IMPLEMENTATION OF THE CONTINUED FRACTION
INTEGER FACTORING ALGORITHM
by
Carl Pomerance*
Department of Mathematics

University of Georgia
Athens, Georgia 30602

and

Samuel S. Wagstaff, Jr.*
Department of Statistics and
Computer Science
University of Georgia
Athens, Georgia 30602

1. 1Introduction.

A person wishing to factor a large number on a
computec has many options. fTrial division is usually a
good starting point and may be all that is needed if the
number is not too large, say less than 1012. Any resi-
dual factor (perhaps the original number) which has not
been cracked by trial division should then be subjected
to a pseudoprime test - we do not wish to apply factoring
algorithms to a number that is probably prime!

A next step could be the Pollard p algorithm [10].
This should uncover a prime factor p of N with 0(/p)
arithmetic operations mod N (and with very little
16, it should be findable in

reasonable time. Other attacks that can fing special

space). Thus if p < 10

prime factors of N include the Pollard p - 1 method
{9] and the related p + 1 method (see Williams [171).
A "general" factoring algorithm is one whose running

time depends mainly on the gross order of magnitude of

*Research supported in part by grants from the
National Science Foundation.

CONGRESSUS NUMERANTIUM, VOL. 37 (1983), pp. 99-118

the number being factored. A very speedy general factor-
ing algorithm is the SQUFOF method of Shanks [13]. It is
recommended for numbers W 1less than about 1024; the
precise useful range, though, is machine dependent. The
probable running time is O(ﬁrﬁ) and very little space
is needed. An attractive feature is that all arithmetic
is done with numbers only half the length of W.

For larger numbers, the most popular general Factor-
ing algorithm has been the continued fraction methed (or

CFRAC) of Brillhart and Morrison [8]. If

1/2

L{N) = exp((2n N &£nfn N) } o,

then the running time for CFRAC should be L(NJ/?+O(1)

1/V/2+0(1) (see

and the space requirasd should be TL{N)
[111). (Actually the asymptotic analysis for CFRAC, and
every other algorithm mentioned in this paper, except for
trial division, is based on certain unproved, but reason-
able hypotheses,)

There are other good general factoring algorithms,
some of which are asymptotically faster than CFRAC (for
example, Pomerance's gquadratic sieve [11]1, [4] and the
Schnorr-Lenstra method [12]) and they certainly deserve
practical investigations. However, at this time, almost
all of the practical experience has been with CFRAC.

It thus seems a useful enterprise to collect
together in one place some of the shortcuts, programming
tricks and variations that greatly extend the useful
range of CFRAC. It is against this modified and refined
version of CFRAC that competing algorithms should be
judged. We are gquick to point out that many of the
suggestions presented here are not original with us.

When this is the case, we of course so indicate.
We view our contribution here as not only putting

some major improvements to CFRAC under one roof, but also

100

refining some of these ideas and advocating their wide-
spread use. This paper is not intended as the last word
on CFRAC. Some of the improvements mentioned below have
not yet been tried, others perhaps can be implemented
better than we have. 1In addition, our experience has
been on a serial mainframe computer. Those working on
parallel or vector processors, microcomputers, or special
purpose hardware may well have to rewrite the book on
CFRAC.

2. Description of CFRAC.

The continued fraction factoring algorithm as pre-
sented here is due to Brillhart and Morrison [8]. It is
based on an older pre-computer-age method of Lehmer and
Powers [7]. The algorithm employs the simple continued
fraction expansion of /N. Say An/Bn is the n-th con-

vergent to /N. Define Qn = An2 = NBn2' Then Qn = An2

mod N. The values of An mod N and Qn are generated
by a simple iterative procedure described below.

For each Qn produced a small effort is made to
factor it into primes. Since the Q, are not too
large, each lan < 2/N, some of them will factor
easily. When enough of them are factored, a subset of

factored Qn's is determined whose product is a

square, say X2 {(we only compute X mod N). Let Y
mod N be the product of the corresponding An mod N.
Then x2 = %3 mod N and there is a good chance that

ged(X - ¥, N) 1is a non-trivial factor of N. TIf not,
try another subset of the Factored Qn's or factor more

Q 's.
n
The attempt to factor each Q, involves trial divi-
sion of Qn by a set of small primes PysPyre--ubpy called
the "factor base". The primes p; consist of the prime

2 and all of the odd primes up to some peoint for which the

101

Legendre symbol (N/pi) = 1. The determination of the
subset of factored Qn's whose product is a square is
accomplished by Gaussian elimination over %/2% on a
matrix with m + 1 columns and a row for each factored
Qn.' The i, 0 entry is 0 or 1 depending on whether Qn.
islpositive or negative. The i,j entry for 1 < j < m *

a..
aij mod 2, where pjl] exactly divides Qn . For
i

numbers N of moderate size (20 to at least 55 digits),

is

the Gaussian elimination and subsegqguent steps of the
algorithm take negligible time compared to the trial
division and the A mod N, Q, generation.

The recursive procedure for computing the pairs
An mod N, Qn iz as follows. Out of necessity we
simultaneously compute three auxiliary sequences Gn,
g9, r . Let g = [/N]. Then we recursively compute

n n
our five sequences by the formulas:

Qp = Qo t gy yir g - rn-2!

Gn = 2gq - rn—l

g, = [Gn/Qn]

rn = 6p 7 9,9,

AL Z qA _; * A _, mod N

where we initialize as follows

Q_l = N, QO =1, qD = dg, r_l = g, 0,

a
(=}
]

A =1l, A, =g .

=1 0

To give an idea of the complexity of the arithmetic in-
volved in these calculations, we remark that q, is
usually single precision, g, Qn' Gn and r,are about
half the length of N, and AL is about the length of

N.

102

3. The "Large Prime" variation.

When trial division of Qn has been performed
all the way to By and the remaining cofactor is still
larger than 1 but less than pm2, then the number
Qn has been completely factored because the cofactor
is a prime larger than Pp+ In [B] Brillhart and
Morrison point out that even though such Qn do not
factor completely over the factor base, they still can be
of use. Indeed, if Qn and Qk have the same large
prime factor, then Qan gives a row in our matrix
of exponents mod 2.

Our program always saves Qn and An mod N if
Qn factors over the factor base but for one large
prime less than pmz. In contrast, the Brillhart-
Morrison program has a bound UB as a parameter; it saves
Qn and An mod N only when the cofactor is less
than UB. Usually they chose UB much smaller than
pm2. They argued that if Qn has a large prime
factor, then it has little chance of being paired with
another Qk having the same cofactor and is thus
nearly valueless.

However, we occasionally did find a repeated large
prime nearly as large as pm2_ We saved every Qn
which factored with a large prime because the cost of
handling them was small. The Brillhart-Morrison para-
meter would be useful if there were a non-trivial cost to
store the factored Qn's. For m= 959 and N near
1050 our experiments lead us to estimate that the
choice of UB = pm2/10 would halve the number of
Qn's to be saved and cause the loss of about 2% of the
pairs of Qn

Thus one need store only half as many Qn's if one is

's with a repeated large prime factor,

willing to do a little bit more A mod N, Qn genera-

tion and trial division.

We say a few words on the implementation of the
Large Prime variation. If Qn factors with the large
prime p, then it can be stored as a partially sparse
vector. That is, if W denotes the 0 - 1 vector of
length m + 1 corresponding to the prime factorization
(and sign) of Qn/p, then Qn is stored as the pair
v,r P. At the Gaussian elimination stage of the algo-
rithm, the pairs v, p are first ordered by size of
the large prime p. Then one pass down the list can
eliminate all of the large primes. Indeed, if p is not

repeated, then Vor P is deleted. 1If the pairs v, o+ Bi
i
vy r Pies-iVy (P all have the same large prime p,
i+l itk
then v_ ,p is deleted and the other pairs are

n.
1

replaced by the vectors vni + vni+l,...,vni + vni+k
(reduced mod 2, of course). Thus at little cost of
space and time, the large primes can be eliminated.

This tactic was first implemented by Wunderlich [201],
acting on a suggestion of Brillhart-Morrison [8], Remark

5.14.

4. The "Early Abort Strategy".

The Early Abort Strategy (EAS) consists of giving
up on a Qn before trial division is completed if it does
not look likely to factor. Specifically, the EAS with

parameters
/i
1< m; < my <ool<m < om, 2/N > By > By >...> By > 1

involves as many as k tests of a Qn: if after trial

division to P, * the unfactored porticon exceeds Bi,
i
then Qn is aborted and Qn+l

trial division of a Q, proceeds normally to p, Lif and

is obtained. Thus the

104

only if each of the k tests is passed. This procedure
was analyzed in [11] and the optimal asymptotic choices
of the abort parameters were computed there. Perhaps
surprisingly, it was shown that there indeed is a
strategic improvement in the running time. CFRAC with

k optimally chosen early aborts has a running time of

By ek L2EEZ) +D(l), the case k = 0 being straight

CFRAC. 1In contrast, the Large Prime variation only
affects the "o(1)" in the exponent.

The EAS was anticipated in the work of Brillhart-
Morrison, Schroeppel, and deVogelaere (see Remarks 4.2
and 4.6 of [8], page 384 of [6], and [14]). However,
until now there does not seem to have been much experi-
mentation with the concept, nor was such a large speed-
up expected.

Let D; = 2/ﬁ/Bl and for 1 < i < k let
p, = 2/ﬁf(BiDl...Di*l
and the numbers Di bound divisors. Thus at the cut m,

}. We call the numbers m, cuts

we abort Qn if the unfactored portion exceeds
2ﬁﬁ/(Dl...Di). Asymptotically, the optimal choices Ffor
m, ml,...,mk, Dl""'Dk are

-1/2
m o= nomy (6+2/(k+1))

- i/ kD)

. 2
b, = ni/ (3K +Tked)

However, an asymptotic analysis necessarily glosses over
details that can be important in practice with Finite
numbers. In experiments with the EAS we were only
roughly guided by the above choices of parameters.

Most of the numbers we factored during our experi-
ments with EAS were 47 to 51 digit divisors of various

numbers of the form b"™ + 1 from the Cunningham Pro-

105

ject [3]. We began with a factor base of m = 639. We
soon increased m to 959 and almost all of our
experiments are with this choice of m. When we made the
increase from 639 to 959 we achieved a modest speed up of
about 5%. We thus concluded that we were probably near
the optimal choice for our program and for numbers near
ioso, so we did not experiment further with m. (We
chose m = -1 mod 32 so that the vectors described in §2
would exactly fill a whole number of 32-bit IBM machine
words.)

We factored several 47 digit numbers using one
abort; with the other numbers we used two or three
aborts. With the one abort numbers we experimented by
choosing the cut after m, = 10,20,30,40,50,60 or 70
primes and the bound divisor D; Dbetween 50,000 and
16,000,000. Of course, the choice of parameters for two
or three aborts involved more degrees of freedom. The
computation for each factorization was divided into jobs
in which 100,000 to 1,000,000 Qn's were considered
with a fixed choice of parameters.

Performance was measured by the rate at whieh
factored Qn's were produced. (A value of Qn is
said to "factor" if it either factors completely over the
Factor base or factors with a large prime, see 5§3.)
Assume that a Q, bhas the probability p of factoring
(with fixed EAS parameters) and that different Qn‘s
are independent trials in a random process. If we try ¢t
values of Qn in a job, we expect tp of them to
factor and the variance to be tp(l - p}. Since p is
nearly zero, the standard deviation is approximately
/EE, or the sguare root of the expected number of Qn's
factored. BAs mentioned above each job had
10° £t< 105, we usually factored between 100 and
1000 wvalues of Q, per job. Thus the standard devi-

106

ation was about 3% to 10% of the expected number of
Qn's factored.

The running time measured by the computer timer and
printed at the end of a job is accurate to within 2% or
3%. Since this has a smaller percentage variation than
the observed number of Qn's factored, we used this
time rather than a more complicated measure in evaluating
the performance of each job. Thus we computed the stati-

stic for each job
performance = (number of Qn's factored)/(running time)

and sought to maximize it.

Those Qn which factor completely over the factor
base are more valuable than those which factor with a
large prime because the former always give a row in the
matrix of exponents mod 2 while the latter often do not.
Hence the former should have greater weight than the
latter in the performance measure. For m= 959 and N
near 1050 we found that only about 3% of the Qn
which factored were factored completely over the factor
base. Thus very few of the latter Qn ware factored
per job and hence there was great variation in their
number per job. Because of the difficulty of drawing a
statistically significant conclusion we did not use a
weighted performance measure. The matter deserves
further study.

"Evolutionary operation" [1] was used to optimize
the performance. This technigue is widely used to
improve the yield of industrial processes which have
similar problems with statistical fluctuations. Suppose
we have run a job using one abort with cut m, and
bound divisor Dl' Choose nearby cuts mi, mi and

nearby bound divisors Di, Di with

1] n T n
ml < ml < rnl " D1 < Dl < Dl F

107

We then run jobs with the four possible pairs of mi,

mi and Di, DI. We then replace the pair m Dl with
the one of the four pairs which gives the best perfor-
mance and repeat the process.

Attempting to graph the performance as a function of
the parameters chosen, we found that it was essentially
constant over a wide range of parameters. The following
choices of cuts and bound divisors seem to work well for
1040 < N < 1054, a factor base of m = 959, and our
program. We believe these choices are close to opti=-
mal. In any case they are a good starting point for

evolutionary operation.

number

of cuts my m, My Dl D2 D3
1 50 - - 2M - -
2 15 80 - 1K 40K =
3 10 50 150 500 600 1K

In this table, K stands for 1000 and M stands for
1,000,000.
The EAS makes a big difference in the running time

30 yhich

of CFRAC. & factorization of a number near 10
would take 100 hours with no aborts would take about 30
hours with one abort, 14 hours using two aborts, and 12
hours with three aborts. We did not try four aborts

because we felt the additional acceleration for numbers

in our range would be negligible.

§5, Choice of the multiplier.

As Brillhart-Morrison [8] and Wunderlich [19], [20]
point out, it is often more favorable to use the con-
tinued fraction expansion of vkN for some small square-
free k than that of /N. (This changes the algorithm
for the production of An mod N and Qn described
in 52 as follows: we have g = [vkN] rather than [/N]

108

and Q_; = kN rather than N.) Knuth [6], p. 383
humorously reports that this appears a strange way to
proceed "if not downright stupid." 1In fact, it can be a
smart thing to do since the factor base for kN may con-

tain smaller primes on average than that of N. (The

factor base for kN consists of P = 2 and those odd
; - kN k, N

rimes with k r (=) = (=)(=) =1,

P P p| o 5 {p)(p)

Another reason to use a multiplier is if the continued
fraction period for VN 1is too short.

When the length of the period of the continued
fraction is not an issue, we found that the Knuth-
Schroeppel functien F(k,N) defined in [6], §4.5.4 is a
good measure of the worth of the multiplier k. Specifi-
cally we wish to choose a square-free k so as to maxi-
mize

7 1
F(k,N) = iglf(pi,kN)log p; - 5 log k

where for odd p

1 s
R if plk
f(p,kN) = 2
22 -1 ¢ if pfk
and
r 1if 2|k or kN = 3 mod 4
f(2,kN) , 1if kN = 5 mod B8

r if kN = 1 mod 8 5

]
Wit WIN W~

If k 1is not sguare-free, then the definition of
F(k,N) is more complicated. However, it follows from
this more complicated formula that for any prime p

——l——(F(pzk,N)-F(k,N))==5%I + ZRJN) e i €

log p P

so that F(k,N) is always larger than F(pzk,N). Thus
the optimal choice for k is always square-free.

Not only is the use of the function F(k,N) a good
way to choose k, but the function % log N - F(k,N)
accurately measures the difficulty of factoring N wvia
CFRAC with multiplier k. That is, if Ny with optimal
multiplier kl gives a smaller value of this functien
than N2 with optimal multiplier kz, then Nl should
take less time to factor than N,

§6. The An mod N, Qn generation.

Although asymptotically the time it takes to pro-
duce the next AL mod W, Qn is negligible, in
practice this can take a non-trivial portion of the total
running time. When using the EAS (see §4) necessarily
some and perhaps many of the good Qn's are discarded
before it is realized that they will factor. Hence the
EAS causes us to compute more values of An mod N, Qn
than would ordinarily be required. Thus it is especially
important with the EAS to have an efficient algorithm to
produce these numbers.

We used two programming tricks to accelerate the
production of An mod N, Qn pairs. At one point in
the algorithm (see §2) one computes the quotient
P = [Gn/Qn] and the remainder r, =6, - 9,9,-
The numbers q, are the denominators in the continued
fraction expansion of VN (or VKN if the multiplier k
is used). For "random" irrational numbers, most denomi-
nators in the continued fraction expansion are quite
small, Thus one would expect, and this is indeed what is
observed, that most g, are small. Knowing beforehand
that q, is likely to be small can help us compute

q, and T faster. (See Remark 5.1 in [8].)

1o

Our program makes a quick estimate of a, based
on the high order digits (in radix 230) of G, and
Qn. If it appears that q, < 5, the division is
performed by repeated subtraction, which also computes
r.. It if appears that 9, will exceed 5 but will

be less than 106, then the program forms a good
approximation to q, using real arithmetic, multi-

oy

plies it by Qn’ subtracts from = and adjusts

9n
6 : .

If a, 2 10~, the program performs the multiprecise

by addition or subtraction to the correct value.

division via the classical algorithm (see 54.3.1 of [61).

The other trick concerns the calculation of An
mod N by the congruence An = ann—l + A, _o, med N. Since
the reduction modulo N is time consuming and the a,
are usually small, the reduction is performed only occa-
sionally. The program reduces A, (and A _y)mod N
only when (i) A approaches N2 in size, (ii) q,
exceeds 106, or (iii) Qn has been factored so that it
and An mod N must be output.

Some ideas that we did not program, but might be
worth a try include the following. When AL is
reduced mod N, this necessarily involves some multipli-
cation of N by small numbers. Perhaps a table of mul-
tiples of W can be stored so that a reduction mod N
consists solely of table look-ups, shifts and subtrac-
tions. This idea might even be combined with reducing
An mod ¥ for each n. For then the qguotient

def

9, = [lg (A _jmod N) + (A _, mod N))/N]

does not exceed d, and so is usually small. Thus

the large majority of reductions mod N could involve a
real arithmetic estimation of g,r @ single table look
up for, say, a multiple of N up to 100N, plus a single
subtraction. If 9, > 100, then An mod N eould be
computed the long way.,

111

Another idea is to define A; as follows:

N o= [1 _
Ap = Gpfpa1 B4, an

where kn is defined by the following algorithm. Let

k, = 1. If Ag—l’ Al 5, > 0, then let ko =k, * 1.
If Aé—l' Al_, < 0, then let k, =k, - 1. If

Al 1AL o < 0, then let k, = 0. This actually requires
no multiplication by N, since if kn # 0, then

an = kn_lN * N. The only danger is that a huge value
for g, or a quick succession of very large values of

q, could produce a huge value of Aé. If this
occurs, it and the next value could be replaced by their
residues mod N.

An alternative way of choosing kn in the above
is to let it be 0 or the largest power of 2 such that
Aé > 0. This involves no multiplicﬁtion by N and no
table look-ups. Probably there would never be an excep-

tional case requiring special treatment.

§7. Other ideas.

In this section we discuss two variations of CFRAC
that we have not tried to implement. One of these is to
use the Pollard p wmethod [10], [2] in place of trial
division. It was shown in [11] that CFRAC with Pollard

3/2+o(D) and that if k

optimally chosen early aborts are also used, then the

/ -1
running time is L(n)3/ T=tkt+1) +D(l). (In [11],

actually the Pollard-Strassen method was considered, not

P has running time L(n)

Pollard p, since the former has a rigorous running time
analysis. The Pollard-Strassen method is based on the
fast Fourier transform and is probably not practical. If
one is prepared to accept that Pollard o finds a prime
factor p of m in time OGp log3m), then the

112

analysis in [11] holds for Pollard p as well.) For this
variation to give an improvement in the running time,
probably a substantially larger factor base should be
used. Perhaps trial division could be used for the very
smallest primes, followed by an early abort, followed by
the p method. This in turn could be cut at several
points and aborted if Q. were not doing well. The
asymptotics suggest that the matrix reduction will be a
bottle neck, both in space and time. In practice, the
space problem appears to be more important.

Another, but less radical idea that we have not yet
had time to try is to use the nearest integer continued
Eraction (NICF) expansion of /W rather than the ordi-
nary continued fraction (OCF). This idea was suggested
recently by Williams [16]. There is an iterative algo-
rithm for the NICF that is very similar to the one
described in §2 for the OCF. fThis algorithm is described
in detail in Williams-Buhr [1B]. Every pair Aﬁ mod N, Qﬁ
generated by the NICF is also one of the pairs Am mod N,
Qm found by the OCF (Williams [15]), but not necessarily
vice versa. The advantage to using the NICF is that the
largest of the IQm[, those satisfying lQm] > 5 - 1N,
do not appear in the NICF expansion (Hurwitz [5]). Since
the largest Q's are bypassed, the remaining Q's should
prove a richer set for factoring into small primes.
Moreover, there appears to be zero overhead in implemen-
ting this idea.

We plan to try the NICF scon. We predict that for
numbers near 1050 there will be a 5% to 10% speed~-up
using the NICF.

§8. Factorizations.

We split about 70 numbers of the form b" + 1 from
the Cunningham Project [3]. Actually, the numbers we
factored were not themselves of the form b" : 1, but
large composite factors of these numbers that had been
previously obtained in [3]. Our work increased the size
of the smallest composite listed in [3] from 47 digits to
51 digits. We give below the numbers which were the
first "hole"™ in their table and alsoc the 53 and 54 digit

numbers.
Digits in

Parent Unfactored

Number Portion Factorization

g8 g 51 61654440233248340616559%p29

caln | 50 178925762979037%3830538323149121 %
95016376135553173181

2276, 54 5770338946481798744593*p32

3133 52 8757948941961838067*p33

| 53 1430128198787051*p38

5734 51 63554310563%777612767772190289*
3570677866897550288203

57041 48 21363981507860375753*p29

é8%.5 52 904949028329910415467529*p28

6 =1 a7 484847574510970082567*P26

61844 Gl 3300043400835529%p36

g Ayq 53 355518408146401*5028187486478069273*
13038313680704041577

67941 48 99687312908749681 *p31

68341 49 21608536062644851877771%P26

784,43 50 1110623386241 *P38

12871 50 10617249990997021 *p34

114

The notation Pxx means a prime number of xx
digits. The number 2362+l has the "algebraic" factori-

181, o 181, ,91

zation 2°7+1) (2 +1). We report here the

factorization of part of 2181_291+1' Recently, Mr. Hiromi

lal+2gl+1 using the Brent-Pollard rho

Suyama factored 2
method. See [3] for complete factorizations. Mr. Robert
D. silverman finished the factorizations of 2181—291+l
and 676+l after we had removed one of the factors. We
are grateful to him for letting us pu?lish his factori-
341,

Running times in hours on an IBM 370/158 are given

zations. We found all factors of 5

in the following table for those numbers factored using

more than cne early abort.

Digits Number of Execution Time
(decimal) Factorizations {in hours)
47 5 6-10
48 12 7-11
49 19 8-19
50 8 12-24
51 7 17-37
52 3 21-51
53 2 29-37

54 1 37

The rather large spread of times for numbers of a given
size can be explained by the discussion in 55. These
times were needed for a factor base of m = 959 primes.
Some of the smaller numbers were done with two aborts,
the other numbers with three aborts (and with parameters
close to those in the table in 54). The times Fer the
numbers of 52, 53, and 54 digits should not be freely

extrapolated to other numbers of comparable size since

115

the sample is too small and because these 6 large numbers
(with one 52 digit exception) had inordinately favorable
values of the Knuth-Schroeppel function (§5). To our
knowledge, the 54 digit number is the largest number to
have been factored by a general factoring algorithm,

These running times are about 10-15 times Ffaster
than the previous experience with CFRAC. This dramatic
improvement is mainly attributable to the EAS, but is
also partially due to our improved An mod N, Qn
generation (see §56).

We gratefully acknowledge the University of Georgia
Computer Center for granting us the time used in this

project.

116

10.

11.

References

G.E.P. Box and N.R. Draper, Evolutionary

Operation, A Method for Increasing Industrial
Productivity, Wiley, New York, 1969.

R.P. Brent and J. M. Pollard, Factorization of the
eighth Fermat number, Math. Comp., 36(1981), 627-630.
J. Brillhart, D.H. Lehmer, J.L. Selfridge, B.
Tuckerman, and S.S. Wagstaff, Jr., Factorizations of

b" + 1 up to High Powers, to be published by the
Amer. Math. Soc.

J.L. Gerver, Factoring large numbers with a qua-
dratic sieve, to appear.

A. Hurwitz, Uber eine besondere Art die
Kettenbruchentwicklung reeler Grossen, Acta Math.
12(1889), 367-405.

D.E. Knuth, The Art of Computer Programing, wvol. 2,

Seminumerical Algorithms, 2nd ed., Addison Wesley,
Reading, Massachusetts, 1981.

D.H. Lehmer and R.E. Powers, On factoring large
numbers, Bull. Amer. Math. Soc. 37(1931), 770-776.
M.A. Morrison and J. Brillhart, A method of
factoring and the factorization of F7, Math. Comp.
29(1975), 183-205,

J.M. Pollard, Theorems on factorization and
primality testing, Proe. Cambridge Philos. Soc. 76
{1974), 521-528,

J.M. Pollard, A Monte Carlo method for factoriza-
tion, BIT 15(1975), 331-334.

C. Pomerance, Analysis and comparison of some
integer factoring algorithms, to appear in
Computational Methods in Number Theory, H.W. Lenstra,
Jr., and R. Tijdeman, eds., Math. Centrum, Amsterdam.

117

T2

13.

14.

15.

16.

17.

18.

19

20.

C.P. Schnorr and H.W. Lenstra, Jr., Factoring
integers depending on good luck, to appear,

D. Shanks, Square-form factorization, a simple
O(Nl/4) algorithm, to appear.

R. deVogelaere, The first 9000 complete factoriza-
tions of the h series, Notices Amer. Math. Soc. 23
1976), A-56, Abstract 731-10-47.

H.C. Williams, Some results concerning the nearest
integer continued fraction expansion of VD, J.
reine angew. Math. 315(1980), 1-15,

H.C. Williams, Some results concerning nearest
integer continued fractions in Q(/D) and Q(3f53,
Abstracts Amer. Math. Soc. 3(1982), Abstract
797-12-41, p. 41le6.

H.C. Williams, A p + 1 method of factoring, Math.
Comp. 39(1982), 225-234.

H.C. Williams and P.A. Buhr, Calculation of the
regulator of Q(/D) by use of the nearest integer
continued fraction algorithm, Math. Comp. 33 (1979),
369-381.

M.C. Wunderlich, A running time analysis of
Brillhart's continued fraction factoring method, in
M.B. Nathanson, ed., Number Theory Carbondale 1979,
Lecture Notes in Math. 751(1979), 328-342,

M.C. Wunderlich, & report on the factorization of
2797 numbers using the continued fraction method,

unpublished manuseript.

118

