ(H)/H is arbitrarily large.

Although Haight’s theorem follows directly from Theorem A (by taking K fixed,
N large and H the product of the primes in (N, NK ]), Lemma 2.1 by itself leads
to a new (and short) proof of a stronger version of Haight’s result:

Theorem 1. There is an infinite set of positive integers H with

σ(H)/H = (log log H)1/2 + O(log log log H),

such that for any residue system C with S(C) = {d : d > 1, d | H}, we have

δ(C) ≥ (1 + o(1))α(C).

In particular, for large H in this set, no such C can have δ(C) = 0.
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Proof. Let N be a large parameter, and let

H =
∏

e
√

log N log N<p≤N

p.

Then

log
∑
d|H

1
d

=
∑

e
√

log N log N<p≤N

(
1
p

+ O

(
1
p2

))
=

1
2

log log N − log log N + O(1)√
log N

,

by Mertens’ theorem. Thus, as log H = (1+o(1))N by the prime number theorem,
we have
σ(H)

H
=

∑
d|H

1
d

= (log N)1/2 − log log N + O(1) = (log log H)1/2 + O(log log log H).

Let C be a residue system with S(C) = {d : d > 1, d | H}. We have

log α(C) =
∑

d∈S(C)

log(1 − 1/d) = −
∑

d∈S(C)

1/d + O
(
exp(−

√
log N)

)
,

so that
α(C) = exp

(
−

√
log N + O(1)

)
log N.

Also,

β(C) ≤
∑
d>1

∑
d1,d2∈S(C)
d|d1, d|d2

1
d1d2

≤
∑

d|H, d>1

1
d2

∑
d1|H
d2|H

1
d1d2

	 log N
∑

d|H, d>1

1
d2

.

Furthermore,∑
d|H, d>1

1
d2

≤
∑

d>e
√

log N log N

1
d2

	 exp
(
−

√
log N

)
(log N)−1.

Thus,

β(C) 	 exp
(
−

√
log N

)
= o(α(C))

and the theorem follows from Lemma 2.1. �

Remark 3. An examination of our proof shows that we have a more general result.
Let H be the set of integers H which have no prime factors below

exp(
√

log log H) log log H.

As H → ∞ in H, we have for any residue system C with S(C) = {d : d > 1, d | H}
that δ(C) ≥ (1 + o(1))α(C). In particular, at most finitely many integers H ∈ H
are covering.

We also remark that the proof gives the following result. Say that a positive
integer H is s-covering, if for each d | H with d > 1 there are s integers rd,1, . . . , rd,s

such that the union of the residue classes rd,i (mod d) for i = 1, . . . , s and d | H
with d > 1 is Z. Then for each fixed ε > 0 there are values of H where σ(H)/H
is arbitrarily large, yet H is not s-covering with s = [(log log H)1−ε]. Indeed, take
H to be the product of the primes in

(
exp

(
(log N)1−ε/3

)
, N

]
and follow the same

proof. This too strengthens a result in [11].
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3. The smooth-number decomposition

The relative ease of using Lemma 2.1 in the proof of Haight’s theorem is due to
the fact that the moduli that we produce for the proof have no small prime factors,
so that it is easy to bound the sum for β(C). In going over to more general cases,
it is clear we have to introduce other tools. For example, if S(C) is the set of all
integers in the interval (N, KN ], then the sum for β(C) tends to infinity with K,
while the expression for α is always less than 1. Thus, the lemma would say that
the residual set of integers not covered has density bounded below by a negative
quantity tending to −∞. This is clearly not useful! To rectify this situation, we
choose a paramter Q and factor each modulus n as nQnQ, where nQ is the largest
divisor of n composed solely of primes in [1, Q] and nQ = n/nQ. We then find a
way to decompose our system C based on these factorizations and use Lemma 2.1
on the parts corresponding to the numbers nQ which have no small prime factors.

To set some terminology, for a number Q ≥ 1, we say a positive integer n is
Q-smooth if P (n) ≤ Q. Thus, nQ is the largest Q-smooth divisor of n.

Lemma 3.1. Let C be an arbitrary residue system. Let Q ≥ 2 be arbitrary, and
set

M = lcm{nQ : n ∈ S(C)}.
For 0 ≤ h ≤ M − 1, let Ch be the set

Ch =
{(

nQ, r
)

: (n, r) ∈ C, r ≡ h (mod nQ)
}

.

Then

δ(C) =
1
M

M−1∑
h=0

δ(Ch).

Proof. Fix h so that 0 ≤ h ≤ M − 1. For (n, r) ∈ C, the simultaneous congruences

x ≡ r (mod n), x ≡ h (mod M)

have a solution if and only if r ≡ h (mod nQ), since nQ = gcd(n, M), in which case
the system is equivalent to the system

x ≡ r (mod nQ), x ≡ h (mod M).

Thus, R(Ch) ∩ (h mod M) = R(C) ∩ (h mod M). Observe that all elements nQ

of S(Ch) are coprime to M . Thus, the proportion of the numbers in R(Ch) in the
class h modulo M is equal to δ(Ch). Hence, the density of R(C) ∩ (h mod M) is
δ(Ch)/M and the result follows. �

We now take advantage of the fact that the prime factors of a number nQ are
all larger than Q to allow us to get a reasonable upper bound for the quantities
β(Ch). The proof is similar to that in Theorem 1.

Lemma 3.2. Let K > 1, and suppose C is a residue system with S(C) consisting of
integers in the interval (N, KN ], each with multiplicity at most s. Suppose Q ≥ 2,
and define M and Ch as in Lemma 3.1. Then

(3.1)
1
M

M−1∑
h=0

β(Ch) 	 s2 log2(QK)
Q

.
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Proof. For m|M , let Sm be the set of distinct numbers nQ = n/ gcd(n, M), where
n ∈ S(C) and nQ = gcd(n, M) = m. For m, m′ | M , let

F (r, m, r′, m′) = #{0 ≤ h ≤ M − 1 : h ≡ r (mod m), h ≡ r′ (mod m′)}.

Then

1
M

M−1∑
h=0

β(Ch) ≤ 1
M

∑
m|M
m′|M

∑
n∈Sm

n′∈Sm′
gcd(n,n′)>1

1
nn′

∑
(nm,r)∈C

(n′m′,r′)∈C

F (r, m, r′, m′).

Since F (r, m, r′, m′) is either 0 or M/lcm[m, m′], the inner sum is at most

s2 M

lcm[m, m′]
.

Next, ∑
n∈Sm

n′∈Sm′
gcd(n,n′)>1

1
nn′ ≤

∑
p>Q

∑
n∈Sm

n′∈Sm′
p|n, p|n′

1
nn′

=
∑
p>Q

( ∑
N/m<n≤KN/m

p|n, P−(n)>Q

1
n

)( ∑
N/m′<n′≤KN/m′

p|n′, P−(n′)>Q

1
n′

)
.

By standard sieve methods (e.g., Theorem 3.3 of [12]), uniformly in x ≥ 2, z ≥ 2,
the number of integers ≤ x which have no prime factor ≤ z is 	 x/ log z + 1. By
partial summation,

∑
N/m<n≤KN/m

p|n, P−(n)>Q

1
n

=
1
p

∑
N

pm <t≤KN
pm

P−(t)>Q

1
t
	 1

p

(
log K

log Q
+ 1

)
=

log(QK)
p log Q

and similarly with m′, n′ replacing m, n. We have the estimate
∑

p>Q p−2 	
1/(Q log Q), which follows from the prime number theorem and partial summa-
tion. Thus, ∑

n∈Sm

n′∈Sm′
gcd(n,n′)>1

1
nn′ 	

log2(QK)
Q log3 Q

,

so that

1
M

M−1∑
h=0

β(Ch) 	 s2 log2(QK)
Q log3 Q

∑
m|M
m′|M

1
lcm[m, m′]

=
s2 log2(QK)

Q log3 Q

∑
u|M

∑
m|M, m′|M
lcm[m,m′]=u

u−1.
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With τ (n) denoting the number of natural divisors of n, the double sum is equal to∑
u|M

u−1τ (u2) ≤
∏
p|M

(
1 +

3
p

+
5
p2

+ · · ·
)

=
∏
p|M

1 + 1/p

(1 − 1/p)2
≤

∏
p≤Q

1 + 1/p

(1 − 1/p)2
	 log3 Q,

and this completes the proof. �

To complement Lemma 3.2, we would like a lower bound for the sum of the
α(Ch). Key to this estimate will be those moduli in S(C) which are Q-smooth. If
the residue classes corresponding to these moduli do not cover everything, we are
able to get a respectable lower bound for the sum of the α(Ch).

Lemma 3.3. Suppose that C is a residue system, Q ≥ 2, and define M and Ch as
in Lemma 3.1. Also let C ′ = {(n, r) ∈ C : n|M} = {(n, r) ∈ C : P (n) ≤ Q} and
suppose δ(C ′) > 0. Then

1
M

M−1∑
h=0

α(Ch) ≥ (α(C))(1+1/Q)/δ(C′)
.

Proof. Note that 1 ∈ S(Ch) if and only if there is a pair (n, r) ∈ C ′ with h ≡ r
(mod n). Let

M′ = {0 ≤ h ≤ M − 1 : 1 
∈ S(Ch)}, M ′ = |M′|.
Then

(3.2)
M ′

M
= δ(C ′).

The hypothesis δ(C ′) > 0 thus implies that M ′ > 0. Observe that 1 ∈ S(Ch)
implies α(Ch) = 0. By the inequality of the arithmetic and geometric means,

1
M

M−1∑
h=0

α(Ch) =
1
M

∑
h∈M′

α(Ch) ≥ M ′

M

( ∏
h∈M′

α(Ch)
)1/M ′

=
M ′

M

( ∏
h∈M′

∏
n′∈S(Ch)

(
1 − 1

n′

) )1/M ′

.

Since log(1 − 1/k) > − 1
k (1 + 1

k ) for k ≥ 2 and since each n′ > Q, we have

1 − 1
n′ > exp

(
− λ/n′), where λ = 1 + 1/Q.

Thus,

1
M

M−1∑
h=0

α(Ch) ≥ M ′

M
exp

⎛⎝− λ

M ′

∑
h∈M′

∑
n′∈S(Ch)

1
n′

⎞⎠

≥ M ′

M
exp

⎛⎝λ(M − M ′)
M ′ − λ

M ′

M−1∑
h=0

∑
n′∈S(Ch)

1
n′

⎞⎠ ,

where the last inequality uses that 1 ∈ S(Ch) for h 
∈ M′.
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Each pair (n, r) ∈ C maps to those Ch with h ≡ r (mod nQ), so it produces the
pair (nQ, r) in exactly M/nQ sets Ch for h ∈ [0, M − 1]. We thus have

M−1∑
h=0

∑
n′∈S(Ch)

1
n′ ≤

∑
n∈S(C)

M

nQ
· 1
nQ

= M
∑

n∈S(C)

1
n

.

(Note that the inequality holds since several pairs in C may map to the same pair
in some Ch, where they would be counted just once.) Thus,

1
M

M−1∑
h=0

α(Ch) ≥ M ′

M
exp

⎛⎝λ(M − M ′)
M ′ − λM

M ′

∑
n∈S(C)

1
n

⎞⎠ .

Also, (M ′/M) exp
(
(M − M ′)/M ′) ≥ 1. Thus,

1
M

M−1∑
h=0

α(Ch) ≥ exp

⎛⎝−λM

M ′

∑
n∈S(C)

1
n

⎞⎠ ≥
(
α(C)

)λM/M ′

.

The lemma follows by (3.2). �

We now combine our lemmas into one easily applied statement.

Lemma 3.4. Suppose K > 1, N is a positive integer, and C is a residue system
with S(C) consisting of integers in (N, KN ], each with multiplicity at most s. Let
Q ≥ 2, and as in Lemma 3.3, let C ′ = {(n, r) ∈ C : P (n) ≤ Q}. If δ(C ′) > 0, then

δ(C) ≥ α(C)(1+1/Q)/δ(C′) + O

(
s2 log2(QK)

Q

)
,

where the implied constant is uniform in all parameters.

Proof. Define M and Ch as in Lemma 3.1. By Lemmas 2.1, 3.1, 3.2, and 3.3, we
have

δ(C) =
1
M

M−1∑
h=0

δ(Ch) ≥ 1
M

M−1∑
h=0

α(Ch) − 1
M

M−1∑
h=0

β(Ch)

≥ α(C)(1+1/Q)/δ(C′) + O

(
s2 log2(QK)

Q

)
.

Thus, we have the lemma. �

4. Lower bounds on δ(C)

In this section we prove stronger versions of Theorems A and B. We begin with
a useful lemma about smooth numbers.

Lemma 4.1. Suppose Q ≥ 2 and Q < N ≤ exp(
√

Q). Then∑
n>N

P (n)≤Q

1
n
	 (log Q)e−u log u, where u =

log N

log Q
.



506 M. FILASETA, K. FORD, S. KONYAGIN, C. POMERANCE, AND G. YU

Proof. We use standard upper-bound estimates for the distribution of smooth
numbers: The number of Q-smooth numbers at most t is 	 t/uut

t , where ut =
log t/ log Q, provided Q ≤ t ≤ exp

(
Q1−ε

)
([15], Theorem 1.2 and Corollary 2.3).

Furthermore, for t > exp
(
6
√

Q
)
, the Q-smooth numbers are distributed more

sparsely than the squares. We thus have∑
n>N

P (n)≤Q

1
n

=
∫ ∞

N

1
t2

∑
N<n≤t
P (n)≤Q

1 dt

≤
∑

0≤i≤10
√

Q

∫ NQi+1

NQi

1
t2

∑
n≤t

P (n)≤Q

1 dt +
∫ ∞

exp(6
√

Q)

1
t2

∑
n≤t

P (n)≤Q

1 dt

	
∑
i≥0

log Q

(u + i)u+i
+

∫ ∞

exp(6
√

Q)

1
t3/2

dt 	 log Q

uu
,

implying the lemma. �

Let

L(N, s) = exp
(

log N
log log(s log N)

log(s log N)

)
.

Theorem 2. Suppose 0 < b < 1
2 , 0 < c < 1

3 (1 − 4b2), and let N be sufficiently
large, depending on the choice of b and c. Suppose C is a residue system with
S(C) consisting of integers n > N , each having multiplicity at most s, where s ≤
exp

(
b
√

log N log log N
)
, and such that

(4.1)
∑

n∈S(C)

1
n
≤ c log L(N, s).

Then δ(C) > 0.

Proof. Throughout we assume that N is sufficiently large, depending only on b and
c. Let λ = 1

3 (1 − 4b2) and put ε = 1
20 (λ − c). First, we have

− log α(C) ≤
∑

n∈S(C)

(
1
n

+
1
n2

)
≤

(
1 +

1
N

) ∑
n∈S(C)

1
n
≤ (c + ε) log L(N, s) = G,

say. Define

(4.2) Q0 = L(N, s)1−ε, Qj = exp
(
Qλ+ε

j−1

)
(j ≥ 1)

and
Kj = exp

(
Qλ+2ε

j−1

)
(j ≥ 1).

Let
Cj = {(n, r) ∈ C : P (n) ≤ Qj}.

Also, define

(4.3) δ0 = 1 − ε, δj = e−1−G(1+1/Q0)/δj−1 (j ≥ 1),

where G is defined above. Since C is finite and Qj tends to infinity with j, it follows
that C = Cj for large j. Thus, the theorem will follow if we show that

(4.4) δ(Cj) ≥ δj (j ≥ 0).
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First, by Lemma 4.1,

1 − δ(C0) ≤ s
∑
n>N

P (n)≤Q0

1
n
	 s(log Q0)e−u log u, where u =

log N

log Q0
.

By the definition of Q0, we have

u =
log(s log N)

(1 − ε) log log(s log N)

so that log u ≥ (1−ε) log log(s log N) and u log u ≥ log(s log N). Hence, δ(C0) ≥ δ0.
Next, suppose j ≥ 1 and δ(Cj−1) ≥ δj−1. Let s0 = exp

(
b
√

log N log log N
)

and
observe that for N large and s ≤ s0, we have

log log(s log N)
log(s log N)

≥ log log s0

log(s0 log N)
≥ log log N

2 log(s0 log N)
≥ (1 − ε) log log N

2b
√

log N log log N
.

Therefore,

s2 ≤ exp
(
2b

√
log N log log N

)
≤ L(N, s)4b2/(1−ε)

= Q
4b2/(1−ε)2

0 ≤ Q
4b2(1+3ε)
0 ≤ Q

4b2(1+3ε)
j−1 .

Let
C ′

j = {(n, r) ∈ Cj : n ≤ Kj}, C ′′
j = {(n, r) ∈ Cj : n > Kj}.

Observe that

δ
(
{(n, r) ∈ C ′

j : P (n) ≤ Qj−1}
)
≥ δ(Cj−1) ≥ δj−1 and α(C ′

j) ≥ α(C) ≥ e−G.

By Lemma 3.4 with Q = Qj−1 and K = Kj/N , there is an absolute constant D
such that

δ(C ′
j) ≥ α(C ′

j)
(1+1/Qj−1)/δj−1 − D

s2 log2(Qj−1Kj/N)
Qj−1

≥ e−G(1+1/Q0)/δj−1 − Q
−1+4b2(1+3ε)+2λ+5ε
j−1 ≥ 2δj − Q−λ+8ε

j−1 .

(4.5)

Also, by Lemma 4.1,

(4.6) 1 − δ(C ′′
j ) ≤ s

∑
n>Kj

P (n)≤Qj

1
n
	 s(log Qj)e−uj log uj ,

where

uj =
log Kj

log Qj
= Qε

j−1.

Thus, 1 − δ(C ′′
j ) ≤ Q−1

j−1. Together with (4.5), this implies

(4.7) δ(Cj) ≥ δ(C ′
j) − (1 − δ(C ′′

j )) ≥ 2δj − Q−λ+9ε
j−1 .

To complete the proof of (4.4) and the theorem, it suffices to prove that

(4.8) Q−λ+9ε
j−1 ≤ δj (j ≥ 1).

First,

Q−λ+9ε
0 = L(N, s)(−λ+9ε)(1−ε) ≤ L(N, s)−λ+10ε = L(N, s)−c−10ε,

while
δ1 ≥ e−1−G(1+1/Q0)(1+1.1ε) ≥ L(N, s)−c−2ε.
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This proves (4.8) when j = 1. Suppose (4.8) holds for some j ≥ 1. Since G ≤ log Q0,
we have

− log δj+1 = 1 + G(1 + 1/Q0)/δj ≤ 2GQλ−9ε
j−1 < Qλ−8ε

j−1 .

Also, by (4.2), we have − log(Q−λ+9ε
j ) 
 Qλ+ε

j−1 . Thus, Q−λ+9ε
j ≤ δj+1 and by

induction (4.8) holds for all j. This completes our proof. �

Theorem 2 implies Theorem A of the introduction by setting s = 1. Observe
that the bound on the sum in Theorem 2 given in (4.1) decreases as s increases. If
one is interested in a result similar to Theorem A but with an emphasis on allowing
the multiplicity of the moduli to be large, one may take b arbitrarily close to 1/2
in Theorem 2.

Theorem 2 should be compared with Theorem 5 of the next section, which shows
that coverings, even exact coverings with squarefree moduli, exist when we allow
the multiplicity of the moduli to be of size exp

(√
log N log log N

)
.

We can also consider the case that S(C) consists of integers from (N, KN ] with
multiplicities at most s ≤ exp

(
b
√

log N log log N
)
, where b <

√
3ε/4. If 0 < ε <

1/3, N is large, and K = L(N, s)(1/3−ε)/s, then Theorem 2 implies that δ(C) > 0.
By a different argument, we can extend the range of K a bit.

Theorem 3. Suppose 0 < ε < (1 − log 2)−1, b < 1
2

√
(1 − log 2)ε, and N is suffi-

ciently large, depending on the choice of ε and b. Suppose that C is a residue system
with S(C) consisting of integers from (N, KN ] with multiplicity at most s, where
s ≤ exp

(
b
√

log N log log N
)

and K = L(N, s)((1−log 2)−1−ε)/s. Then δ(C) > 0.

Note that for s ≥ log N , K = 1 + o(1). Before proving Theorem 3, we present a
lemma.

Lemma 4.2. Suppose s is a positive integer and C is a residue system with S(C)
consisting of integers from (1, B] with multiplicity at most s. Let

C0 = {(n, r) ∈ C : P (n) ≤
√

sB}.

If δ(C0) > 0, then δ(C) > 0.

Proof. Suppose that δ(C0) > 0. Denote by P the product of all primes in (
√

sB, B],
and let L be the least common multiple of the elements of S(C0).

Let p be a prime divisor of P . Since p >
√

sB implies sB/p < p, there are
at most p − 1 multiples of p in the multiset S(C). Call them m1, . . . , mt, and let
r1, . . . , rt be the corresponding residue classes. Then there is a choice for b = b(p) ∈
{0, 1, . . . , p − 1} such that each integer satisfying x ≡ b (mod p) is not covered by
(i.e., does not satisfy) any of the congruences x ≡ rj (mod mj) with 1 ≤ j ≤ t.

By assumption, there is a residue class a mod L contained in R(C0). Let A be
a solution to the Chinese remainder system A ≡ a (mod L) and A ≡ b(p) (mod p)
for each prime p dividing P . Then not only do we have A 
≡ r (mod n) for each
(n, r) ∈ C0, we also have A 
≡ r (mod n) for each (n, r) ∈ C with p | n for some
prime p | P . Since this exhausts the pairs (n, r) ∈ C, we have A ∈ R(C), so we
have the lemma. �
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Proof of Theorem 3. We may suppose that ε > 0 is sufficiently small and K ≥ 2.
Let C0 be as in Lemma 4.2 where we take B = KN . Then∑

n∈S(C0)

1
n
≤ s

∑
N<n≤KN

P (n)≤
√

sKN

1
n

= s
∑

N<n≤KN

1
n
− s

∑
N<n≤KN

P (n)>
√

sKN

1
n

= s log K + O(s/N) − s
∑

√
sKN<p≤KN

1
p

∑
N/p<m≤KN/p

1
m

.

Now, ∑
N/p<m≤KN/p

1
m

=

{
log K + O(p/N), p ≤ N,

log(KN/p) + O(1), N < p ≤ KN.

Thus,∑
√

sKN<p≤KN

1
p

∑
N/p<m≤KN/p

1
m

=
∑

√
sKN<p≤N

(
log K

p
+ O(1/N)

)
+

∑
N<p≤KN

(
log K

p
+

log N − log p + O(1)
p

)

=
∑

√
sKN<p≤KN

log K

p
+

∑
N<p≤KN

log N − log p

p
+ O(log K/ log N)

= log 2 log K + O

(
log K log(sK)

log N

)
= (log 2 + o(1)) log K.

Hence, since − log α(C0) ≤
∑

n∈S(C0) 1/n + O(s/N), we have

− log α(C0) ≤ s
(
1 − log 2 + o(1)

)
log K ≤

(
1 − (1 − log 2)ε + o(1)

)
log L(N, s).

Let Q = L(N, s)1−λ, where λ = 1
4 ((1 − log 2)ε − 4b2). Also let C ′ = {(n, r) ∈ C0 :

P (n) ≤ Q}. As before, using Lemma 4.1 yields

δ(C ′) = 1 + O

(
s

∑
n>N

P (n)≤Q

1
n

)
= 1 + o(1) (N → ∞).

Hence,
α(C0)(1+1/Q)/δ(C′) 
 L(N, s)−1+(1−log 2)ε−λ.

On the other hand,
s2 log2(QK)

Q
	 L(N, s)−1+4b2+2λ.

By Lemma 3.4, we have δ(C0) > 0 for N sufficiently large. Thus, δ(C) > 0 by
Lemma 4.2. �

We now show that if K is a bit smaller than in Theorem 3, then in fact

δ(C) ≥ (1 + o(1))α(C).

The following result generalizes Theorem B from the introduction.
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Theorem 4. Suppose 0 < ε < 1/2, 0 < b < 1
2

√
ε, and N ≥ 100. Suppose that C is

a residue system with S(C) consisting of integers from (N, KN ] with multiplicity
at most s, where s ≤ exp

(
b
√

log N log log N
)

and K = L(N, s)(1/2−ε)/s. Then

δ(C) ≥
(

1 + O

(
1

(log N)λ

))
α(C),

where λ is a positive constant depending only on ε and b.

Proof. We follow the same general plan as in the proof of Theorem 2. Since the
sum of 1/n for all n ∈ (N, KN ] is log K + O(1/N), we have

α(C) 
 L(N, s)−1/2+ε.

Let Q = L(N, s)1/2−λ, where λ = 1
3 (ε − 4b2). In particular Q ≥ log2 N . Let

u = log N/ log Q, and let C ′ be as in Lemma 3.4. By Lemma 4.1, we have

1 − δ(C ′) 	 s log Q

uu
	 s log N

(s log N)2+λ
,

so that 1/δ(C ′) = 1 + O
(
(s log N)−1−λ

)
. Since | log α(C)| ≤ log N , we have

α(C)(1+1/Q)/δ(C′) = (1 + O(1/(log N)λ))α(C).

So, by Lemma 3.4 it suffices to show that s2(log QK)2/Q = O(α(C)(logN)−λ).
But, for large N we have s2 ≤ L(N, s)4b2+λ. Thus,

s2(log QK)2

Q
	 s2 log2 L(N, s)

L(N, s)1/2−λ

	 1
L(N, s)1/2−2λ−4b2

	 1
L(N, s)1/2−ε+λ

	 α(C)
L(N, s)λ

.

This completes the proof. �

5. Coverings and near-coverings of the integers

In this section, we address two items. The first shows that there are coverings
of the integers with the moduli bounded below by N and the multiplicity of the
moduli near the upper bound on the multiplicity of the moduli given by Theorem
2. The second shows that, when we allow K to be large, the density of the integers
which are not covered by a covering system using distinct moduli from (N, KN ]
can be considerably smaller than what is suggested by Theorem 4.

Theorem 5. For sufficiently large N and s = exp(
√

log N log log N), there ex-
ists an exact covering system with squarefree moduli greater than N such that the
multiplicity of each modulus does not exceed s.

Proof. Let p denote a prime and let Xj = (j +1)j+1 for j = 0, 1, . . . . We first show
that

(5.1)
∑

Xj−1<p≤Xj

[Xj/p] ≥ Xj−1 (j ≥ 1).

Here [x] denotes the largest integer which is ≤ x. Note that (5.1) holds for j ≤ 5.
Suppose then that j ≥ 6. Using the estimates (3.4), (3.17), and (3.18) in Rosser
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and Schoenfeld [17], we have that∑
Xj−1<p≤Xj

[Xj/p] ≥ Xj

∑
Xj−1<p≤Xj

1/p − π(Xj)

≥ Xj

(
log

log Xj

log Xj−1
− 1

log2 Xj−1

− 1
log Xj − 3

2

)
.

The expression in the parentheses is

log
(j + 1) log(j + 1)

j log j
− 1

j2 log2 j
− 1

(j + 1) log(j + 1) − 3
2

>
1

j + 1

(
j + 1

j
− j + 1

2j2
− j + 1

j2 log2 j
− 1

log(j + 1) − 3/(2j + 2)

)
>

0.43
j + 1

.

Also, Xj = (j + 1)jj(1 + 1/j)j > 2.5(j + 1)jj . Thus,∑
Xj−1<p≤Xj

[Xj/p] >
2.5(j + 1)0.43

j + 1
jj > jj ,

which proves (5.1).
We describe now an explicit construction of a covering system, which we will then

show satisfies the conditions of the theorem. For J ≥ 1 and s = XJ , we establish
that there exists an exact covering system CJ with squarefree moduli greater than

NJ =
J−1∏
j=0

Xj

such that the multiplicity of each modulus does not exceed s. Set

Pj = {p : Xj−1 < p ≤ Xj}.

We construct CJ , through induction on J , by choosing moduli of the form p1 · · · pJ

where each pj ∈ Pj . Observe that such a product p1 · · · pJ is necessarily > NJ .
One checks that C1 = {(2, 0), (2, 1)} satisfies the conditions for CJ with J = 1.
Now, suppose that we have CJ as above for some J ≥ 1. Thus, we have an exact
covering system CJ with moduli of the form p1 · · · pJ where each pj ∈ Pj . Fix
such a modulus n = p1 · · · pJ , and let (n, r1), . . . , (n, rt), with t ≤ XJ , be the
pairs of the form (n, r) in CJ . Let q1 < q2 < · · · be the complete list of primes
from PJ+1. To construct CJ+1, we replace each pair (n, ri), i ≤ [XJ+1/q1], with
the q1 pairs (nq1, ri + nµ), where µ = 0, . . . , q1 − 1. Notice that the multiplicity
of the modulus nq1 is at most [XJ+1/q1]q1 ≤ XJ+1. Next, we replace each pair
(n, ri), [XJ+1/q1] < i ≤ [XJ+1/q1] + [XJ+1/q2], with the q2 pairs (nq2, ri + nµ),
where µ = 0, . . . , q2 − 1. We proceed with this construction until all the pairs
(n, r1), . . . , (n, rt) are replaced with new pairs. As t ≤ XJ , this will happen at
some point by (5.1). This completes the inductive construction of our exact covering
systems CJ .

To complete the proof of the theorem, it suffices to show that log NJ log log NJ ≥
log2 s for large J . Now

log NJ =
J∑

j=1

j log j ≥
∫ J

1

t log t dt >
1
2
J2 log J − 1

4
J2,
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so that

log log NJ > 2 log J +log log J − log 2+ log(1− 1/(2 log J)) > 2 log J +log log J − 1,

for J ≥ 7. Thus,

log NJ log log NJ > J2 log2 J +
1
2
J2 log J

(
log log J − 1.5 − log log J

2 log J

)
> J2 log2 J + 3J log2 J,

for J ≥ 350. But log2 s = (J + 1)2 log2(J + 1) < J2 log2 J + 3J log2 J in the same
range. This completes the proof of the theorem. �

Remark 4. A more elementary proof, one that does not use the estimates from
[17], is possible by defining the sequence Xj inductively as the minimal numbers
for which (5.1) holds.

Suppose s = 1 and N , KN are integers in Theorem 4. Then S(C) consists of
distinct integers chosen from (N, KN ] so that

α(C) ≥
KN∏

j=N+1

(
1 − 1

j

)
=

1
K

.

Thus, Theorem 4 implies a lower bound of approximately 1/K for any δ(C) with
S(C) ⊆ (N, KN ], provided K is not too large. It is clear that the expression 1/K
is not far from the truth, since the argument of the introduction gives a residue
system C with δ(C) ≤ 1/K. However, we might ask about the situation when
K is large compared to N . The following result shows that δ(C) can in fact be
considerably smaller than 1/K when K is much larger than N .

Theorem 6. Suppose N and K are integers with N ≥ 1 and K sufficiently large.
Then there is some residue system C consisting of distinct moduli from (N, KN ]
such that

δ(C) ≤ 1
K

exp
(
− log K

3N

)
.

Before giving a proof of the above theorem, we give a lemma that will also play
a role in the next section. For a set T of positive integers, we let C(T ) be the set of
residue systems C with S(C) = T and where (n, r) ∈ C implies 1 ≤ r ≤ n. Also,
define

W (T ) = #C(T ) =
∏
n∈T

n.

Lemma 5.1. Let T be a set of positive integers. Then the expected value of δ(C)
over C ∈ C(T ), denoted Eδ(C), is

∏
n∈T (1 − 1/n).

Proof. Put W = W (T ) and say 1 ≤ m ≤ W . The number of systems C ∈ C(T )
with m ∈ R(C) is

∏
n∈T (n − 1), since for each n ∈ T , there are n − 1 choices for r
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with 1 ≤ r ≤ n and r 
≡ m (mod n). Thus,∑
C∈C(T )

δ(C) =
∑

C∈C(T )

1
W

∑
1≤m≤W
m∈R(C)

1

=
1
W

W∑
m=1

∑
C∈C(T )
m∈R(C)

1 =
1
W

W∑
m=1

∏
n∈T

(n − 1) =
∏
n∈T

(n − 1).

The result follows by dividing this equation by W . �

Remark 5. It is not hard to prove a version of Lemma 5.1 that allows for taking
moduli from T with multiplicity greater than 1.

Proof of Theorem 6. There is a covering system with distinct moduli and smallest
modulus 25 (a result of Gibson [9]), so Theorem 6 follows for N ≤ 24. Henceforth
we may assume that N ≥ 25; however our argument holds for N ≥ 4. We shall
construct a residue system C = {(n, r(n)) : N < n ≤ KN} as follows. We will
randomly choose the values of r(n) ∈ [1, n] for N < n ≤ 2N so that each residue
class modulo n is taken with the same probability 1/n and the variables r(n) are
independent. Based on the random choice of such r(n) for N < n ≤ 2N , we then
select the remaining values of r(n) with 2N < n ≤ KN via a greedy algorithm.
In fact, we show that, under our construction, the expected value of δ(C) over all
randomly chosen values of r(n) ∈ [1, n] for N < n ≤ 2N is

≤ 1
K

exp
(
− log K

3N

)
.

The result thus follows.
Let C2N = {(n, r(n)) : N < n ≤ 2N}, where each r(n) is chosen randomly from

[1, n]. From Lemma 5.1, it follows that Eδ(C2N ) = 1/2. Hence, by the arithmetic
mean-geometric mean inequality,

(5.2) E log δ(C2N ) ≤ − log 2.

We will also make use of Lemma 5.1 in another way. If D is a subset of the
integers in (N, 2N ] and C̃ = {(d, r(d)) : d ∈ D}, then it is not difficult to see
that the expected value of δ(C̃) over all randomly chosen values of r(d) ∈ [1, d] for
d ∈ D is the same as the expected value of δ(C̃) over all randomly chosen values of
r(n) ∈ [1, n] for n ∈ (N, 2N ]; in other words, the random selection of extra residue
classes not associated with C̃ will not affect the expected value δ(C̃). Thus, Lemma
5.1 implies Eδ(C̃) = α(C̃) where the expected value is over all randomly chosen
r(n) ∈ [1, n] for N < n ≤ 2N .

Suppose then that the values of r(n) ∈ [1, n] for N < n ≤ 2N have been chosen
randomly. For 2N < j ≤ KN , we describe how to select r(j). For this purpose,
we set Cj = {(n, r(n)) : N < n ≤ j}. We use the greedy algorithm to choose r(j)
to be a residue class modulo j containing the largest proportion of R(Cj−1). As in
the introduction, this gives trivially

δ(Cj) ≤
(

1 − 1
j

)
δ(Cj−1).
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We can sometimes do better. If j has a divisor d with N < d ≤ 2N , then there are
residue classes modulo j not intersecting R(Cj−1). In particular, the residue class
r(d) (mod d) contains r (mod j) when r ≡ r(d) (mod d). Let

D(j) = {d : d|j, N < d ≤ 2N}, C̃j = {(d, r(d)) : d ∈ D(j)}.

Let f(j) be the number of residue classes r (mod j) for which r 
≡ r(d) (mod d)
for each d ∈ D(j). If we choose r(j) appropriately from among these f(j) choices
for r, we have

(5.3) δ(Cj) ≤
(

1 − 1
f(j)

)
δ(Cj−1).

The last equality is nonsense if f(j) = 0, but in that case we have R(Cj−1) = ∅,
and the theorem is trivial. Also, there is nothing to prove if f(j) = 1 since then
R(Cj) = ∅. Throughout the following we assume that f(j) > 1.

We see from (5.3) and linearity of expectation that

(5.4) E log δ(Cj) − E log δ(Cj−1) ≤ E log
(

1 − 1
f(j)

)
≤ −E

(
1

f(j)

)
.

Using Lemma 5.1 as described above, we have

Eδ
(
C̃j

)
=

∏
d∈D(j)

(
1 − 1

d

)
.

Since j is a common multiple of the members of D(j), it follows that δ
(
C̃j

)
= f(j)/j,

so that

Ef(j) = jEδ
(
C̃j

)
= j

∏
d∈D(j)

(
1 − 1

d

)
.

By the arithmetic mean-harmonic mean inequality, we thus have

E
(

1
f(j)

)
≥ j−1

∏
d∈D(j)

(
1 − 1

d

)−1

≥ 1
j

+
∑

d∈D(j)

1
dj

.

After substituting the last inequality into (5.4), we get

E log δ(Cj) − E log δ(Cj−1) ≤ −1
j
−

∑
d∈D(j)

1
dj

.

Thus,

E log δ(C) − E log δ(C2N ) ≤ −
KN∑

j=2N+1

1
j
−

KN∑
j=2N+1

∑
d∈D(j)

1
dj

= −
KN∑

j=2N+1

1
j
−

2N∑
d=N+1

∑
2N/d<l≤KN/d

1
d2l

= − log(K/2) + O(1/N) −
2N∑

d=N+1

log K + O(1)
d2

.
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We have for N ≥ 4 the estimate
2N∑

d=N+1

1
d2

≥
∫ 2N+1

N+1

dt

t2
=

N

(N + 1)(2N + 1)
≥ 1

2.9N
.

Therefore, by (5.2),

E log δ(C) ≤ − log K − log K + O(1)
2.9N

.

The theorem now follows. �

6. Normal value of δ(C)

It is reasonable to expect that δ(C) ≈ α(C) for almost all residue systems C
with fixed S(C). In this section, we establish such a result when S(C) consists
of distinct integers, by considering the variance of δ(C) over C ∈ C(T ), where, as
before, C(T ) is the set of residue systems C with S(C) = T .

Theorem 7. Let T be a set of distinct positive integers with minimum element
N ≥ 3. Let α be the common value of α(C) for C ∈ C(T ). Then,

1
W (T )

∑
C∈C(T )

|δ(C) − α|2 	 α2 log N

N2
.

Proof. From Lemma 5.1, we have Eδ(C) = α(C) = α. Writing W = W (T ), we
deduce then that

(6.1)
1
W

∑
C∈C(T )

|δ(C) − α|2 =
1
W

∑
C∈C(T )

(
δ(C)2 − α2

)
.

We have∑
C∈C(T )

δ(C)2 =
∑

C∈C(T )

(
1
W

∑
1≤m≤W
m∈R(C)

1
)2

=
1

W 2

∑
1≤m1,m2≤W

∑
C∈C(T )

m1,m2∈R(C)

1.

As in the proof of Lemma 5.1, the inner sum is∏
n∈T

m1≡m2 (mod n)

(n − 1)
∏
n∈T

m1 �≡m2 (mod n)

(n − 2) = W
∏
n∈T

(
1 − 2

n

) ∏
n∈T

m1≡m2 (mod n)

n − 1
n − 2

= α2W
∏
n∈T

1 − 2
n(

1 − 1
n

)2

∏
n∈T

n|(m1−m2)

n − 1
n − 2

= α2W
∏
n∈T

(
1 − 1

(n − 1)2

) ∏
n∈T

n|(m1−m2)

n − 1
n − 2

.

Let u =
∑

n∈T 1/n2 and define f(m1, m2) =
∏

n∈T, n|(m1−m2)
(n−1)/(n−2). Thus,

(6.2)
∑

C∈C(T )

δ(C)2 =
α2

W

(
1 − u + O

(
1

N2

)) ∑
1≤m1,m2≤W

f(m1, m2).

For S a finite set of integers which are ≥ 3, let M(S) denote
∏

n∈S(n − 2), and
let L(S) denote the least common multiple of the members of S. We have

f(m1, m2) =
∏
n∈T

n|(m1−m2)

(
1 +

1
n − 2

)
=

∑
S⊆T

L(S)|(m1−m2)

1
M(S)

.
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Thus,

(6.3)
∑

1≤m1,m2≤W

f(m1, m2) =
∑
S⊆T

1
M(S)

∑
1≤m1,m2≤W
L(S)|(m1−m2)

1 = W 2
∑
S⊆T

1
M(S)L(S)

.

In this last sum we separately consider the terms with #S ≤ 1 and #S ≥ 2. We
have

(6.4)
∑
S⊆T
#S≤1

1
M(S)L(S)

= 1 +
∑
n∈T

1
(n − 2)n

= 1 + u + O
(
1/N2

)
.

If S ⊆ T and #S ≥ 2, let k > h be the largest two members of S. Then L(S) ≥
lcm[h, k] = hk/ gcd(h, k), so that

E :=
∑
S⊆T
#S≥2

1
M(S)L(S)

≤
∑

k>h≥N

gcd(h, k)
(h − 2)(k − 2)hk

∑
U⊆[N,h−1]

1
M(U)

.

The inner sum here is identical to
∏

N≤n≤h−1(n− 1)/(n− 2) = (h− 2)/(N − 2), so
that

E 	 1
N

∑
k>h≥N

gcd(h, k)
hk2

≤ 1
N

∑
d≥1

∑
k>h≥N
d|h, d|k

d

hk2

=
1
N

∑
d≥1

∑
v>w≥N/d

1
d2wv2

	 1
N

∑
d≥1

∑
w≥N/d

1
d2w2

.

In this last double sum, if d ≤ N , then the sum on w is 	 d/N , so that the
contribution to E is 	 (log N)/N2. Moreover if d > N , the sum on w is 	 1, so
that the contribution to E is 	 1/N2. We conclude that E 	 (log N)/N2. Thus,
with (6.3) and (6.4) we have∑

1≤m1,m2≤W

f(m1, m2) = W 2
(
1 + u + O((log N)/N2)

)
,

so that from (6.2) and u 	 1/N , we get∑
C∈C(T )

δ(C)2 = α2W
(
1 + O((log N)/N2)

)
.

The result now follows immediately from (6.1). �
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