View-Obstruction Problems, III

T. W. Cusick*
Department of Mathematics, State University of New York, Buffalo, New York 14214

AND
Carl Pomerance*
Department of Mathematics, University of Georgia, Athens, Georgia 30602

Communicated by P. T. Bateman
Received January 4, 1982; revised March 22, 1983

Suppose C is a closed convex body in E^{n} which contains the origin as an interior point. Define αC for each real number $\alpha \geqslant 0$ to be the magnification of C by the factor α and define $C+\left(m_{1}, \ldots, m_{n}\right)$ for each point $\left(m_{1}, \ldots, m_{n}\right)$ in E^{n} to be the translation of C by the vector $\left(m_{1}, \ldots, m_{n}\right)$. Define the point set $\Delta(C, \alpha)$ by $\Delta(C, \alpha)=$ $\left\{\alpha C+\left(m_{1}+\frac{1}{2}, \ldots, m_{n}+\frac{1}{2}\right): m_{1}, \ldots, m_{n}\right.$ nonnegative integers $\}$. The view-obstruction problem for C is the problem of finding the constant $K(C)$ defined to be the lower bound of those α such that any half-line L given by $x_{i}=a_{i} t(i=1,2, \ldots, n)$, where the $a_{i}(1 \leqslant i \leqslant n)$ are positive real numbers and the parameter t runs through $10, \infty)$, intersects $\Delta(C, \alpha)$. The paper considers the case where C is the n dimensional cube with side 1 , and in this case the constant $K(C)$ is evaluated for $n=4$. The proof in dimension 4 depends on a theorem (proved via exponential sums) concerning the existence of solutions for a certain system of simultaneous congruences. The proofs in dimensions 2 and 3 are much simpler, and for these dimensions several other proofs have previously been given. For real x, let $\|x\|$ denote the distance from x to the nearest integer. A non-geometric description of our principal result is that we prove the case $n=4$ of the following conjecture: For any n positive integers w_{1}, \ldots, w_{n} there is a real number x such that each $\left\|w_{i} x\right\| \geqslant(n+1)^{-1}$. © 1984 Academic Press, Inc.

1. Introduction

The view-obstruction problems defined in the abstract were first introduced in [2]. In this paper we only consider the case where the closed convex body C in E^{n} is the n-dimensional cube with side 1 . We use the notation $\lambda(n)$ for the constant $K(C)$ in this case.

[^0]For any real number x, let $\|x\|$ denote the distance from x to the nearest integer. The evaluation of $\lambda(n)$ can be thought of as a problem in Diophantine approximation, since we have

$$
\begin{equation*}
\frac{1}{2} \lambda(n)=\sup \min _{0 \leqslant x \leqslant 1} \max _{1 \leqslant i \leqslant n}\left\|w_{i} x-\frac{1}{2}\right\|, \tag{1}
\end{equation*}
$$

where the supremum is taken over all n-tuples w_{1}, \ldots, w_{n} of positive integers. Formula (1) follows from the definition of $\lambda(n)$ given in the abstract; we note that the positive real numbers a_{i} mentioned in the abstract can be assumed to be positive integers. If we define

$$
\begin{equation*}
\kappa(n)=\inf \max _{0 \leqslant x \leqslant 1} \min _{1 \leqslant i \leqslant n}\left\|w_{i} x\right\|, \tag{2}
\end{equation*}
$$

where the infimum is taken over all n-tuples w_{1}, \ldots, w_{n} of positive integers, then since $\left\|w_{i} x\right\|=\frac{1}{2}-\left\|w_{i} x-\frac{1}{2}\right\|$, we have $\lambda(n)=1-2 \kappa(n)$ for each $n \geqslant 2$. It will be convenient in the rest of the paper to concentrate on the problem of evaluating $\kappa(n)$.

The problem of evaluating $\lambda(n)$ is equivalent to the following: Suppose the unit cube in E^{n} has faces which reflect a certain particle, and consider any motion of the particle, starting in a corner of the cube and not entirely contained in a hyperplane of dimension $n-1$. What is the side length of the largest subcube, centered in the unit cube, with the property that there exists such a motion of the particle which does not intersect the subcube? Plainly the largest such side length is $\lambda(n)$.

The corresponding problem, if the condition that the particle start in a corner is omitted, can be treated by methods entirely different from those in this paper. This has been done by Schoenberg [5], who solved this problem in every dimension; he showed that the largest subcube in dimension n has side $1-n^{-1}$.

The natural conjecture for the value of $\lambda(n)$ is $(n-1) /(n+1)$ (as stated in [2, p. 166]). This is because Dirichlet's box principle gives

$$
\max _{0 \leqslant x \leqslant 1} \min _{1 \leqslant i \leqslant n}\|i x\|=\frac{1}{n+1}
$$

so $\kappa(n) \leqslant 1 /(n+1)$, and it is reasonable to conjecture that equality holds. That is, we conjecture that for any n positive integers w_{1}, \ldots, w_{n}, there is a real number x such that each $\left\|w_{t} x\right\| \geqslant(n+1)^{-1}$. The case $n=2$ is very simple. The case $n=3$ is more complicated, but several proofs have previously been published (Betke and Wills [1], Cusick [2-4]). The case $n=4$ is solved here by an extension of the method of [4]. The proof in [4] was elementary, but the crucial step in the argument here is the estimation of
certain exponential sums. The estimation succeeds only if a certain parameter is sufficiently large; dealing with the small values of the parameter requires some ad hoc calculations.

2. The Method of Proof

By (2), in order to show that $\kappa(n)=1 /(n+1)$ it is enough to prove that given any n-tuple w_{1}, \ldots, w_{n} of positive integers with the property that for any integers m and q,

$$
\begin{equation*}
\left\|w_{i} \frac{q}{m}\right\| \leqslant \frac{1}{n+1} \quad \text { for some } i, \quad 1 \leqslant i \leqslant n, \tag{3}
\end{equation*}
$$

there exists some pair m, q such that (3) does not hold if \leqslant is replaced by $<$.
If we assume (as we may with no loss of generality) that w_{1}, \ldots, w_{n} have no common prime factor, then we would expect that there are only finitely many n-tuples w_{1}, \ldots, w_{n} such that (3) holds for any m and q. Further, we might hope that by considering only finitely many values of m, we could identify all of these n-tuples, and so reduce the determination of $\kappa(n)$ to a finite calculation. It is easy to carry out this procedure when $n=2$, and so prove $\kappa(2)=1 / 3$. When $n=3$, the procedure can also be carried out; this was done in an elementary way in [4]. We apply this method for $n=4$ in the following section, but the proof is no longer elementary. It is not clear whether the same method would be successful for $n \geqslant 5$, because of the increasing complexity of the various cases to which the problem would be reduced.

3. The Proof that $\kappa(4)=1 / 5$

In this section, we take $n=4$ and suppose $w_{1}, w_{2}, w_{3}, w_{4}$ are integers, having no common prime factor, such that (3) holds for any integers m and q. Our goal is to show that we can always find a pair of integers m and q such that

$$
\begin{equation*}
\min _{1 \leqslant i \leqslant 4}\left\|w_{i} \frac{q}{m}\right\| \geqslant \frac{1}{5} . \tag{4}
\end{equation*}
$$

If w is not divisible by 5 , then $\|w / 5\| \geqslant 1 / 5$, so we can assume that at least one of the w_{i} is divisible by 5 . Thus there are several cases to consider, and it turns that the only difficult one is the case where exactly one of the w_{i} is divisible by 5 . We dispose of the other cases first.

First suppose that $w_{1}=5^{i+k} a, w_{2}=5^{j+k} b, w_{3}=5^{k} c, w_{4}=d$, where a, b, c, d are not divisible by 5 and $i \geqslant j \geqslant 0, k \geqslant 1$. We take $m=5^{i+k+1}$ and will choose a q not divisible by 5 , so $\left\|w_{1} q / m\right\| \geqslant 1 / 5$. In order to specify q, we first choose a $q_{0} \not \equiv 0 \bmod 5$ such that

$$
\begin{equation*}
b x \equiv t_{1} \bmod 5^{i-j+1}, \quad\left\|t_{1} / 5^{i-j+1}\right\| \geqslant 1 / 5 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
c x \equiv t_{2} \bmod 5^{i+1}, \quad\left\|t_{2} / 5^{i+1}\right\| \geqslant 1 / 5 \tag{6}
\end{equation*}
$$

both hold with $x=q_{0}$ for some choice of t_{1}, t_{2}. Such a q_{0} exists because there are $3 \cdot 5^{i}+5^{j}$ integers $x \bmod 5^{i+1}$ for which (5) holds for some t_{1} and $3 \cdot 5^{i}+1$ integers $x \bmod 5^{i+1}$ for which (6) holds for some t_{2}. Hence there are at least $5^{i}+5^{j}+1$ integers x mod 5^{i+1} for which both (5) and (6) hold, and of these at least $5^{j}+1$ are not divisible by 5 . We define q to be $q_{0}+5^{i+1} r$, where r is chosen so that $\left\|w_{4} q / m\right\| \geqslant 1 / 5$ (such a choice of r is possible since changing r by 1 changes $w_{4} q / m$ by $d / 5^{k}$). Clearly we have $\left\|w_{2} q / m\right\|$ and $\left\|w_{3} q / m\right\| \geqslant 1 / 5$ whatever choice of r is made, so (4) holds with the chosen q.

Now suppose that $w_{1}=5^{j+k} a, w_{2}=5^{k} b, w_{3}=c, w_{4}=d$, where a, b, c, d are not divisible by 5 and $j \geqslant 0, k \geqslant 1$. We take $m=5^{j+k+1}$ and will choose a q not divisible by 5 , so $\left\|w_{1} q / m\right\| \geqslant 1 / 5$. In order to specify q, we first choose a $q_{0} \not \equiv 0 \bmod 5$ such that $b q_{0} \equiv t \bmod 5^{j+1}$, where t is an integer satisfying $\left\|t / 5^{j+1}\right\| \geqslant 1 / 5$. There are $3 \cdot 5^{j}+1$ such integers t, and so at least $2 \cdot 5^{j}+1$ possible choices for $q_{0} \equiv 0 \bmod 5$. We define q to be $q_{0}+5^{j+1} r$ where r is chosen so that both $\|c q / m\|$ and $\|d q / m\|$ are $\geqslant 1 / 5$. Such a choice of r is possible because both $c q / m$ and $d q / m$ run (in some order) through 5^{k} evenly spaced points mod 1 as r runs through $1,2, \ldots, 5^{k}$. Thus we have $\|c q / m\| \geqslant 1 / 5$ for at least $3 \cdot 5^{k-1}$ values of r and $\|d q / m\| \geqslant 1 / 5$ for at least $3 \cdot 5^{k-1}$ values of r; hence for at least 5^{k-1} values of r, we have both inequalities. Plainly (4) holds for our choice of q.

Now suppose that $w_{1}=5^{k-1} a, w_{2}=b, w_{3}=c, w_{4}=d$, where a, b, c, d are not divisible by 5 and $k \geqslant 2$. This is the only remaining case, and is the most difficult one. If we take $m=5^{k}$, then (4) holds because of the following:

Theorem. Given any integer $k \geqslant 1$ and any integers b, c, d not divisible by 5, there exist integers t_{1}, t_{2}, t_{3} and an integer q not divisible by 5 such that

$$
\begin{align*}
& b q \equiv t_{1} \quad \bmod 5^{k} \\
& c q \equiv t_{2} \quad \bmod 5^{k},\left\|\frac{t_{i}}{5^{k}}\right\| \geqslant \frac{1}{5} \quad(i=1,2,3) \tag{7}\\
& d q \equiv t_{3} \quad \bmod 5^{k}
\end{align*}
$$

Thus the theorem implies our desired result that $\kappa(4)=1 / 5$. The work below proves the theorem for each $k \geqslant 9$. The cases $k \leqslant 8$ can be handled by
direct calculation. We are grateful to Mr. E. Abery for computer programming assistance in carrying out this calculation.

Let k be an integer with $k \geqslant 9$, let

$$
I=\left\{i: 5^{k-1} \leqslant i \leqslant 4 \cdot 5^{k-1}\right\} \quad \text { and let } \quad I_{1}=\{i \in I: i \equiv 1 \bmod 5\}
$$

If r is an integer not divisible by 5 , let $\mathscr{t}_{k}(r)$ denote the set of $q \in I_{1}$ such that $\left\|r q / 5^{k}\right\| \geqslant 1 / 5$ and let $N_{k}(r)$ denote the cardinality of $A_{k}(r)$.

In the theorem we can assume without loss of generality that $b=1$. Thus the theorem follows from the assertion that if c, d are any integers not divisible by 5 , then for each $k \geqslant 9, . \vdash_{k}(c) \cap . I_{k}(d) \neq \varnothing$. Let $m=5^{k}$. Since I_{1} has exactly $.12 m$ elements, it will follow that $\mathscr{f}_{k}(c) \cap . \dot{t}_{k}(d)$ is non-empty if $N_{k}(c)+N_{k}(d)>.12 m$. This is exactly what we will show except for a few choices of the pair c, d which we treat differently. Most of what we need is in the following two propositions.

Proposition 1. If r is such that there exist integers x, y with $|x|,|y| \leqslant 312,(x, y)=1,(5, x y)-1$, and $x r \equiv y \bmod m$, then $N_{k}(r)>.061 m$, except that $N_{k}(4)=N_{k}(-4)=N_{k}\left(4^{-1} \bmod m\right)=N_{k}\left(-4^{-1} \bmod m\right)=.06 m$.

Proposition 2. If r is such that there do not exist integers x, y as described in Proposition 1, then $N_{k}(r)>.0601 m$.

To prove Proposition 1, we first reduce the estimation of an $N_{k}(r)$ to a finite calculation. Let J denote the set of real numbers z with $\|z\| \geqslant 1 / 5$. If S is a disjoint union of intervals, let $\mu(S)$ denote the sum of the lengths of these intervals.

Lemma 1. Suppose there exist positive integers x, y as described in Proposition 1. Then

$$
N_{k}(r)=\frac{m}{5 y} \sum_{i=0}^{x-1} \mu\left\{\frac{y}{x}[i+.2, i+.8] \cap J\right\}+E(x, y)
$$

where $|E(x, y)|<1.6 x+.6 y$.
Proof. In what follows θ denotes a quantity of absolute value <1 and $\chi(S)$ denotes the number of connected components in the interior of the set S. We have

$$
\begin{aligned}
N_{k}(r) & =\#\left\{q \in[.2 m, .8 m]: q \equiv 1 \bmod 5, \frac{r q}{m} \in J\right\} \\
& =\sum_{j=0}^{x-1} \#\left\{q \in[.2 m, .8 m]: q \equiv 1 \bmod 5, q \equiv j \bmod x, \frac{r q}{m} \in J\right\} \\
& =\sum_{i=0}^{x-1} \#\left\{\frac{q}{m} \in[i+.2, i+.8]: q \equiv 1 \bmod 5, q \equiv 0 \bmod x, \frac{r q}{m} \in J\right\} .
\end{aligned}
$$

The last equality holds because there is an evident one-to-one correspondence between the j th summand in the first sum and the i th summand in the second sum if i and j satisfy im $\equiv-j \bmod x$. Now note that $q \equiv 0 \bmod x$, $(x, m)=1$ and $x r \equiv y \bmod m$ imply $r q \equiv y q / x \bmod m$. Thus

$$
\begin{aligned}
N_{k}(r)= & \sum_{i=0}^{x-1} \nexists\left\{\frac{q}{m} \in[i+.2, i+.8]: q \equiv 1 \bmod 5, q \equiv 0 \bmod x, \frac{y q}{x m} \in J\right\} \\
= & \frac{m}{5 x} \sum_{i=0}^{x-1} \mu\left\{[i+.2, i+.8] \cap \frac{x}{y} J\right\} \\
& +\theta \sum_{i=0}^{x-1} \chi\left\{[i+.2, i+.8] \cap \frac{x}{y} J\right\} \\
= & \frac{m}{5 y} \sum_{i=0}^{x-1} \mu\left\{\frac{y}{x}[i+.2, i+.8] \cap J\right\} \\
& +\theta \sum_{i=0}^{x-1} \chi\left\{\frac{y}{x}[i+.2, i+.8] \cap J\right\} .
\end{aligned}
$$

Therefore

$$
|E(x, y)|<\sum_{i=0}^{x-1}\left(.6 \frac{y}{x}+1.6\right)=1.6 x+.6 y .
$$

Lemma 2. If x, y are positive coprime integers, then

$$
\frac{1}{5 y} \sum_{i=0}^{x-1} \mu\left\{\frac{y}{x}[i+.2, i+.8] \cap J\right\} \geqslant .072-\frac{.096}{x} .
$$

Proof. Let $T=[.2(y / x), .8(y / x)]$. For each $\alpha \in T$, let $I(\alpha)=\{i \in \mathbb{Z}$: $0 \leqslant i \leqslant x-1, \quad \alpha+i y / x \in J\}$. Decompose T into disjoint intervals $T_{1}, T_{2}, \ldots, T_{t}$ such that $I(\alpha)=I_{j}$ is fixed for $\alpha \in T_{j}$. We have

$$
\begin{aligned}
\frac{1}{5 y} \sum_{i=0}^{x-1} \mu\left\{\frac{y}{x}[i+.2, i+.8] \cap J\right\} & =\frac{1}{5 y} \sum_{i=0}^{x-1} \mu\left\{\left(T+\frac{i y}{x}\right) \cap J\right\} \\
& =\frac{1}{5 y} \sum_{j=1}^{t} \sum_{i=0}^{x-1} \mu\left\{\left(T_{j}+\frac{i y}{x}\right) \cap J\right\} \\
& =\frac{1}{5 y} \sum_{j=1}^{t} \sum_{i \in I_{j}} \mu\left(T_{j}+\frac{i y}{x}\right) \\
& =\frac{1}{5 y} \sum_{j=1}^{t} \mu\left(T_{j}\right) \cdot \# I_{j}
\end{aligned}
$$

Now any $\# I(\alpha)$ is $\geqslant[.6 x]$. To see this, note that (here $\{x\}$ denotes the fractional part of x)

$$
\left\{\left\{\alpha+\frac{i y}{x}\right\}: 0 \leqslant i \leqslant x-1\right\}=\left\{\left\{\alpha+\frac{i}{x}\right\}: 0 \leqslant i \leqslant x-1\right\}
$$

since $\operatorname{gcd}(x, y)=1$. Furthermore

$$
\left\{\left\{\alpha+\frac{i}{x}\right\}: 0 \leqslant i \leqslant x-1\right\} \cap[.2, .8]
$$

consists of $\geqslant[.6 x]$ equally spaced points of common gap $1 / x$. Thus

$$
\begin{aligned}
& \frac{1}{5 y} \sum_{i=0}^{x-1} \mu\left\{\frac{y}{x}[i+.2, i+.8] \cap J\right\} \geqslant \frac{|.6 x|}{5 y} \sum_{j=1}^{t} \mu\left(T_{j}\right) \\
&=\frac{[.6 x]}{5 y}\left(\frac{.6 y}{x}\right) \geqslant \frac{(.6 x-.8)(.6)}{5 x}=.072-\frac{.096}{x}
\end{aligned}
$$

Proof of Proposition 1. Since $N_{k}(r)=N_{k}(-r)=N_{k}\left(r^{-1} \bmod m\right)$, we may assume x, y are positive integers with $1 \leqslant x \leqslant y \leqslant 312$. With the kind assistance of D . E. Penney we have directly calculated the sum in Lemma 1 for each pair x, y with $x \leqslant 9$. In each case, except for $x=1, y=4$, we have the sum at least $(1 / 15) m$. Since $|E(x, y)|<200$ and $m \geqslant 5^{9}$, we have $N_{k}(r)>.061 m$ in each case except $r \equiv \pm 4, \pm 4^{-1} \bmod m$. Working through the proof of Lemma 1 in the case $x=1, y=4$, we see that $E(1,4)=0$ and that $N_{k}(4)=.06 m$.

Now assume $x \geqslant 10$. Then from Lemmas 1 and 2

$$
\begin{aligned}
N_{k}(r) & >\left(.072-\frac{.096}{10}\right) m-(1.6)(311)-(.6)(312) \\
& >.0624 m-685>.061 m
\end{aligned}
$$

since $m \geqslant 5^{9}$.
Proof of Proposition 2. Fix an integer r not divisible by 5 for which there does not exist a pair x, y as described in Proposition 1. Let $|t|_{m}$ denote the absolute value of the residue of $t \bmod m$ that is closest to 0 . Thus there is no integer t not divisible by 5 such that both $|t|_{m}$ and $|r t|_{m}$ are less than 313.

Let $e(x)=e^{2 \pi i x}$. We have

$$
\begin{align*}
N_{k}(r) & =\frac{1}{m} \sum_{t=0}^{m-1} \sum_{q \in I} \sum_{p \in I_{1}} e\left(\frac{t(q-r p)}{m}\right) \\
& =\frac{1}{m}(.6 m+1)(.12 m)+\frac{1}{m} \sum_{t=1}^{m-1}\left(\sum_{q \in I} e\left(\frac{t q}{m}\right)\right)\left(\sum_{p \in I_{1}} e\left(\frac{-t r p}{m}\right)\right) . \tag{8}
\end{align*}
$$

Summing the geometric progressions in the inner sums we have

$$
\begin{gathered}
\left|\sum_{q \in I} e\left(\frac{t q}{m}\right)\right| \leqslant \frac{1}{2\|t / m\|} \\
\left|\sum_{p \in I_{\mathrm{i}}} e\left(\frac{-t r p}{m}\right)\right| \leqslant \frac{1}{2\|5 r t / m\|}
\end{gathered}
$$

The main term on the right of (8) is $.072 m$. The error term is bounded in absolute value by

$$
\begin{aligned}
.12+\frac{1}{m} \sum_{t=1}^{m-1} \frac{1}{2\|t / m\|} \cdot \frac{1}{2\|5 r t / m\|} & =.12+\frac{m}{4} \sum_{t=1}^{m-1} \frac{1}{|t|_{m}} \cdot \frac{1}{|5 r t|_{m}} \\
& =.12+\frac{m}{2} \sum_{t=1}^{(m-1) / 2} \frac{1}{t} \cdot \frac{1}{|5 r t|_{m}}
\end{aligned}
$$

since $|5 r t|_{m}=|5 r(m-t)|_{m},|t|_{m}=|m-t|_{m}$.
We consider 4 cases to estimate the last sum.
Case 1. $t \leqslant 312,5 \nmid t$. Then $|r t|_{m}>312$, so $|5 r t|_{m} \geqslant 1565$.
Thus the portion of the sum in this case is

$$
\leqslant \frac{m}{2} \cdot \frac{1}{1565} \sum_{\substack{t=1 \\ 5 \hbar}}^{312} \frac{1}{t}<.00172 m
$$

Case 2. $t \leqslant 312,5 \mid t$. Note that the map $t \in[1,(m-1) / 2] \mapsto|5 r t|_{m}$ is 5:1. It is $1: 1$ on the restricted domain $[1,(m / 5-1) / 2]$. If t is in this restricted domain, then the other values that map to $|5 r t|_{m}$ are $m / 5-t, m / 5+t, 2 m / 5-t, 2 m / 5+t$.

For $t \leqslant 312 \leqslant(m / 5-1) / 2$, the values of $|5 r t|_{m}$ are distinct, and since $5 \mid t$, the values $|5 r t|_{m}$ are divisible by 25 . Thus the portion of the sum in this case is

$$
\begin{aligned}
\leqslant \frac{m}{2} & \sum_{t=1}^{62} \frac{1}{5 t} \cdot \frac{1}{25 t}=\frac{m}{250}\left(\frac{\pi^{2}}{6}-\sum_{t=63}^{\infty} \frac{1}{t^{2}}\right) \\
& <\frac{m}{250}\left(\frac{\pi^{2}}{6}-\frac{1}{63}\right)<.00652 m .
\end{aligned}
$$

Case 3. $t>312,|r t|_{m} \leqslant 312$. Considering the 5 choices of t corresponding to each value of $|5 r t|_{m}$, the portion of the sum in this case is (using $m \geqslant 5^{9}$)

$$
\begin{aligned}
\leqslant & \frac{m}{2}\left(\frac{1}{313}+\frac{1}{m / 5-313}+\frac{1}{m / 5+313}+\frac{1}{2 m / 5-313}+\frac{1}{2 m / 5+313}\right) \\
& \times \sum_{i=1}^{312} \frac{1}{5 t}<.00203 m .
\end{aligned}
$$

Case 4. $t>312,|r t|_{m}>312$. Again, for each value of $|5 r t|_{m}$, there are 5 values of t. The value of t which can do the most damage, of course, is the smallest. Thus the portion of the sum in this case is

$$
\leqslant 5 \cdot \frac{m}{2} \sum_{t=313}^{(m / s-1) / 2} \frac{1}{t} \cdot \frac{1}{5 t}<\frac{m}{2} \sum_{t=313}^{\infty} \frac{1}{t^{2}}<\frac{m}{624}<.00161 m .
$$

Finally we note that $.12 \leqslant\left(.12 / 5^{9}\right) m<10^{-7} m$, so that the absolute value of the error term on the right of (8) is $<.0119 m$. Thus $N_{k}(r)>.0601 m$.

Proof of the Theorem. We need to show that if c, d are integers not divisible by 5 , then $\mathscr{N}_{k}(c) \cap \mathscr{N}_{k}(d) \neq \varnothing$. Except for the case when both c, d are found in the set $\left\{ \pm 4 \bmod m, \pm 4^{-1} \bmod m\right\}$, Propositions 1 and 2 show that $N_{k}(c)+N_{k}(d)>.12 m$, so that as noted above, $. N_{k}(c) \cap . \psi_{k}(d) \neq \varnothing$.

Since $\mathscr{N}_{k}(r)=\mathscr{N}_{k}(-r)$, to complete the proof we need only show that $\mathscr{N}_{k}(4) \cap \mathscr{N}_{k}\left(4^{-1} \bmod m\right) \neq \varnothing$. To see this, let q denote the first integer above $\frac{2}{5} m$ with $q \equiv 3 \bmod 4$ and $q \equiv 1 \bmod 5$. That is, $q=\frac{2}{5} m+1$. Then $q \in \mathscr{F}_{k}(4) \cap \mathscr{F}_{k}\left(4^{-1} \bmod m\right)$ since $q \in I_{1},\|4 q / m\| \approx \frac{2}{5}$, and

$$
\left\|\frac{\left(4^{-1} \bmod m\right) q}{m}\right\|=\left\|\frac{(q+m) / 4}{m}\right\| \approx \frac{7}{20} .
$$

4. Concluding Remarks

We have not discussed the problem of explicitly determining all the sets $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ for which the max min in (2) is equal to $1 /(n+1)$. It is known (see [2, pp. 169-170] and [3, p. 11]) that for $n=2$ or 3 the only such sets are the obvious ones $\{k, 2 k, \ldots, n k\}$, where k is some positive integer. The situation is certainly not this simple if $n \geqslant 4$; for example, the max min in (2) is equal to $1 / 5$ if $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}=\{1,3,4,7\}$ and is equal to $1 / 6$ if $\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}=\{1,3,4,5,9\}$. Perhaps this has something to do with the apparent difficulty in finding an elementary approach to the problem if $n \geqslant 4$.

References

1. U. Betke and J. M. Wills, Untere Schranken für zwei diophantische ApproximationsFunktionen, Monatsh. Math. 76 (1972), 214-217.
2. T. W. Cusick, View-obstruction problems, Aequationes Math. 9 (1973), 165-170.
3. T. W. Cusick, View-obstruction problems in n-dimensional geometry, J. Combin. Theory Ser. A 16 (1974), 1-11.
4. T. W. Cusick, View-obstruction problems, II, Proc. Amer. Math. Soc. 84 (1982), 25-28.
5. I. J. Schoenberg, Extremum problems for the motions of a billiard ball, II. The L_{∞} norm, Nederl. Akad. Wetensch. Proc. Ser. A 79 Indag. Math. 38 (1976), 263-279.

[^0]: * Research supported in part by an NSF grant.

