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Abstract

For a positive integer n and its Euler function φ(n) we write
φ(n)/n = a/b, where a = a(n) and b = b(n) are coprime. For a
fixed integer a, we consider the number of integers b for which the
above relation holds for some n, and we also fix b and count corre-
sponding a’s. We discuss the greatest common divisor of n and φ(n),
applying it to the relation φ(n) | f(n) for f a polynomial.
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1 Introduction

For a positive integer n we write φ(n) for the Euler function of n, namely
the number of integers in [1, n] coprime to n. The fraction φ(n)/n is thus
the asymptotic density of the set of the positive integers relatively prime to
n. This proportion has been extensively studied. For example, it was known
to Euler that {φ(n)/n}n≥1 is dense in [0, 1], and one of the earliest results
concerning the distribution of values of arithmetic functions is Schoenberg’s
1928 theorem (see [16]) to the effect that φ(n)/n possesses a continuous
distribution in [0, 1]. That is, D(u), defined as the asymptotic density of the
set of those positive integers n such that φ(n)/n ≤ u, exists for every real
number u. In addition, D(u) is continuous and strictly increasing on [0, 1]
(and clearly D(0) = 0 and D(1) = 1). This result might be argued to mark
the dawn of probabilistic number theory.

This paper discusses several arithmetic functions that are directly related
to the ratio φ(n)/n. First, it is natural to reduce this fraction to its lowest
terms: φ(n)/n = a/b. We write a = a(n) and b = b(n), so that

φ(n)/n = a(n)/b(n), gcd(a(n), b(n)) = 1.

Let rad(n) denote the largest squarefree number that divides n. Since

φ(n)/n =
∏

p|n, p prime

(1 − 1/p) = φ(rad(n))/rad(n),

we have
a(n) = a(rad(n)), b(n) = b(rad(n))

for every positive integer n. For positive integers a, b, we put

f(a) = #{n squarefree : a(n) = a},

g(b) = #{n squarefree : b(n) = b}.
For example, f(1) is the number of squarefree n with φ(n) | n. It is easy
to see that n = 1, 2, 6 are the only such numbers, so that f(1) = 3, a fact
recorded in [17], p. 232.

As we shall see in the next section, the function n 7→ φ(n)/n is one-to-one
when restricted to squarefree numbers, so we have the alternate definitions

f(a) = #{b : gcd(a, b) = 1 and a/b = φ(n)/n for some n},
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g(b) = #{a : gcd(a, b) = 1 and a/b = φ(n)/n for some n}.
For any given numbers a, b, we present simple finite procedures for com-

puting the values f(a), g(b). We discuss the maximal orders of the arithmetic
functions f(a), g(b), and we show these functions are normally 0. We also
discuss gcd(n, φ(n)) = n/b(n) = φ(n)/a(n). We show that normally it is the
largest divisor of n composed of primes at most log log n, and on average it
is bounded by no(1). We also consider its maximal order when restricted to
squarefree values of n. Our result on the average order of gcd(n, φ(n)) has an
application in the counting of solutions of certain polynomial congruences.

Throughout this paper, we use the order symbols �, �, �, O, and o
with their ususal meanings in analytic number theory. They are all absolute
except where specified differently as in Theorem 11 and in Section 6. For a
positive real number x, we use log x for the natural logarithm of x, log1 x =
max{1, log x}, and if k ≥ 2 we use logk x for the k-fold iterated composition of
the function log1 evaluated at x. We use p and q with or without subscripts
for prime numbers. We use π(x) and π(x; b, a) for the number of primes
p ≤ x and the number of primes p ≤ x in the arithmetic progression p ≡ a
(mod b), respectively. We use the notation vp(n) for the exponent on the
prime p in the prime factorization of the natural number n. (In particular,
if p | n, then pvp(n)‖n, and if p - n, then vp(n) = 0.) We let P (n) denote the
greatest prime factor of n if n > 1, and we let P (1) = 1. We let τ(n) denote
the number of divisors of n, and ω(n) denotes the number of these divisors
that are prime. We let pi denote the i-th prime. We also use c0, c1, . . . for
positive computable constants.

Acknowledgements. The functions f(a) and g(b) were discussed by the
first and third authors about 20 years ago; in particular much of the material
in Sections 3 and 4 dates from that period. The current attack on these
problems started during a very enjoyable visit of the third author at the
Mathematical Institute of the UNAM in Morelia, Mexico as a Distinguished
Visiting Professor of the Mexican Academy of Sciences in February of 2006.
He would like to thank these institutions for their hospitality and support.
The second author was supported in part by grants PAPIIT IN104505, SEP-
CONACyT 46755 and a Guggenheim Fellowship. The third author was also
supported in part by NSF grant DMS-0401422.
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2 An algorithm

In this section we give simple procedures for the evaluation of the functions
f(a) and g(b). There is no emphasis on efficiency, only on the existence of a
deterministic procedure for the evaluations. We begin with a simple lemma.

Lemma 1. Let a, b be coprime natural numbers. If there is a natural number
m with φ(m)/m = a/b, then

(i) 0 < a/b ≤ 1;

(ii) b is squarefree;

(iii) there is a unique squarefree number n with φ(n) = a/b;

(iv) P (b) = P (n);

(v) gcd(b, φ(b)) = 1;

(vi) ω(n) ≤ v2(a) + 2.

Proof. The first assertion follows immediately from 0 < φ(m) ≤ m for all
m. As we saw in the Introduction, if φ(m)/m = a/b, then n = rad(m) is
squarefree and φ(n)/n = a/b. Thus, b | n, so that b is squarefree. Suppose
n1, n2 are squarefree numbers with φ(ni)/ni = a/b for i = 1, 2. Since φ(n) <
n for n > 1, it follows that n1 = n2 = 1 if a/b = 1. Suppose that a/b < 1,
so that n1, n2 > 1. As P (ni) - φ(ni), we have P (ni) | b. But b | ni implies
P (b) ≤ P (ni) for i = 1, 2, so that P (n1) = P (n2) = P (b). That is, if n1, n2

are squarefree and φ(n1)/n1 = φ(n2)/n2, then P (n1) = P (n2). We thus may
replace ni with ni/P (ni) and iterate, coming to the conclusion that n1 = n2.
This proves the uniqueness assertion in (iii), and in the course of the proof,
we saw (iv).

To prove (v), assume not and let p be a common prime factor of b and
φ(b). Let n be squarefree with a/b = φ(n)/n, so that b | n, and φ(b) | φ(n).
It follows that vp(φ(n)) ≥ 1 = vp(n), so that in the reduction φ(n)/n to
a/b, the denominator b is not divisible by p after all. Thus it must be that
gcd(b, φ(b)) = 1.

To see the last assertion, let k = ω(n). Then n is divisible by at least
k − 1 odd prime factors, so that v2(φ(n)) ≥ k − 1. But n is squarefree, so
that v2(n) ≤ 1 and v2(a) = v2(φ(n)) − v2(n) ≥ k − 2.
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So, given coprime natural numbers a, b we might ask how we might deter-
mine if a/b is in the range of φ(n)/n, and if it is, how we might find the unique
squarefree pre-image n. The following algorithm gives such a procedure.

Algorithm A. Let a, b be coprime natural numbers. If there is

a squarefree number n with φ(n)/n = a/b, this algorithm finds n.
If there is no such number n, this algorithm reports NONE.

1. Let n = 1;

2. If a = b, report n;

3. If a > b, report NONE;

4. If b is not squarefree, report NONE;

5. Let p = P (b), d = gcd(a, p−1), a = a/d, b = (p−1)b/pd, n = pn,
and go to step 2;

It is clear from Lemma 1 that the algorithm correctly reports NONE
when it does so. The iteration in the last step is based on the fact that if a
squarefree number n exists with φ(n)/n = a/b, then Lemma 1 implies that
P (n) = P (b), so that if p = P (n) and N = n/p, we have

φ(N)

N
=

a/(p − 1)

b/p
=

a/ gcd(a, p − 1)

(p − 1)/ gcd(a, (p − 1)) · b/p =
a′

b′
,

say. We thus may reduce the problem to the new pair a′, b′, justifying the
last step of the algorithm.

We may use Algorithm A to compute f(a), g(b) as follows. Given a
natural number b, run Algorithm A for each pair a, b with 1 ≤ a ≤ b and
gcd(a, b) = 1. Count 1 for each time the algorithm reports a value of n
with φ(n)/n = a/b, the total count being g(b). For the f(a) computation,
note that if φ(n)/n = a/b for some n and b with b coprime to a, then from
Lemma 1, we have k := v2(a) + 2 ≥ ω(n). If such a number n exists, then
φ(n)/n ≥

∏k
i=1(1 − 1/pi). Let this product be denoted z = z(a). Then

b = an/φ(n) ≤ a/z. So, to compute f(a), for each integer b coprime to a
with a ≤ b ≤ a/z, run Algorithm A and count 1 for each such b where the
algorithm reports a value for n with φ(n)/n = a/b. The total count is g(b).

We remark that the algorithms in this section have not been optimized,
our point merely being that there exists a deterministic procedure. The issue

5



of computing the solutions n to φ(n) = m has been discussed from the point
of view of complexity in [5]. We also remark that a procedure similar to
Algorithm A was presented by Anderson [2].

3 The function f(a)

We start with the maximal order of f(a).

Theorem 2. The inequality f(a) ≤ (1+o(1))a log2 a/ log3 a holds as a → ∞.
On the other hand, there exists a positive constant c0 such that f(a) > ac0

holds for infinitely many a.

Proof. Assume that n is a positive integer such that φ(n)/n = a/b for some
integer b coprime to a. As we saw at the end of the last section, we have

b ≤ B := a

k
∏

i=1

(1 − 1/pi)
−1,

where k = v2(a) + 2. But v2(a) ≤ log a/ log 2, so that by the prime number
theorem, pk ≤ (1 + o(1)) log a log log a/ log 2. Thus, by Mertens’s theorem,

b ≤ B ≤ (eγ + o(1))a log log a, (1)

where γ is the Euler–Mascheroni constant. But, by Lemma 1,

f(a) ≤ #{b ≤ B : gcd(b, φ(b)) = 1}.

By a result of Erdős (see [7]), the cardinality of the set

{n ≤ y : gcd(n, φ(n)) = 1}

is (e−γ + o(1))y/ log3 y as y → ∞. Applying this with y = B and using our
upper bound for B, we get the first claim of the theorem.

For the second claim, it is known that there exists a positive constant c1

such that for infinitely many positive integers m, the inequality

Am = #{n : µ2(n) = 1 and φ(n) = m} ≥ mc1

holds. Here, µ(n) is the Möbius function of n. The above result is due to
Erdős and appears in [6]. Let m be one of these integers, and let n ∈ Am.
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Then φ(n)/n = m/n = a/b for some divisor a of m. Thus, there are at least
#Am/τ(m) ≥ mc1/τ(m) values of n corresponding to the same value of a.
Since for each such n we have that b = na/m, we get that the values of b are
distinct. Since τ(m) = mo(1) as m tends to infinity, the second claim of the
theorem follows with any constant c0 smaller than c1.

The best (largest) known constant c1 above is 0.7067 . . . and is due to
Baker and Harman [3]. We conjecture that f(a) ≥ a1−(1+o(1)) log3 a/ log2 a holds
for infinitely many positive integers a. In fact, we conjecture that this func-
tion of a is also an upper bound for f(a) as a → ∞, but we cannot even
prove that the inequality f(a) < a holds for all sufficiently large values of a.

Theorem 3. We have f(a) = 0 for almost all positive integers a.

Proof. We prove more. Namely, we show that if we put

A(x) = {a ≤ x : f(a) 6= 0},

then

#A(x) ≤ x exp
(

− (log 2 + o(1)) log2 x/ log3 x
)

as x → ∞. (2)

We let x be large, let k < log2 x be a positive integer tending to infinity with
x in a way which will be specified later, and let K = b2 log2 xc. Let A1 be
the set of a ≤ x such that 2k−1 | a and A2 be the set of a ≤ x such that
ω(a) > K. It is obvious that

#A1 ≤
x

2k−1
. (3)

Further, it follows by a result of Hardy and Ramanujan [11] that

#A2 �
x

(log x)2 log 2−1
. (4)

Let A3 be the set of all a ≤ x not in A1 ∪ A2 for which f(a) 6= 0. Let
a ∈ A3 and assume that a/b = φ(n)/n for some squarefree integers b, n,
where a and b are coprime. Write n = uv where u = gcd(n, φ(n)), so that
a = φ(v)φ(u)/u. Since ω(u) ≤ ω(n) ≤ k < log2 x, we have

φ(v) ≤ xu/φ(u) � x log3 x. (5)

7



We fix a value w = φ(v) of the Euler function that satisfies (5) and ask how
many values of u with wφ(u)/u ∈ A3 can correspond to it. We will show
that for a given w there are at most O((K +k)k) choices for u that can work,
and it will remain to multiply this quantity by the number of choices for w.

Write u = q1 . . . ql where q1 < · · · < ql. Since v2(a) ≤ k − 2 and a =
wφ(u)/u, it follows that v2(φ(u)) ≤ k − 1 and l = ω(u) ≤ k. Note too that
for any valid choice for u, we have ω(wφ(u)) = ω(au) ≤ ω(a)+ω(u) ≤ K +k.
Since ql - φ(u), we must have ql | w, so there are at most K +k choices for ql.
Once ql is chosen, note that ql−1 - φ(u/ql), so ql−1 | wφ(ql) and there are at
most K + k choices for ql−1. In general, ql−i | wφ(ql−i+1 . . . ql), so that once
ql−i+1, . . . , ql are chosen, there are at most K + k choices for ql−i. Thus the
number of choices for u is at most

∑k
l=0(K + k)l � (K + k)k.

For any positive real number y put

V (y) = {φ(m) : m is a positive integer, φ(m) ≤ y}.

In 1988, Maier and Pomerance [15] showed that that there is a positive
constant c2 with

#V (y) =
y

log y
exp

(

(c2 + o(1))(log3 y)2
)

as y → ∞.

(The exact order of magnitude of V (y) has been determined by Ford in [9].)
Therefore, from (5),

#A3 ≤
x

log x
exp

(

O((log3 x)2)
)

(K + k)k.

We equate this bound for #A3 with the bound for #A1 in (3), leading us to
choose

k =

⌊

log2 x

log3 x
− 2 log 2

log2 x

(log3 x)2

⌋

.

With this value of k we have (2) and the theorem.

We remark that it may be the case that there is some positive constant
c such that #A(x) � x/(log x)c, but we have not been able to prove this.
Since p − 1 ∈ A(x) for every prime p ≤ x + 1, we have #A(x) � x/ log x.
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4 The function g(b)

The first result here addresses the maximal order of the function g(b).

Theorem 4. We have g(b) ≤ b(1+o(1)) log3 b/ log2 b as b → ∞.

Proof. Let a/b = φ(n)/n for some squarefree integer n. Then an = bφ(n),
therefore n | bφ(n). Let r(n) = rad(φ(n)) and let rk be the k-fold iteration
of r, with r1 = r and r0 the identity. Note that if u is squarefree and u | vw,
then r(u) | r(v)r(w). Since n | br(n), it follows by induction on k ≥ 0, that
rk(n) | rk(b)rk+1(n). Let k(b) be the smallest positive integer k such that
rk(b) = 1. The above divisibility relation shows that rk(b)(n) | rk(b)+1(n),
which easily leads to the conclusion that rk(b)(n) = 1. Hence, writing

F (b) =
∏

0≤k≤k(b)

rk(b), (6)

we get

n
∣

∣

∣
br(n)

∣

∣

∣
br(b)r2(n)

∣

∣

∣
. . .

∣

∣

∣
F (b).

Thus, a | φ(n) | φ(F (b)) and also a ≤ b. By a generalization of a result
of Pratt, see Theorem 4.6 in [8], we have that ω(F (b)) < log b/ log 2 + 1.
Put t = blog b/ log 2c + 1 and assume that b is large. Let Pb be the set of
all prime factors of F (b) and ΨPb

(x) denote the number of positive integers
a ≤ x all whose prime factors are in Pb. Then g(b) ≤ ΨPb

(b). The prime
number theorem (or estimates of Chebyshev) imply that pj ≤ 2j log j holds
for all sufficiently large j. Put P (n) for the largest prime factor of n. The
above argument shows that if b is large enough, then

g(b) ≤ ΨPb
(b) ≤ Ψ(b, pt) ≤ Ψ(b, 2t log t), (7)

where we use
Ψ(x, y) = #{n ≤ x : P (n) ≤ y}.

By the de Bruijn estimates for the function Ψ(x, y) (see, for example, Theo-
rem 2 on p. 359 in [18]), we have

Ψ(b, 2t log t) ≤ exp

(

(1 + o(1))
log b

log t
log

(

1 +
2t log t

log b

))

. (8)

Comparing estimates (7) and (8) and recalling the definition of t, we get the
conclusion of the theorem as b → ∞.
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A natural question is the average order of g(b), but we have not been able
to substantially improve on the estimate afforded by Theorem 4. Using this
theorem, we can get the following result for the average order of f(a).

Corollary 5. As x → ∞, we have
∑

a≤x f(a) ≤ x1+(1+o(1)) log3 x/ log2 x.

Proof. If gcd(a, b) = 1 and a/b = φ(n)/n for some integer n, then for a large,
(1) implies that b ≤ 2a log2 a. Thus, for x large,

∑

a≤x

f(a) ≤
∑

b≤2x log2 x

g(b),

and so the result follows from Theoerem 4.

Theorem 6. We have g(b) = 0 for almost all positive integers b. In fact the
number of integers b ≤ x with g(b) > 0 is ∼ e−γx/ log3 x as x → ∞.

Proof. From Lemma 1, if g(b) > 0, then gcd(b, φ(b)) = 1. Conversely, if
gcd(b, φ(b)) = 1, then φ(b)/b is already reduced, so g(b) > 0. Thus the
theorem follows immediately from the result of Erdős [7] quoted in the proof
of Theorem 2.

We remark that Theorem 6 is implicit in [2].

5 The greatest common divisor of n and φ(n)

Our first result in this direction addresses the maximal order of the greatest
common divisor of n and φ(n).

Theorem 7. The inequality

gcd(n, φ(n)) ≤ 2n exp
(

−
√

log 2 log n
)

holds for all squarefree n ≥ 1. On the other hand, there is an infinite set S
of squarefree numbers n such that

gcd(n, φ(n)) ≥ n1−(1+o(1)) log3 n/ log2 n

as n → ∞, n ∈ S.
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Proof. Assume that n ≥ 3 is squarefree. Write d = gcd(n, φ(n)). Since
n is squarefree, we have that P (n) - φ(n), which shows that d ≤ n/P (n).
Thus, the first inequality follows immediately if P (n) > exp(

√
log 2 log n)

even without the factor of 2 on the right hand side. On the other hand, if
P (n) ≤ exp(

√
log 2 log n), then, using that n is squarefree, we get

ω(n) ≥ log n

log P (n)
≥
√

log n/ log 2. (9)

Let β = v2(φ(n)). If n is odd we have β ≥ ω(n) and d | φ(n)/2β, so that
d ≤ n/2ω(n). Thus (9) gives the first inequality, again without the factor of
2. Finally, if n is even, we have d | φ(n)/2β−1, since n is squarefree. But in
this case β ≥ ω(n)− 1 and φ(n) ≤ n/2, so that d ≤ n/2β ≤ n/2ω(n)−1. Using
(9) gives the first inequality for d.

For the lower bound, note that from Theorem 3 in [14], there is a set of
numbers T having asymptotic density 1, such that for t → ∞, t ∈ T , we
have rad(F (t)/t) > t(1+o(1)) log2 t/ log3 t, where F (t) is defined in (6). Note too
that for any squarefree number t we have gcd(rad(F (t)), φ(rad(F (t)))) equal
to rad(F (t)/t). Let S be the set of numbers n = rad(F (t)) for t ∈ T with t
squarefree. The second inequality of the theorem follows.

Our next result addresses the normal order of the greatest common divisor
of n and φ(n).

Theorem 8. For almost all n, gcd(n, φ(n)) is the largest divisor of n sup-
ported on the prime divisors of n in the interval [1, log log n].

Proof. Let x be a large positive real number. We first note that most numbers
n ≤ x are “nearly” squarefree, in that vp(n) ≤ 1 for all primes p ≥ log3 x.
Indeed if E0(x) is the set of integers n which violate this property, then

#E0(x) ≤
∑

p≥log3 x

x

p2
∼ x

log3 x log4 x
= o(x).

Assume n ≤ x and n 6∈ E0(x). Let E1(x) be the set of such n with
p | gcd(n, φ(n)) for some prime p ≥ log2 x. To bound #E1(x), we fix a prime
p ≥ log2 x and look at the number of n ≤ x such that p | gcd(n, φ(n)). It
is clear that either p2 | n or pq | n for some prime q ≡ 1 (mod p). Since
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n 6∈ E0(x) the first choice does not occur. Thus,

#E1(x) ≤
∑

p≥log2 x

∑

q≤x/p
q ≡ 1 (mod p)

⌊

x

pq

⌋

≤ x
∑

p≥log2 x

1

p

∑

q≤x
q ≡ 1 (mod p)

1

q

� x
∑

p≥log2 x

log2 x

p(p − 1)
� x

log3 x
= o(x), (10)

where we used the estimate
∑

q≤x
q ≡ 1 (mod b)

1

q
� log2 x

φ(b)
, (11)

which is uniform for 2 ≤ b ≤ x (see, for example, inequality (3.1) in [8]).
Thus we may assume that n 6∈ E1(x).

In Lemma 2 in [13] it is shown that there exists a positive constant c3

such that if we put M(x) for the least common multiple of all numbers
m ≤ B := c3 log2 x/ log3 x, then all numbers n ≤ x have the property that
M(x) | φ(rad(n)) | φ(n) except for a set E2(x) of them of cardinality o(x).

Consider the properties:

(i) there is a prime factor p of n in the interval I := [B, log2 x];

(ii) there is a prime p ≤ B and a positive integer a such that pa > B and
pa | n.

Let E3(x) and E4(x) be the subsets of integers n ≤ x not in E0(x) satisfying
(i) and (ii), respectively. It is easy to see that if eeB ≤ n ≤ x and n is not in
Ej(x) for j = 0, . . . , 4, then the largest divisor of n supported on the primes
in [1, log2 n] is gcd(n, M(x)) and this divisor is equal to gcd(n, φ(n)). Since
eeB

= o(x) it will suffice to show then that #Ej(x) = o(x) for j = 3, 4.
A simple computation with Mertens’s theorem shows that

∑

p∈I 1/p =
o(1), so #E3(x) ≤

∑

p∈I x/p = o(x).
We now bound #E4(x). Note that a ≥ 2, so that n 6∈ E0(x) implies

that p < log3 x. Then B < pa < (log3 x)a, which implies that a ≥ K :=
dlog B/ log4 xe if x is sufficiently large. Thus, n is a multiple of pK for some
prime p, so the number of such n ≤ x does not exceed

∑

p≥2

x

pK
≤ x(ζ(K) − 1) � x

2K
= o(x).
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Thus #E4(x) = o(x), which, together with our estimates for the other counts
#Ej(x) for j = 0, 1, 2, 3, completes the proof of the theorem.

Theorem 8 has the following consequences.

Corollary 9. The normal order of ω(gcd(n, φ(n))) is log4 n.

Proof. This result follows from Theorem 8 and the fact that the normal order
for the number of prime factors of n below log2 n is log4 n, see Theorem 8 on
p. 312 of [18].

Note that Corollary 9 was stated without proof in [7].

Corollary 10. For each real number u > 0, the asymptotic density of the
set of natural numbers n with

gcd(n, φ(n)) > (log log n)u

is e−γ
∫∞

u
ρ(t) dt, where ρ is the Dickman–de Bruijn function.

Proof. In light of Theorem 8 we may replace the function gcd(n, φ(n)) in the
corollary with the function D(n), defined as the largest divisor of n supported
on the prime factors of n in the interval [1, log log n]. Let y = y(x) = log log x
and let Dy(n) be the largest y-smooth divisor of n. That is, Dy(n) is the
largest divisor of n supported on the prime factors of n in [1, y]. Since the
function log log x grows so slowly, it suffices to show that the number of n in
[1, x] with Dy(x) > yu is ∼ δux, where δu = e−γ

∫∞

u
ρ(t) dt.

First note that the number of n ≤ x with Dy(n) ≥ x1/2 is o(x). Fix a
positive real number u. Then the number of integers n ≤ x with Dy(n) > yu

is

∑

m>yu, P (m)≤y

∑

n≤x,Dy(n)=m

1 =
∑

x1/2>m>yu, P (m)≤y

∑

n≤x,Dy(n)=m

1 + o(x).

Let L denote the product of the primes in [1, y]. The inner sum above is

∑

k≤x/m, gcd(k,L)=1

1 =

(

φ(L)

L
+ o(1)

)

x

m

13



uniformly for all m in consideration, where we use a complete inclusion-
exclusion over the primes in L. By the theorem of Mertens, we have φ(L)/L ∼
e−γ/ log y, so that our count is

(1 + o(1))
x

eγ log y

∑

x1/2>m>yu, P (m)≤y

1

m
.

Our corollary then follows by partial summation and standard results on the
distribution of y-smooth integers m.

Our last result in this section addresses the average value of gcd(n, φ(n)).

Theorem 11. Let

A(x) =
1

x

∑

n≤x

gcd(n, φ(n)).

Then, for any k > 0 we have

(log x)k ≤ A(x) ≤ x(1+o(1)) log3 x/ log2 x

as x → ∞.

Proof. We start with the upper bound since it is easier. We have

∑

n≤x

gcd(n, φ(n)) =
∑

r≤x
r squarefree

∑

m≤x/r
rad(m)|r

gcd(rm, φ(rm))

=
∑

r≤x
r squarefree

gcd(r, φ(r))
∑

m≤x/r
rad(m)|r

m ≤ x
∑

r≤x
r squarefree

gcd(r, φ(r))

r

∑

m≤x
rad(m)|r

1.

We estimate the inner sum, call it S(r). It is majorized by replacing r with
Pj = p1 . . . pj where j = ω(r), so we have S(r) ≤ S(Pj) = Ψ(x, pj). Since
pj ≤ (1 + o(1)) log x, it follows from Theorem 2 (of de Bruijn) on p. 359 of
[18] that S(r) ≤ x(log 4+o(1))/ log2 x as x → ∞, uniformly in r. Using this, we

14



have for large x,

∑

n≤x

gcd(n, φ(n)) ≤ x1+2/ log2 x
∑

r≤x
r squarefree

gcd(r, φ(r))

r

= x1+2/ log2 x
∑

b≤x

1

b

∑

r≤x
r squarefree

r/ gcd(r,φ(r))=b

1

= x1+2/ log2 x
∑

b≤x

g(b)

b
≤ x1+(1+o(1)) log3 x/ log2 x,

where for the last estimate we used Theorem 4. Dividing by x, we have the
asserted upper bound for A(x).

We now deal with the lower bound. Let D be the set of positive integers
d such that

∑

p≤d10

p≡ 1 (mod d)

1

p
≥ 1

2d
.

We state the following lemma for future use.

Lemma 12. The set D contains all positive integers except for at most
O(x/ logx) of them.

Proof. Indeed, let x be large and let d ∈ (x/ log x, x). Theorem 2.1 in [1]
shows that there exists a constant c4 such that the inequality

π(y; 1, d) ≥ π(y)

2φ(d)

holds for large x and for all positive integers d ∈ (x/ log x, x) uniformly in
the range y ∈ (x2.6, x10) except for a set D′(x) of such d, where D′(x) consists
of all positive integers d ∈ (x/ log x, x) which are divisible by one of at most
c4 positive integers di = di(x), all of which exceed log x. Certainly,

#D′(x) ≤
∑

i≤c4

⌊

x

di

⌋

� x

log x
.

15



Assume now that d 6∈ D′(x). Then d3 ≥ (x/ log x)3 ≥ x2.6 when x is large,
therefore

∑

p≤d10

p≡ 1 (mod d)

1

p
≥

∫ d10

d3

dπ(y; 1, d)

y
≥ π(y)

2φ(d)y

∣

∣

∣

y=d10

y=d3
+

∫ d10

d3

π(y)dy

2φ(d)y2

=
1

2φ(d)

∑

d3<p≤d10

1

p
=

log(10/3) + o(1)

2φ(d)
≥ 1

2d
,

which shows that (x/ log x, x)\D′(x) ⊂ D ∩ [1, x]. This completes the proof.

Assume that k is a positive integer. We put αi = 2−111−2(i+2) for i =
1, . . . , k + 1. Set y = xαk+1 . For each i = 1, . . . , k, we put Ii = [xαi , x10αi ].
We consider k-tuples of positive integers (d1, . . . , dk) such that

(i) di ∈ D ∩ Ii for all i = 1, . . . , k;

(ii) P (di) ≤ y for all i = 1, . . . , k;

(iii) ω(di) ≤ 2 log2 x for all i = 1, . . . , k;

(iv) gcd(di, dj) = 1 for all i 6= j;

(v) the smallest prime factor of di exceeds (log2 x)4 for all i = 1, . . . , k.

We now let E be the set of such k-tuples (d1, . . . , dk). For each k-tuple d =
(d1, . . . , dk) in E we consider the set Fd of k-tuples of primes p = (p1, . . . , pk)
with pi ∈ Pd,i, where Pd,i consists of primes with the following properties:

(i) pi ≤ d10
i ;

(ii) pi ≡ 1 (mod di);

(iii) ω(pi − 1) ≤ 10 log2 x;

(iv) pi − 1 is coprime to
∏

j 6=i dj,

16



for all i = 1, . . . , k. Finally, for a fixed k-tuple d in E and a fixed k-tuple of
primes p in Fd consider the set Gd,p of all positive integers

m ∈
[

x

2
∏k

i=1 dipi

,
x

∏k
i=1 dipi

]

.

which are coprime to (p1 − 1) . . . (pk − 1) and have P (m) ≤ y.
We shall first prove that

Lemma 13. The estimate

#Gd,p �k
x

log2 x
∏k

i=1 dipi

.

holds for all d ∈ E and p ∈ Fd.

Proof. For a positive integer Q let

ΨQ(x, y) =
∑

n≤x
P (n)≤y

gcd(n,Q)=1

1

denote the number of y-smooths in [1, x] coprime to Q. We fix d and p and
put P =

∏k
i=1 dipi and Q =

∏k
i=1(pi − 1). Then

#Gd,p = ΨQ(x/P, y) − ΨQ(x/2P, y).

Note that

Q ≤ P ≤ (d1 . . . dk)
11 ≤ x11(α1+...+αk) = x(1+11−2+...+11−2(k−1))/242 < x1/240.

It thus follows from Theorem 1 in [10] that

#Gd,p =
φ(Q)

Q
(Ψ(x/P, y)− Ψ(x/2P, y))

(

1 + Ok

(

(log2 x)2/ log x
))

.

We have φ(Q)/Q � 1/ log2 x and Ψ(x/P, y) − Ψ(x/2P, y) �k x/P , so the
result follows.

17



We now look at numbers of the form n = d1 . . . dkp1 . . . pkm, where d =
(d1, . . . , dk) ∈ E , p ∈ Fd and m ∈ Gd,p. Clearly, n ∈ (x/2, x). We show that
each such n arises from a unique triple (d,p, m). Note first that since

pi ≤ d10
i < x100αi < xαi−1 ≤ di−1 < pi−1

holds for all i ≥ 2, while y = x1/2(11)2(k+3)
< dk, it follows that p1 > p2 >

. . . > pk > y ≥ P (d1 . . . dkm). Now assume that the same n arises also
from d′ = (d′

1, . . . , d
′
k), p′ = (p′1, . . . , p

′
k) and m′. Then d1 . . . dkp1 . . . pkm =

d′
1 . . . d′

kp
′
1 . . . p′km

′. By identifying the k largest prime factors of n, we get
that pi = p′i for i = 1, . . . , k. Once p1, . . . , pk are known, then d1 . . . dk =
gcd(n, (p1 − 1) . . . (pk − 1)), so m = m′. Thus, d1 . . . dk = d′

1 . . . d′
k and the

unicity of the di’s follows from the fact that di = gcd(d1, . . . , dk, pi − 1).
Hence, each such n arises from a unique triple (d,p, m).

Note now that if n arises from (d,p, m), then d1 . . . dk | gcd(n, φ(n)).
Thus, we get

A(x) ≥ x−1
∑

d∈E

d1 . . . dk

∑

p∈Fd

∑

m∈Gd,p

1 = x−1
∑

d∈E

d1 . . . dk

∑

p∈Fd

#Gd,p

�k
1

log2 x

∑

d∈E

∑

p∈Fd

1

p1 . . . pk

=
1

log2 x

∑

d∈E

k
∏

i=1





∑

p∈Pd,i

1

p



 , (12)

where in the above chain of inequalities we used Lemma 13.

We shall also need the following two lemmas whose proofs we postpone
for the moment.

Lemma 14. There exists xk such that the inequality

∑

p∈Pd,i

1

p
≥ 1

3di

holds for all i = 1, . . . , k and all d ∈ E provided that x ≥ xk.

Lemma 15. There exists xk and β(k) > 0 such that the inequality

∑

d∈E

1

d1 . . . dk

≥ 1

2

(

β(k)
log x

log3 x

)k

holds for all x ≥ xk.

18



Clearly, estimate (12) and Lemmas 14 and 15 show that if x is sufficiently
large (with respect to k), then

A(x) �k
1

log2 x

∑

d∈E

k
∏

i=1





∑

p∈Pd,i

1

p



 (by (12))

� 1

3k log2 x

∑

d∈E

1

d1 . . . dk

(by Lemma 14)

�k
1

log2 x

(

β(k)
log x

log3 x

)k

(by Lemma 15)

≥ (log x)k/2

if x is sufficiently large with respect to k, which completes the proof of the
lower bound asserted by Theorem 11, since k was arbitrary.

It remains to prove Lemmas 14 and 15.

Proof of Lemma 14. Fix d in E and i = 1, . . . , k. We let P1 be the set of
primes satisfying conditions (i) and (ii) from the definition of the pi’s, P2 be
the subset of P1 failing (iii) and P3 be the subset of P1 failing (iv). From the
fact that di ∈ D, we have that

S1 =
∑

p∈P1

1

p
≥ 1

2di
.

Since
∑

p∈Pd,i

1

p
≥ S1 − S2 − S3,

where

Sj =
∑

p∈Pj

1

p

for j = 2, 3, it suffices to show that both S2 = o(d−1
i ) and S3 = o(d−1

i )
hold as x goes to infinity. If p ∈ P2, it then follows that p − 1 = dim, where
ω(m) ≥ ω(p−1)−ω(di) ≥ 6 log2 x because of condition (iii) on the di. Putting
K = b6 log2 xc and using the multinomial formula, unique factorization, the
Stirling formula and the known fact that

∑

pα≤t

1

pα
= log2 t + O(1)
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uniformly in t ≥ 3, we get that

S2 =
∑

p∈P2

1

p
≤
∑

p∈P2

1

p − 1
≤ 1

di

∑

m≤x
ω(m)≥K

1

m

=
1

di

∑

`≥K

∑

m≤x
ω(m)=`

1

m
≤ 1

di

∑

`≥K

1

`!

(

∑

pα≤x

1

pα

)`

=
1

di

∑

`≥K

(

e log2 x + O(1)

`

)`

≤ 1

di

∑

`≥K

1

2`
� 1

2Kdi

= o(d−1
i )

as x → ∞, where we used also the fact that 6 > 2e, therefore (e log2 x +
O(1))/K < 1/2 if x is sufficiently large.

For S3, let Qi be the set of prime factors of
∏

j 6=i dj. Note that #Qi ≤
2(k−1) log2 x (by the property (iii) on the dj’s), and that if q1 is the smallest
element in Qi then q1 ≥ (log2 x)4 (by the property (v) on the dj’s). If p ∈ P3,
there exists q ∈ Qi such that p ≡ 1 (mod q). Since q divides dj for some
j 6= i, it does not divide di (by the property (iv) of the di’s), so p ≡ 1
(mod diq). Hence,

S3 ≤
∑

q∈Qi

∑

p≤x
p≡1 (mod diq)

1

p
�

∑

q∈Qi

log2 x

φ(diq)
=

log2 x

φ(di)

∑

q∈Qi

1

q − 1

≤ (log2 x)2#Qi

di(q1 − 1)
�k

(log2 x)3

di(log2 x)4
=

1

di log2 x
= o(d−1

i )

as x → ∞, where we used aside from the minimal order φ(di)/di ≥ 1/ log2 x
of the Euler function for di ∈ [1, x] also the estimate (11).

Proof of Lemma 15. We let Di be the set of all positive integers di satisfying
all the properties (i)–(v) except (iv). We shall later show that

Ti :=
∑

d∈Di

1

d
�k

log x

log3 x
. (13)

Assuming estimate (13), let E1 = ×k
i=1Di and E2 be the subset of E1 consisting

in k-tuples d = (d1, . . . , dk) such that there exist i 6= j with gcd(di, dj) 6= 1.
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It is clear that E = E1\E2, so

∑

d∈E

1

d1 . . . dk

= S1 − S2, (14)

where Sj =
∑

d∈Ej
(d1 . . . dk)

−1 for j = 1, 2. By estimate (13), we have

S1 =

k
∏

i=1

Ti �k

(

log x

log3 x

)k

.

Furthermore, note that

S2 ≤
∑

i6=j

(

∏

1≤`≤k
6̀=i,j

T`

)(

∑

p≥(log2 x)4

∑

di≤x
p|di

∑

dj≤x
p|dj

1

didj

)

�k

(

log x

log3 x

)k−2
(

∑

p≥(log2 x)4

1

p2

)(

∑

u≤x

1

u

)2

�
(

log x

log3 x

)k−2(
1

(log2 x)4 log3 x

)

(log x)2

=
(log x)k

(log3 x)k−1(log2 x)4
= O

(

S1 log3 x

(log2 x)4

)

= o(S1),

as x → ∞, which together with inequality (14) completes the proof of the
lemma. Hence, it suffices to prove estimate (13).

Let i = 1, . . . , k be fixed. Let R =
∏

q≤(log2 x)3 q. As in the proof of

Lemma 13, one checks that if we put D′
i(t) for the set of positive integers in

[1, t] satisfying (ii) and (v), then

#D′
i(t) = ρ(vt)

φ(R)

R
t

(

1 + O

(

(log2 x)3

log x

))

uniformly for t ∈ Ii, where vt = (log t)/ log y). Of these numbers, the number
of numbers that fail (iii) are Ok(x/(log x)c3) with c3 = 1 − 2 log(2/e) =
0.38629436122 . . ., while the number of numbers that fail (i) is, by Lemma 12,
O(t/ log t) = Ok(t/ log x). Hence,

#Di(t) = ρ(vt)
φ(R)

R
t

(

1 + Ok

(

(log2 x)3

log x

))

�k
t

log3 x
,
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where the last estimate above follows from Mertens’s formula. By partial
summation, we get that

Ti =
∑

d∈Di

1

d
=

∫ x10αi

xαi

d#D(t)

t

≥ −1 +

∫ x10αi

xαi

#D(t)dt

t2
�k

log t

log3 x

∣

∣

∣

t=x10αi

t=xαi
�k

log x

log3 x
,

which completes the proof of Lemma 15 and so the proof of Theorem 11.

We remark that an examination of the proof (and the tool we used from
[10]) shows that we may take k in the theorem of size c log3 x for some small
positive constant c, and so obtain the lower bound A(x) > (log x)c log3 x. We
are not sure what to suggest for the true order of A(x).

6 An application

For a nonzero polynomial f(X) ∈ Z[X], let Lf(x) denote the set of integers
n ≤ x with φ(n) | f(n). In the recent paper [4], it was shown that there are
certain “canonical” solutions to this relation of the form pm where m is a
positive integral root of f and p is a prime in one of a few prescribed residue
classes mod φ(m), and that non-canonical solutions are few in number. In
particular, it was shown that

Theorem 16. Let f(X) ∈ Z[X] be a polynomial of degree k, with f(0) 6=
0, whose roots all have multiplicity at most ν. For each positive integral
root m of f(X), there exist certain residue classes {αj,m (mod φ(m)) : j =
1, . . . , rm} for which the following estimate holds:

#Lf (x) =
∑

m∈N

f(m)=0

rm
∑

j=1

π(x/m; φ(m), αj,m)

+ O
(

x1−1/(2ν+1)+o(1) + x1−1/(k+1)+o(1)
)

,

(15)

where the functions implied by o(1) and the constant implied by O depend
only on f .

In the case f(0) = 0 a weaker error estimate of the shape x1−o(1) was
obtained in [4]. Here, we use the results from Section 5 to show that Theorem
16 holds without the assumption that f(0) 6= 0.
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Theorem 17. The conclusion of Theorem 16 holds even when f(0) = 0.

Proof. We follow the proof of Theorem 5 in [4]. Put

α =
ν

2ν + 1
.

It is shown in the proof of Theorem 5 in [4] that the number of n ≤ x with
P (n) > xα for which φ(n) | f(n) is given by the right hand side of formula
(15), and this argument from [4] does not use the fact that f(0) 6= 0. Thus,
the theorem will be proved if we show that the number N(x) of n ≤ x with
P (n) ≤ xα for which φ(n) | f(n) satisfies

N(x) ≤ x1−α/ν+o(1). (16)

Such a number n clearly has a divisor m with xα < m ≤ x2α. We fix a
number m in this interval and ask how many integers r ≤ x/m there are
with φ(mr) | f(mr). Let this count be denoted Nm(x).

We assume that f(0) = 0. Let F (X) denote the product of the distinct
irreducible factors (in Z[X]) of f(X) and the content of f (the gcd of the
coefficients of f). Let

t(m) =
∏

pk‖φ(m)

pdk/νe,

so that φ(m) | φ(mr) and φ(mr) | f(mr) imply that t(m) | F (mr). Also, let
F (X) = XG(X), where G(X) ∈ Z[X], and let

s(m) = t(m)/ gcd(m, t(m)).

Then t(m) | mrG(mr) implies that s(m) | rG(mr). For d | s(m), we consider
separately those r with gcd(r, s(m)) = d. For these values of r we have s(m) |
rG(mr) if and only if s(m)/d | G(mr). We let r = du, where u ≤ x/md and
u is coprime to s(m)/d. Dropping the coprimality condition, let

Nm,d(x) = #{u ≤ x/md : s(m)/d | G(mdu)},

so that
Nm(x) ≤

∑

d|s(m)

Nm,d(x).

We use the Nagell–Ore theorem, a strong form of it appearing in [12].
It asserts that for a squarefree polynomial g(X) in Z[X], the number of
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solutions to the congruence g(u) ≡ 0 (mod n) in a complete residue system
mod n is bounded above by deg(g)ω(n)D(g)2, where D(g) is the discriminant
of g. Say p is a prime and pa‖s(m)/d. If p does not divide md, then the
number of solutions to G(mdu) ≡ 0 (mod pa) in a complete residue system
mod pa is equal to the number of solutions of G(u) ≡ 0 (mod pa), which is
O(1), by the Nagell–Ore theorem, the constant depending on the polynomial
G(X) (which in turn depends on f(X)). So, say p does divide md, say
pb‖md. If G(mdu) ≡ 0 (mod pa) has any solutions at all, we must have
pmin{a,b} | G(0). Since G(0) 6= 0, we have that p is in a finite set depending
on G(X), and that min{a, b} is bounded as well. If a = min{a, b}, we take
pa as the (trivial) upper bound for the number of solutions to G(mdu) ≡ 0
(mod pa). If b = min{a, b}, we consider the polynomial H(X) = G(pbX) and
again use the Nagell–Ore theorem. The discriminant of H is pb(l2−l) times
the discriminant of G, where l = deg G, so that the number of solutions to
H(u) ≡ 0 (mod pa) is bounded by O(p2bl2) = O(1), again with the constant
depending ultimately on f . But mdp−b is coprime to p, so the number of
solutions to H(mdp−bu) ≡ 0 (mod pa) is exactly the same quantity as with
H(u), and it only remains to note that H(mdp−bX) = G(mdX). So, in
each case, the number of solutions to G(mdu) ≡ 0 (mod pa) is at most some
constant C that depends only on f . Thus, by the Chinese remainder theorem,

Nm,d(x) ≤ Cω(s(m)/d)

(

x

mds(m)/d
+ 1

)

= Cω(s(m)/d)

(

x

ms(m)
+ 1

)

.

Thus,

Nm(x) ≤ τ(s(m))Cω(s(m))

(

x

ms(m)
+ 1

)

= mo(1)

(

x

ms(m)
+ 1

)

,

where we use the well-known maximal orders for the functions τ and ω.
Note that

s(m) ≥ φ(m)1/ν

gcd(m, φ(m))
=

m1/ν+o(1)

gcd(m, φ(m))
.

Thus,

N(x) ≤
∑

xα<m≤x2α

Nm(x) ≤ xo(1)
∑

xα<m≤x2α

(

x gcd(m, φ(m))

m1+1/ν
+ 1

)

= x1+o(1)
∑

xα<m≤x2α

gcd(m, φ(m))

m1+1/ν
+ x2α+o(1).

24



Let S denote the last sum above. To compute S, we use Theorem 11 and
partial summation and get that it is equal to

x−2α(1+1/ν)
∑

xα<m≤x2α

gcd(m, φ(m)) +

∫ x2α

xα

1 + 1/ν

t2+1/ν

∑

xα<m≤t

gcd(m, φ(m)) dt

≤ x2α+o(1)−2α(1+1/ν) + xo(1)

∫ x2α

xα

dt

t1+1/ν
= x−α/ν+o(1).

Thus,
N(x) ≤ x1−α/ν+o(1) + x2α+o(1) = x1−α/ν+o(1).

This last estimate establishes (16) and so completes the proof of the theorem.
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