
Fields Institute Communications

Volume 00, 0000

Heuristics for class numbers

of prime-power real cyclotomic fields

Joe Buhler
Reed College, Portland, OR, USA

jpb@reed.edu

Carl Pomerance
Dartmouth College, Hanover, NH, USA

carlp@math.dartmouth.edu

Leanne Robertson
Smith College, Northampton, MA, USA

lroberts@math.smith.edu

Dedicated to Hugh Williams on the occasion of his sixtieth birthday

Abstract. Let h+(`n) denote the class number of the maximal totally
real subfield Q(cos(2π/`n)) of the field of `n-th roots of unity. The goal of
this paper is to show that (speculative extensions of) the Cohen-Lenstra
heuristics on class groups provide support for the following conjecture:
for all but finitely many pairs (`, n), where ` is a prime and n is a positive
integer, h+(`n+1) = h+(`n). In particular, this predicts that for all but
finitely many primes `, h+(`n) = h+(`) for all positive integers n. It is
possible that there are no exceptional primes ` at all.

Extensive computations of René Schoof [9] enumerate all “small” components of
the plus part of the class group of cyclotomic fields of prime conductor. Let ` be
an odd prime, K(`) := Q(ζ` + ζ−1

` ) be the maximal totally real subfield of `-th
roots of unity, and G(`) := Gal (K(`)/Q) be the Galois group of K(`) over Q, so
that G(`) is a cyclic group of order (` − 1)/2. The class group Cl+(`) of K(`) is
a module over the group ring Z[G(`)]. For all ` < 10000, Schoof finds the largest
subgroup of the class group whose simple factors (as Z[G(`)] modules) have size

less than 80000. Let h+(`) denote the order of the class group of K(`), and h̃+(`)

denote the order of Schoof’s subgroup. For all ` < 10000 either h+(`) = h̃+(`) or

h+(`) > 80000 h̃+(`); it seems very likely that h+(`) = h̃+(`) in every case. In fact,
the largest simple factor found in the search has order 1451, there are 2 others over
500, and almost all of the others are below 100. The novelty and extent of these
computations are indicated by the fact that h+(`) is known only for ` ≤ 67 (or
` ≤ 163 assuming the GRH); the exact computations of h+(`) rely on bounds on
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discriminants, and at the moment it seems difficult to extend them beyond these
limits.

At the end of [9] the “probability” that h+(`) = h̃+(`) for all ` < 10000 is
computed on the assumption that, as Z[G(`)] modules, the class groups of these
fields behave probabilistically as the Cohen-Lenstra heuristics predict would be the
case for a large sample of fields of the given signature and Galois group. This
probability is found to be greater than 0.98, i.e., under this speculative extension
of the heuristics, the tables in [9] are highly likely to give h+(`) exactly for all
` < 10000.

Our goal is to analyze similar heuristics for the plus part of the class groups
of prime-power conductor. Let h+(`n) denote the class number of the field K(`n),
the maximal totally real subfield of `n-th roots of unity. We are led to make the
following conjecture.

Conjecture 1 For all but finitely many pairs (`, n), where ` is a prime and n
is a positive integer, the class number of K(`n+1) is equal to the class number of
K(`n), i.e.,

h+(`n+1) = h+(`n). (1)

The `-Sylow subgroup of the class group Cl+(`n) has been studied for many
years, and several famous conjectures make predictions about the power of ` di-
viding h+(`n). The Cohen-Lenstra heuristics, of the type that we will use for the
prime-to-` part of the class number, are not thought to apply to the power of `
dividing h+(`n) for n > 1 since ` divides the degree of K(`n) over Q. Our belief in
the “`-part” of the conjecture is based on several things.

First, the Kummer-Vandiver conjecture that h+(`) is not divisible by ` implies
that h+(`n) is prime to ` for all n [10, Corollary 10.5]. The Kummer-Vandiver
conjecture is true for all ` less than 12 million [1], and thus h+(`n) is prime to `
for all ` < 12000000. Moreover, results in K-theory by Soulé, Snaith, and others
[8] provide some support for the idea that the conjecture is true for all primes.

Second, Greenberg’s conjecture on Iwasawa invariants of totally real number
fields implies that for every ` there is an n0 such that for all n ≥ n0 the `-Sylow
subgroup of Cl+(`n) is equal to the `-Sylow subgroup of Cl+(`n0). Although we
know of no proposed heuristic probability distribution on n0, it seems plausible to
guess that n0 = 1 for all but finitely many `.

From now on, we study the p-Sylow subgroups of Cl+(`n) for p 6= `. Our
primary theorem is that an expression that represents the “expected” number of
counterexamples to (1), under suitable heuristics, is finite.

To explain this more carefully, we begin by introducing notation for the relevant
finite Galois modules. Let ` be a prime, and n a positive integer; to avoid trivialities
we assume that `n > 2 throughout. We have that K(`n) is a Galois extension of Q

with group G = Gal(K(`n)/Q) = G(`n) that is cyclic of order

|G| = φ(`n)/2 = `n−1(` − 1)/2,

where φ is Euler’s function. Any finite Z[G] module has a composition series, and
each simple module M is a quotient of Z[G] by a maximal ideal. The order of
a finite Z[G] module is the product, counting multiplicities, of the orders of the
simple modules M that arise in the composition series.

A simple module M has order q = pf where p is a prime, and can be described
as follows (see [9]). Choose a divisor D of |G| = φ(`n)/2 that is not divisible by p.
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Choose a prime ideal P of Z[ζD ] of norm q = pf , where f is the multiplicative order
of p mod D. Let P be the inverse image of P in Z[G] under the surjective ring
homomorphism

Z[G] → Z[ζD ]

that takes a generator of G to ζD . Then let M = Z[G]/P . We say that M has
“level n” if the divisor D of φ(`n)/2 does not divide φ(`n−1)/2.

The Cohen-Lenstra heuristics [2, 3] predict, roughly, that in a large sample of
totally real Galois extensions F of Q, with fixed Galois group G, the class group of
F behaves as a random finite Z[G] module modulo a random cyclic module. They
carefully analyze [3, Example 5.10, p. 47] a natural notion of randomness when G is
abelian, and prove that the probability that a given simple module M , with order
relatively prime to the order of G, does not occur in the Jordan-Hölder composition
series of a random module modulo a random cyclic submodule is

pM :=

∞
∏

k=2

(

1 − |M |−k
)

(2)

where |M | denotes the order of M . In addition, these probabilities should be
independent for different M .

We would like to apply this to class groups Cl+(`n), but this is hard to for-
malize in the usual frequentist language of probability since there is no underlying
probability space. Indeed, the original Cohen-Lenstra heuristics apply to a large
collection of fields of a given degree, and we are applying them to a large collection of
fields whose degrees are unbounded. Instead we adopt a subjective Bayesian view,
where probability arises from ignorance. Thus we use the Cohen-Lenstra heuristics
as the basis for the assignment of subjective probabilities, on the grounds that they
are a plausible first guess. One justification for this way of thinking is that the
heuristics actually make predictions which can be tested empirically. For example,
in [9] it is noted that similar heuristics imply that the proportion of ` < 10000 with
h+(`) = 1 should be about 71%, which is only slightly smaller than the 75% of

the ` in the sample that were observed to have h̃+(`) = 1. Similarly, heuristic pre-
dictions about h+(`n) can be explored empirically by searching for Jordan-Hölder
factors of Cl+(`n) of order pf for “small” `, n, p and f , comparing the observed
frequencies with the predictions implicit in the analysis below; we hope to carry
out this empirical investigation in future work.

Before making the “probabilities” precise, we comment on technical aspects of
our assumptions. First, the absolute norm of any ideal is principal, so that the class
group is actually a module over the quotient Z[G(`n)]/〈Nrm〉 of the group ring by
the module generated by the norm element Nrm :=

∑

σ; one checks that this just
means that any M that occurs as a simple factor in a class group has D > 1. In our
case, we are interested in modules of level at least two, so this is automatic since
D will always be divisible by `.

Second, we note that primes dividing the degree are usually excluded when
considering Cohen-Lenstra heuristics. In our case the degree of K(`n) is `n−1(` −
1)/2. Let p be the unique prime dividing the order of a simple Galois module M . As
discussed above, we rely on other ideas to support the conjecture in the case p = `.
It might also seem prudent to exclude the primes p dividing (` − 1)/2. However,
[10, Theorem 10.4(a)] implies that the question of whether or not p divides the
class number of K(`n) is equivalent to the question of whether or not p divides the



4 Joe Buhler, Carl Pomerance, and Leanne Robertson

class number of the field L that is the largest subfield of K(`n) whose degree over
Q is prime to p. Similarly, the heuristics used here are equivalent to Cohen-Lenstra
heuristics for L/Q, so that they arise in a situation in which p in fact does not
divide the degree.

If a counterexample to (1) exists then there is a simple M of level n + 1 that
occurs in a composition series of Cl+(`n+1). According to the (extended) heuristics,
the “probability” that such a simple module M occurs is 1−pM , where pM is defined
in (2). Thus the expected number of counterexamples to (1), over all ` and n, is

E :=
∑

` prime

∞
∑

n=1

(

1 −
∏

M

pM

)

(3)

where the product is over all simple modules M of level n + 1. Our main result is
that this double sum converges.

Applying 1 − x ≤ − log x to (3) and then using (2) gives

E ≤
∑

` prime

∑

n≥1

∑

M

− log pM =
∑

` prime

∑

n≥1

∑

M

∑

k≥2

− log
(

1− |M |−k
)

where M runs over all simple modules M of level n + 1.
Now recall that if p 6= ` is a prime not dividing D then p splits in Z[ζD ] into

φ(D)/f ideals of norm pf , where f is the multiplicative order of p mod D. Thus
the sum over M of level n + 1 can be replaced by a sum over pairs (D, p) where:
p is a prime not equal to `, and if ` is odd then D = `nd, where d is a divisor
of (` − 1)/2 not divisible by p, and if ` = 2 then D = 2n−1 (and we fix d = 1).
Substituting all of this into the inequality for E, and using

− log(1 − A−1) < 1.16A−1 (4)

for A ≥ 4, gives

E < 1.16
∑

`

∑

n≥1

∑

d

∑

p-`d

∑

k≥2

φ(D)

fpfk
, (5)

where f = f(`, n, d, p) is the multiplicative order of p modulo D. Here the sum
over d is the sum over divisors d of (` − 1)/2 if ` is odd, and is the singleton sum
with d = 1 if ` = 2. Our goal is to show that this 5-fold sum is finite.

Note that for A ≥ 2,

∑

k≥2

1

Ak
=

1

A(A − 1)
≤

2

A2
. (6)

Thus we may fix k = 2 in (5), so that it suffices to show that the 4-fold sum

∑

`

∑

n≥1

∑

d

∑

p-`d

φ(D)

fp2f
(7)

is finite.
Before proving this, we make a back-of-the-envelope calculation that suggests

that this is plausible. We expect that the dominant terms in the sum will be those
with ` > 2, n = 1, and f = 1; in fact we expect that the sum converges if and only
if the sum of those terms converges.

The condition that f = 1 merely means that we restrict to primes p that are
congruent to 1 modulo D. Since ` > 2 and n = 1, we have D = `d, where d divides
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(` − 1)/2. To show that the sum
∑

`

∑

d

φ(`d)
∑

p≡1 mod `d

1

p2
(8)

is finite, we use the heuristic approximation

∑

p≡1 mod `d

g(p) ≈
1

φ(`d)

∫ ∞

`d+1

g(x)
dx

log x
.

For g(x) = x−2 this gives
∑

p≡1 mod `d

1

p2
≈

1

φ(`d)

1

`d log(`d)
.

(Note that if `d + 1 is prime, then this sum is at least 1/(`d + 1)2, and the approx-
imate formula definitely does not hold. However, it may be reasonable to assume
that it holds on average.) Thus (8) plausibly converges if the sum

∑

`

∑

d|(`−1)/2

1

`d log(`d)

converges. Interchanging the sums gives
∞
∑

d=1

∑

`≡1 mod 2d

1

d` log(`d)
<

∞
∑

d=1

1

d

∑

`≡1 mod 2d

1

` log(`)
.

Employing the same heuristic as above, we find that the inner sum should be of
the order of

1

φ(2d) log(2d)
.

(In fact, the Brun–Titchmarsh inequality can rigorously show that the inner sum
is O(log log(3d)/φ(d) log(2d)), which is sufficient for convergence.) Since

∞
∑

d=1

1

dφ(2d) log(2d)
<

∞
∑

d=1

1

dφ(d)

=
∏

p

(

1 +
1

pφ(p)
+

1

p2φ(p2)
+ · · ·

)

=
∏

p

(

1 +
p

(p − 1)(p2 − 1)

)

< ∞

we find, modulo our plausible assumptions, that the sum is finite, and thus the
expected number of counterexamples to (1) is finite.

Although this reasoning is heuristic, we can rigorously prove the following re-
sult.

Theorem 1 The double sum for E in (3) converges.

Proof By the earlier remarks, it suffices to show that the expression in (7)
is finite. For notational simplicity, we consider the contributions to the sum from
` = 2 and odd ` separately.
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First consider the contribution to (7) from ` = 2. We need to show that

∑

n≥1

∑

p>2

2n−2

fp2f

is finite, where p ranges over odd primes and f is the order of p modulo 2n−1.
Noting that pf = 1 + 2n−1t for some integer t, we see that the sum is finite since it
is less than

∑

n≥1

∑

t≥1

2n−2

(1 + 2n−1t)2
<
∑

n≥1

∑

t≥1

1

2nt2
=

π2

6
.

To prove the theorem it remains to show that the contribution to the sum in
(7) from odd primes ` is finite. By the definition of f , and interchanging the order
of the inner summations, we see that it suffices to show that

∑

f≥1

∑

p

∑

`nd|pf−1
d|(`−1)/2

φ(`nd)

fp2f
< ∞. (9)

Let

F (m) =
∑

`nd|m
d|(`−1)/2

φ(`nd)

and let Ω1(m) denote the number of odd prime factors of m, counted with multi-
plicity. Then

F (m) ≤
∑

`n|m

`n
∑

d|m/`n

φ(d) =
∑

`n|m

`n ·
m

`n
= mΩ1(m). (10)

Since Ω1(m) ≤ log3 m ≤ log m, we have that the contribution to (9) from the terms
with f ≥ 2 is

∑

f≥2

∑

p

F (pf − 1)

fp2f
<
∑

f≥2

∑

p

log(pf − 1)

fpf
<
∑

f≥2

∑

p

log p

pf
≤ 2

∑

p

log p

p2
,

which is finite. Hence, to prove the theorem it suffices to show that

S :=
∑

p

F (p − 1)

p2
< ∞. (11)

Let F0(m) be the same sum as with F (m) but with the extra condition that

`n ≤ m/ log5 m. We have S ≤ S1 + S2 + S3 + S4, where

in S1, Ω1(p − 1) > 8 log log p,

in S2, Ω1(p − 1) ≤ 8 log log p and F0(p − 1) < F (p − 1),

in S3, F0(p − 1) > p/ log p,

in S4, F0(p − 1) = F (p − 1) ≤ p/ log p.

By Theorem 04 in [5] we have
∑

m≤x

(5/3)Ω1(m) = O(x log2/3 x),
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so that the number of integers m ≤ x with Ω1(m) > 8 log log m is O(x/ log3 x)
(using 8 log(5/3) − 2/3 > 3). Since (10) implies that F (p − 1)/p2 < (log p)/p, it
follows by partial summation that

S1 <
∑

Ω1(p−1)>8 log log p

log p

p
=

∫ ∞

2

log x − 1

x2

∑

p≤x
Ω1(p−1)>8 log log p

1 dx

= O

(∫ ∞

2

dx

x log2 x

)

= O(1).

For S2 we shall prove that the number of primes p ≤ x with F0(p−1) < F (p−1)
is O(x log log x/ log2 x). Since F (p−1)/p2 ≤ (8 log log p)/p for the primes considered
in S2, we would then have

S2 ≤
∑

F0(p−1)<F (p−1)

8 log log p

p
=

∫ ∞

2

d

dx

(

−8 log log x

x

)

∑

p≤x
F0(p−1)<F (p−1)

1 dx

= O

(∫ ∞

2

(log log x)2

x log2 x
dx

)

= O(1).

To see the assertion, let a be a positive integer with a ≤ log5 x. By Brun’s sieve
method (Theorem 2.2 in [4]) the number of primes ` ≤ x/a with a` + 1 prime is

O(x/φ(a) log2 x). Thus, the number of primes p ≤ x with some prime `|p − 1 and
` > p/ log5 p is

O





x

log2 x

∑

a≤log5 x

1

φ(a)



 = O

(

x log log x

log2 x

)

.

Further, the number of primes p ≤ x with some `n|p − 1 where `n > p/ log5 p and
n ≥ 2 is trivially at most

π(x1/2) + x
∑

n≥2

∑

`n>x1/2/ log5(x1/2)

1

`n
= O

(

x3/4 log5/2 x
)

.

Thus, our proof that S2 < ∞ is complete.
The argument to show that S3 < ∞ will follow as with the argument for S1 if

we show that the number of primes p ≤ x with F0(p− 1) > p/ log p is O(x/ log3 x).
We show this by an averaging argument. Note that by Theorem 318 in [6] for the
average order of the number-of-divisors function τ(u) we have that

∑

m≤x

F0(m) ≤
∑

`nd≤x
d|(`−1)/2

`n≤x/ log5 x

φ(`nd)
∑

m≤x
`nd|m

1 ≤ x
∑

`nd≤x
d|(`−1)/2

`n≤x/ log5 x

1

≤ x
∑

`n≤x/ log5 x

∑

d|`−1

1 ≤ x
∑

n<log x

∑

u<(x/ log5 x)1/n

τ(u)

= O



x
∑

n<log x

(x/ log5 x)1/n log(x1/n)



 = O(x2/ log4 x).

Hence the number of integers m ≤ x with F0(m) > m/ logm is O(x/ log3 x), which
completes our estimation of S3.
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Finally, in S4 we have F (p − 1) = F0(p − 1) ≤ p/ log p, so that S4 is at most
∑

p prime
1

p log p < ∞. Thus, we have that each of S1, S2, S3, S4 is finite, which

shows that (11) holds, finishing the proof of the theorem.

Long ago, Weber conjectured that h+(2n) = 1 for all n. The argument at
the beginning of the proof can be sharpened to provide strong support for this
conjecture. First, it is known that h+(27) = 1 from [7]. Thus we can take n ≥ 7 in
our estimates. The prime powers pf that occur are congruent to 1 modulo 26, and
the constants in (4) and (6) can be sharpened by using A ≥ 65. We wrote a short
computer program that calculated the sum, over 7 ≤ n ≤ 12 and pf < 105, of

2n−2

fp2f
,

where p is an odd prime and f is the order of p modulo 2n−1. The terms with
n > 12 or pf > 105 can be bounded by the elementary estimates given in the
proof above, and the upshot is that we find that the expected number E of simple
modules that occur in the class group of K(2n) for any n satisfies

E < .007.

Given our Bayesian world-view, we could also say that the probability that Weber’s
conjecture is true is at least 99.3%.
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