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Abstract. For a positive integer n, define s(n) as the sum of the
proper divisors of n. If s(n) > 0, define s2(n) = s(s(n)), and so on
for higher iterates. Sociable numbers are those n with sk(n) = n for
some k, the least such k being the order of n. Such numbers have
been of interest since antiquity, when order-1 sociables (perfect
numbers) and order-2 sociables (amicable numbers) were studied.
In this paper we make progress towards the conjecture that the
sociable numbers have asymptotic density 0. We show that the
number of sociable numbers in [1, x], whose cycle contains at most
k numbers greater than x, is o(x) for each fixed k. In particular,
the number of sociable numbers whose cycle is contained entirely
in [1, x] is o(x), as is the number of sociable numbers in [1, x] with
order at most k. We also prove that but for a set of sociable num-
bers of asymptotic density 0, all sociable numbers are contained
within the set of odd abundant numbers, which has asymptotic
density about 1/500.

1. Introduction and statement of results

1.1. History. Let s(n) denote the sum of the proper divisors of the
positive integer n, so that s(n) = σ(n)− n. The study of the behavior
of this arithmetic function has a long and rich history, going back to
the ancient Greeks, who classified the positive integers as deficient,
perfect, or abundant, according as s(n) is less than, equal to, or greater
than n, respectively. For example, 5 is deficient, 6 is perfect, and 12 is
abundant.

Another concept steeped in history (some scholars have traced it to
the Old Testament) is that of an amicable pair. Two distinct numbers
m, n are called amicable (and are said to form an amicable pair) if
s(m) = n and s(n) = m. The first example consists of the pair 220
and 284.
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It has seemed interesting to iterate the function s starting at an
arbitrary natural number n. For example, if n = 15, the sequence
is 15, 9, 4, 3, 1, 0, and so the sequence terminates, while if n = 6 or
n = 220, the sequence is purely periodic. Let s0(n) = n, and induc-
tively define sk(n) = s(sk−1(n)) when k ≥ 1 and sk−1(n) > 0. The
aliquot sequence at n is n, s1(n), s2(n), . . . , which either terminates at
0 or is an infinite sequence. In 1888, Catalan [4] proposed the “empiri-
cal theorem” that all infinite aliquot sequences reach a perfect number.
Perrott [27] promptly pointed out that this fails for the sequence start-
ing at 220, and Dickson [8] later amended Catalan’s conjecture to the
claim that all aliquot sequences are bounded. This latter claim is now
known as the Catalan–Dickson conjecture. Though we know no coun-
terexamples, Guy and Selfridge [19] have made the counter-conjecture
that in fact unbounded sequences are fairly common. The least n for
which we do not know whether the aliquot sequence starting at n is
unbounded is 276.

It is common to call a natural number n whose aliquot sequence is
purely periodic a sociable number, with the least k with sk(n) = n
called the order of n. Thus, perfect numbers are the sociable numbers
of order 1 and amicable numbers are those of order 2. If n is sociable
of order k, the set {n, s(n), . . . , sk−1(n)} is called a sociable k-cycle.

There are many results on these topics from a statistical point of
view. Building on work of Schoenberg dealing with Euler’s function
ϕ, Davenport [6] showed that the arithmetic function σ(n)/n has a
continuous distribution. That is, for each real number u, the set

{n ∈ N : σ(n)/n ≤ u}
has an asymptotic density, call it D(u), and this function of u is
continuous and strictly increasing for u ≥ 1, with D(1) = 0 and
limu→+∞ D(u) = 1. Thus, using this result, we see that the deficient
numbers and the abundant numbers each have a positive asymptotic
density, while the continuity of D(u) implies that the perfect numbers
have asymptotic density 0. It is now known after work of Behrend [2],
Wall et al. [35], [36], and Deléglise [7] that the density of the abundant
numbers is slightly less than a quarter, between 0.2475 and 0.2480 (see
also [18, p. 75]).

In 1954, Kanold [22] gave a “direct” proof that the set of perfect
numbers has asymptotic density zero; that is, a proof that does not
invoke the distribution function D(u). After many intermediate results
we now know after Hornfeck and Wirsing [21] and Wirsing [37] that the
number of perfect numbers up to x is O(xc/ log log x) for some constant
c > 0. This result is presumably still far from the truth.
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Less is known about the distribution of amicable pairs, and unlike
for perfect numbers, there are contrary opinions about what one should
expect to hold. On the basis of numerical evidence up to 108, Bratley,
Lunnon, and McKay [3] conjecture that A(x), the number of amicable
numbers up to x, is o(x1/2). (These computations are extended in [32]
and [17].) Interestingly, Erdős held the contrary belief that for each
ε > 0, one should have A(x) > x1−ε for all sufficiently large x. The
first proved result on the distribution of amicable numbers is that of
Kanold [22], who showed that the amicable numbers have upper density
< 0.204. Shortly thereafter, Erdős [12] established that the density is
zero. In Pomerance [29] it is shown that

A(x) ≤ x exp
(

−(log x)1/3
)

for all sufficiently large x. In particular, the sum of the reciprocals
of the amicable numbers is finite. Lower bounds for their distribution
appear much more difficult to obtain; though almost twelve million
amicable pairs are known ([26]; see also [17]), we have no proof that
there are infinitely many.

The question of whether there exist sociable numbers of order > 2
was raised by Meissner in 1907 [24]. The first examples, of length 5
and 28, were given by Poulet in 1918 [30]. Today there are 171 known
aliquot cycles of length > 2, all but ten of which have length 4. See [25]
for a complete list of known cycles together with the relevant references.

The goal of this paper is to study the asymptotic distribution of
sociable numbers, and in particular to make progress towards the fol-
lowing conjecture.

Conjecture 1. The set of sociable numbers has asymptotic density
zero. That is, almost all numbers are not sociable.

1.2. Results. In the same paper [12] where Erdős established that
the amicable numbers have density zero, he remarked that a similar
argument would establish the same result for the sociable numbers of
order k, for any fixed k. These ideas were developed in [14]. In that
paper Erdős introduces the following conjecture.

Conjecture A. For each δ > 0 and positive integer J , we have both

(1.1)
sj+1(n)

sj(n)
>

s(n)

n
− δ

and

(1.2)
sj+1(n)

sj(n)
<

s(n)

n
+ δ

for all 1 ≤ j ≤ J , except for a set of numbers n of density zero.
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Erdős [14] contains a proof that (1.1) holds for all j ≤ J except on
a set of density zero. (Also see Lenstra [23].) For (1.2), a proof is
claimed, but not given. This claim was later retracted in [16], where a
proof of (1.2) was given for the case J = 1.

To see how Conjecture A relates to the distribution of sociable num-
bers, we recall the distribution function D(u) discussed above. Fix
k ≥ 1, and suppose ε > 0. Suppose n ≤ x is the smallest member of
a sociable k-cycle. Notice that n is nondeficient, i.e., that s(n)/n ≥ 1.
Choosing δ > 0 small enough, we can assume, at the cost of excluding
at most εx values of n ≤ x, that s(n)/n ≥ 1+δ. (It is enough to choose
δ so that D(2 + δ) − D(2) < ε, which is possible by the continuity of
D(u).) But for each of these values of n, the lower inequality (1.1) fails
for j = k − 1. Indeed,

s(sk−1(n)) = sk(n) = n ≤ sk−1(n),

so that sk−1(n) is not abundant, contradicting (1.1) (with the same
value of δ). It follows (from the proved half of Conjecture A) that the
upper density of these n is at most ε, and so the upper density of the
sociable numbers of order k is at most kε.

While this argument suffices to show that the sociable numbers of
order k have density zero for each fixed k, it yields only very poor
explicit upper bounds, and also fails to give a result which is uniform
in any reasonable range of k. Our first theorem partially addresses
these issues. Let log1 x = max{log x, 1} and inductively define logk x =
max{log(logk−1 x), 1}.
Theorem 1.

(a) The number of sociable cycles all of whose terms are contained in
[1, x] is at most x/L(x)1+o(1), where

L(x) = exp(
√

log3 x log4 x).

(b) The number of sociable n ≤ x of order at most k is bounded by

k(2 log4 x)k x

L(x)1+o(1)
.

Here the o(1)-term tends to zero as x → ∞, uniformly in k ≥ 1.

Part (a) of this theorem follows from the method used in [28] to study
amicable pairs. Part (b) is obtained by inserting into that argument
an estimate obtained by Erdős in his investigation into the behavior of
the distribution function D(u) for large u.

We can obtain results sharper than those of Theorem 1 if we restrict
ourselves to a special class of sociable numbers. Let {n1, . . . , nk} be
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a sociable cycle of order k, and let a be the greatest common divisor
of the ni. Following Cohen [5], we call {n1, . . . , nk} a regular sociable
cycle if a is a unitary divisor of each of the ni, i.e., if gcd(a, ni/a) = 1
for all 1 ≤ i ≤ k. A sociable number is called regular if it belongs to
a regular cycle. This classification is of interest in light of a theorem
of Dickson [8], which asserts the irregularity of all sociable numbers of
odd order k > 1. Since [8] is no longer easily accessible, we include a
variant of Dickson’s proof in §3.

Theorem 2.

(a) The number of irregular sociable cycles all of whose terms are con-
tained in [1, x] is

� x
√

log2 x log3 x
.

In particular, this estimate holds for the number of sociable cycles
of odd order contained in [1, x].

(b) The number of irregular sociable numbers n ≤ x of order at most
k is

� k(2 log4 x)k x
√

log2 x log3 x
,

where the implied constant is uniform in k ≥ 1.

Theorem 1 provides a nontrivial upper bound on the number of
sociable numbers of order at most k, as long as k does not exceed
(1− ε)

√

log3 x log4 x/ log5 x. The bound of Theorem 2(b) for irregular
sociable numbers is nontrivial for k up to ( 1

2
− ε) log3 x/ log5 x.

We have been able to prove some additional results that lend support
for Conjecture 1.

Theorem 3. The set of deficient sociable numbers has density zero. In
fact, the number of deficient sociable numbers up to x is O(x/L(x)1/12),
where L(x) is as defined in Theorem 1.

As we will see later, a plausible hypothesis on the behavior of D(u)
around u = 2 would permit one to improve the upper bound in Theo-
rem 3 to O(x(log3 x)3/(log2 x)1/8).

Theorem 4. All but O(x/ log3 x) sociable numbers n ≤ x belong to
a cycle with more than K(x) consecutive terms exceeding x, where
K(x) = 1

9
log3 x/ log6 x.

Note that as a consequence of Theorem 4, almost no numbers up to
x are sociable of order at most K(x). As we discuss below, a version of
Theorem 4 with a tighter bound on the exceptional set can be proved
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for odd sociable numbers, if one assumes that odd perfect numbers do
not exist.

Theorem 5. The set of even abundant sociable numbers has density
zero. In fact, the number of even abundant sociable numbers not ex-
ceeding x is O(x/ log3 x).

Taken together, Theorems 3 and 5 imply that all sociable numbers,
except for a set of asymptotic density zero, are contained within the set
of odd abundants. Call an odd abundant sociable number n a special
sociable if the number preceding n in its cycle exceeds nL(n)1/2 =
n exp

(

1
2

√

log3 n log4 n
)

. Our next theorem asserts that these special
sociables form the only obstruction to establishing Conjecture 1.

Theorem 6.

(a) The set of sociable numbers whose cycle contains no special socia-
ble number has density zero. In fact, there are O(x/ log3 x) such
numbers up to x.

(b) If the set of special sociable numbers has density zero, then Con-
jecture 1 holds.

In the final section we make some further observations about the set
of odd abundant sociable numbers. In addition we show that the odd
abundant numbers have density about 1/500, while an upper bound
for the upper density of the special sociable numbers is about 1/6000.

Notation. In addition to the usual notation of analytic number theory
and our notation logk for iterated logarithms (explained above), we
find it convenient to give meaning to iterates of s indexed by negative
integers. We let s−1 denote the inverse of the restriction of s to the
sociable numbers, and for j > 0, we let s−j be the jth iterate of s−1.
Thus, if n is sociable, s−j(n) is the unique sociable number m with
sj(m) = n. In general, we reserve the letters p, q, r for primes.

2. Preliminaries

2.1. Results from the literature.

Lemma 1. Let m be a positive integer. The number of n ≤ x for which
m - σ(n) is

� x/(log x)1/ϕ(m),

where the implied constant is absolute.

Proof. From [28, Theorem 2] we have that for all but O(x/(log x)1/ϕ(m))
numbers n ≤ x, there is a prime p ≡ −1 (mod m) for which p ‖ n.
Then m | p + 1 | σ(n). �



7

Theorem A. The number of positive integers n ≤ x for which n is
abundant but s(n) is deficient is at most

(2.1) x/L(x)1+o(1), as x → ∞,

where L(x) is defined in Theorem 1. The same upper bound holds on the
number of sociable n ≤ x for which n is deficient but s(n) is abundant.

Sketch of the proof. The first half of Theorem A is established (implic-
itly) in the argument of [28] on amicable pairs. In that paper, the result
appears with an unspecified constant in place of (1 + o(1)); however,
as remarked there (see p. 221), this result is valid with c + o(1) in the
exponent, provided the number of primitive abundant numbers up to
x is

(2.2) ≤ x/ exp((c + o(1))
√

log x log log x).

Work of Avidon [1] shows that we may take c = 1 in (2.2). (We say
n is primitive abundant—more technically, primitive nondeficient—if
s(n) ≥ n and s(d) < d for all d | n with d < n.)

The second half of Theorem A is proved in a similar manner. Notice
that since n is sociable, m := s(n) determines n, so that it is enough
to bound the number of possible values of m. Also, m < n ≤ x. If n is
deficient but m is abundant, then for some primitive abundant number
a we have a | m but a - n; so a - σ(n). As in [28], we may assume that
a ≤ (log log x)1−1/ log4 x, since from (2.2) the number of m ≤ x with a
primitive abundant divisor exceeding (log log x)1−1/ log4 x is bounded by
(2.1) (cf. the proof of [28, Theorem 3]). From Lemma 1, we have that
the number of n ≤ x for which a - σ(n) is � x/(log x)1/ϕ(a), with an
absolute implied constant. Replacing ϕ(a) by a and summing over the
possibilities for a, we obtain a (crude) upper estimate of

� x log log x

(log x)1/(log log x)1−1/ log4 x
=

x log log x

exp(exp(log3 x/ log4 x))
,

which is negligible compared to our target upper bound (2.1). �

The next few results concern the distribution of σ(n)/n on the pos-
itive integers n ≤ x.

Theorem B. For every x > 0, the number of positive integers n ≤ x
with σ(n)/n > y is

≤ x/ exp(exp((e−γ + o(1))y)), as y → ∞,

uniformly in x, with γ the Euler–Mascheroni constant.
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Theorem B, which appears implicitly in [11], refines the well-known
upper estimate

σ(n) ≤ (eγ + o(1))n log log n.

If we take the estimate of Theorem B, divide by x, and let x tend to
infinity, we obtain that

1 − D(u) ≤ exp(− exp((e−γ + o(1))u)) (as u → ∞),

and this “tail-estimate” is essentially Erdős’s Theorem 1 in [11]. How-
ever, a careful reading of the proof of that theorem reveals that his
argument actually proves the more uniform estimate of Theorem B.

The next result is the main theorem of Erdős’s paper [13]. Its appli-
cability to the study of sociable numbers was noted already by Erdős
and Rieger [15] (see also [31]), who used it to prove that there are
O(x/ log3 x) amicable numbers up to x.

Theorem C. Let ρ be any real number and let t > 1. If x > t, then
the number of n ≤ x for which σ(n)/n ∈ [ρ, ρ + 1/t) is O(x/ log t).
Here the implied constant is absolute.

If we fix a number ρ in the range of σ(n)/n, then, as discussed in [13],
Theorem C is in some sense best possible. However, if ρ is the right-
endpoint of our interval rather than the left, then we can do better.
The following estimate is due to Toulmonde (cf. [33, Théorème 1] and
the discussion in §10 of that paper).

Theorem D. Fix a number ρ in the range of σ(n)/n. Then for t
sufficiently large (which may depend on ρ) and x > 0, the number of
n ≤ x for which σ(n)/n ∈ [ρ − 1/t, ρ) is

� x

exp
(

1
5

√
log t log log t

) .

Here the implied constant is absolute.

2.2. Conjecture A revisited. As mentioned above, Erdős’s Conjec-
ture A is a theorem in the special case when J = 1. That is, on a set of
n of density 1, we have s2(n)/s(n) = s(n)/n + o(1). For our purposes
it is important to have an explicit version of this result for sociable
numbers:

Theorem 7. For all but O(x/(log2 x)1/4) sociable numbers n ≤ x, we
have

∣

∣

∣

∣

s(s(n))

s(n)
− s(n)

n

∣

∣

∣

∣

≤ (log3 x)2

(log2 x)1/4
.
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Proof. The argument borrows heavily from the proof of [16, Theorem
5.2]. We may suppose that σ(n) is divisible by all primes and prime
powers up to A := 2

3
log2 x/ log3 x, since by Lemma 1 the exceptions

up to x make up a set of size

(2.3) �
∑

pa≤A
p prime, a ≥ 1

x

(log x)1/ϕ(pa)
≤ x

(log x)1/A

∑

pa≤A
p prime, a ≥ 1

1,

which is

� x

(log2 x)1/2(log3 x)2
,

and so is negligible. We may further assume that the prime factoriza-
tions of n and s(n) agree on all primes up to B := A1/2. (That is,
vp(n) = vp(s(n)) for all p ≤ B, where the p-adic valuation vp is defined
so that pvp(m) ‖ m.) Indeed, if n and s(n) fail to agree at the prime
p, then we must have vp(n) ≥ vp(σ(n)). But for the numbers n under
consideration, vp(σ(n)) ≥ ep, where ep is an integer such that

pep ≤ A =
2

3
log2 x/ log3 x < pep+1.

The numbers n which fail to agree with s(n) at some prime p ≤ B thus
make up a set of size at most

∑

p≤B x/pep. We estimate this sum by

considering those terms with ep = 2 and ep > 2 separately. (Notice
that ep ≥ 2 for all primes p by our choice of B.) The terms with ep = 2
contribute

�
∑

A1/3<p≤B

x

p2
� x

A1/3 log A
,

while those with ep > 2 contribute

� x
∑

p≤A1/3

1

pep
≤ x

A

∑

p≤A1/3

p � x

A1/3 log A
.

Once again this is negligible.
Let n ≤ x be a sociable number. By Theorem B, we have σ(n)/n >

2 log B for at most

x/ exp(exp((2e−γ + o(1)) log B)) < x/ exp(B) = o(x/ log2 x)

values of n ≤ x. So we can assume σ(n)/n ≤ 2 log B. Write n = m0n0

and s(n) = m1n1, where m0 and m1 are the B-smooth parts of n and
s(n), respectively. (By the ‘B-smooth part’ we mean the largest divisor
supported on the primes up to B.)

We can also assume that

σ(n0)/n0 < exp(1/
√

B).
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To see this we use an averaging argument: Observe that

(2.4)
σ(n0)

n0

≤
∏

p|n, p>B

(1 − 1/p)−1 ≤ exp





∑

p|n, p>B

1

p − 1



 ,

so that any n for which σ(n0)/n0 ≥ exp(1/
√

B) satisfies

∑

p|n,p>B

1

p − 1
≥ 1√

B
.

But
∑

n≤x

∑

p|n,p>B

1

p − 1
≤
∑

B<p≤x

x

p(p − 1)
� x

B log B
,

and so there can be

� x√
B log B

� x

(log2 x)1/4(log3 x)3/4

such values of n ≤ x, which fits within our final bound for the excep-
tional set.

Now assuming all the above conditions are satisfied, we have

s(n)

n
− s2(n)

s(n)
=

σ(m0)

m0

(

σ(n0)

n0
− σ(n1)

n1

)

≤ (2 log B)(exp(1/
√

B) − 1) < 3
log B√

B
<

(log3 x)2

(log2 x)1/4

for large x, which proves one of the inequalities implicit in the theorem
statement. Notice that in proving this half of the theorem we have not
needed the hypothesis that n is sociable.

We can prove the other half in the same way, beginning with the
identity

s2(n)

s(n)
− s(n)

n
=

σ(m0)

m0

(

σ(n1)

n1
− σ(n0)

n0

)

,

if we show that σ(n1)/n1 < exp(1/
√

B) for all but O(x/(log2 x)1/4) val-
ues of n ≤ x. To prove this, notice that we can assume s(n) ≤ 2x log4 x,
since by Theorem B this fails for only O(x/ log2 x) values of n ≤ x.

But if σ(n1)/n1 ≥ exp(1/
√

B), then the same averaging argument em-
ployed above shows that the number of possibilities for s(n) ≤ 2x log4 x

is � x log4 x/(
√

B log B), which is again � x/(log2 x)1/4. Since n is
sociable, s(n) determines n, so that this is also an upper bound on the
number of possibilities for n. �
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We shall frequently use Theorem 7 for a string of consecutive terms of
a sociable cycle to show that usually these terms behave approximately
like a geometric progression. In particular, we have the following result.

Corollary 1. For each positive integer J , all but O(Jx/(log x)1/4) so-
ciable numbers n with {n, s(n), . . . , sJ−1(n)} ⊂ [1, x] have

∣

∣

∣

∣

sj+1(n)

sj(n)
− s(n)

n

∣

∣

∣

∣

≤ j
(log3 x)2

(log2 x)1/4

for each integer 1 ≤ j ≤ J .

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. As mentioned in the introduction, there are much
stronger estimates known for the number of perfect numbers up to x,
so that we may restrict attention to sociable numbers of order > 1.
Observe that every sociable cycle of order > 1 contains an abundant
number n for which s(n) is deficient (e.g., the element preceding the
largest term in the cycle). Theorem 1(a) now follows immediately from
Theorem A, since a cycle is determined by any one of its elements.

For the proof of (b), it is enough to show that the number of cycles
of length at most k which contain a term not exceeding x is

(3.1) � (2 log4 x)kx/L(x)1+o(1).

Suppose we are given such a cycle. Consider first the case when this
cycle contains a term n for which s(n)/n > 2 log4 x. We may suppose n
is the first term of the cycle for which this happens, where we view the
cycle as starting with its smallest term. Then n ≤ x(2 log4 x)k, and so
by Theorem B, the number of possibilities for n (and hence the cycle
containing n) is at most

x(2 log4 x)k/ exp(exp(((e−γ + o(1))2 log4 x))) ≤ (2 log4 x)k x

log2 x
,

which satisfies the bound (3.1). (Notice that 2e−γ > 1.) If, on the other
hand, s(n)/n ≤ 2 log4 x for all terms n of the cycle, then the cycle is
entirely contained in [1, x(2 log4 x)k] and the result follows from (a). �

Proof of Theorem 2. It is enough to prove part (a), as then the proof
of (b) follows exactly the same pattern as the proof of Theorem 1(b).

Let {n1, . . . , nk} be an irregular cycle of length k entirely contained
in [1, x], and put a := gcd(n1, . . . , nk). Note that necessarily k >
1. As established in the proof of Theorem 7, we have that σ(n) is
divisible by all primes and prime powers pj ≤ 2

3
log2 x/ log3 x for all
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but O(x/((log2 x)1/2(log3 x)2)) values of n ≤ x. So we can assume each
σ(ni) is divisible by all these small prime powers.

We take two cases. First suppose a = 1. Then no ni can have a
prime factor up to 2

3
log2 x/ log3 x, since otherwise a simple induction

shows that p divides nj for every j and so also divides a. Clearly ni is
abundant for some i, and so for this i we have (by (2.4))

∑

p|ni, p> 2
3

log2 x
log3 x

1

p − 1
> log 2.

But
∑

n≤x

∑

p|n, p> 2
3

log2 x
log3 x

1

p − 1
≤ x

∑

p> 2
3

log2 x
log3 x

1

p(p − 1)
� x

log2 x
,

so that the number of possibilities for ni (and so for its cycle) is �
x/ log2 x.

Now suppose a > 1. Write ni = ami for 1 ≤ i ≤ k. We can
suppose that none of the ni have a prime power divisor pj, j ≥ 2, with
pj ≥ 2

3
log2 x/ log3 x, as otherwise ni belongs to a set of size

� x
√

log2 x/ log3 x log3 x
=

x
√

log2 x log3 x
.

Cycling the ni around if necessary, we can assume that a is not a
unitary divisor of n1. So there is a prime p dividing both a and m1.
Let pe be the exact power of p dividing a; then pe+1 divides n1, so that
pe+1 ≤ 2

3
log2 x/ log3 x. This implies that pe+1 divides each σ(ni), which

in turn shows that pe+1 divides each ni. Thus pe+1 divides a, contrary
to the choice of e. �

As promised, we present the proof of Dickson’s result from the in-
troduction:

Theorem E. Let {n1, . . . , nk} be a sociable cycle of odd length k > 1.
Suppose a := gcd(n1, . . . , nk) > 1. Then a cannot be a unitary divisor
of all of n1, . . . , nk.

Proof. We assume the ni are numbered so that ni+1 = s(ni), where the
indices are taken modulo k. Write σ(a)/a = b/c in lowest terms, and
write ni = ami for 1 ≤ i ≤ k. Suppose that a is a unitary divisor of each
ni. Then σ(ni) = (ab/c)σ(mi) for each i, and since ni+1 = σ(ni) − ni,
we find that

c(mi + mi+1) =
c

a
(ni + ni+1) =

c

a
σ(ni) = bσ(mi).
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Since b and c are relatively prime, it follows that b divides mi + mi+1,
i.e., mi ≡ −mi+1 (mod b). Since k is odd, iterating this observation
shows that modulo b,

mi ≡ −mi+1 ≡ mi+2 ≡ · · · ≡ −mi+k = −mi,

and so b divides 2mi. Since this holds for each i and gcd(m1, . . . , mk) =
1, we must have either b = 1 or b = 2. If b = 1, then σ(a)/a = 1, and
this contradicts a > 1. So b = 2, and since c < b, we have c = 1.
Hence σ(a)/a = 2 and a is perfect. Since a is a common divisor of the
ni, each ni is nondeficient. But any sociable chain composed entirely
of nondeficient numbers consists of a single perfect number, and this
contradicts that k > 1. �

4. Proofs of Theorems 3-6

Proof of Theorem 3. Put δ := (log3 x)3/(log2 x)1/8. We can assume
s(n)/n ≤ 1 − δ, since by Theorem D, the number of n ≤ x for which
s(n)/n ∈ (1 − δ, 1) is

≤ x exp

(

−
(

1

5
√

8
+ o(1)

)

√

log3 x log4 x

)

.

Let J := d(log2 x)1/8e. By Corollary 1, for all but

� Jx/(log2 x)1/4 � x/(log2 x)1/8

values of n ≤ x, we have

sj(n)/sj−1(n) ≤ 1 − δ + (j − 1)(log3 x)2/(log2 x)1/4

for all 1 ≤ j ≤ J . So we can assume these J conditions all hold.
The right-hand side of this inequality is always at most 1− δ/2, which
implies that sJ(n) ≤ x(1 − δ/2)J . But sJ is injective on the set of
sociable numbers, so that the number of sociable n remaining is at
most

x(1 − δ/2)J ≤ x exp(−Jδ/2) ≤ x exp

(

−1

2
(log3 x)3

)

,

which is negligible.
This proves the slight weakening of Theorem 3 where 12 is replaced

by 5
√

8+o(1). To see that the theorem is correct as stated, we note that
according to Toulmonde [33, Théorème 1, Remarque 1], the constant
1/5 in Theorem D can be replaced by any constant smaller than 1/4.
Then the above analysis shows that we may replace 5

√
8 by 4

√
8 <

12. �
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Remarks. If ρ belongs to the range of σ(n)/n, then it is not hard to
prove that the right-hand derivative of D at ρ is infinite. By contrast,
very little is known about the left-hand derivative (see [13, pp. 59-
60]). Toulmonde has conjectured (see [34, eq. (4)]) that the left-hand
derivative always vanishes for these ρ. This would fit well with Erdős’s
result [10] that D(u) is singular, i.e., that D′ = 0 almost everywhere.

Suppose that the difference quotient of D(u) remains bounded as
one approaches the particular value ρ = 2 from the left. (This is quite
a bit weaker than Toulmonde’s conjecture.) By a theorem of Elliott [9,
Theorem 5.6],

1

x

∑

n≤x
σ(n)/n≤u

1 = D(u) + O

(

log2 x

log x log3 x

)

for all u. Applying this estimate with u = 2 and u = 2 − δ, with δ as
in the proof of Theorem 3, shows that the number of n ≤ x for which
s(n)/n ∈ (1 − δ, 1) is

(4.1) � x(log3 x)3/(log2 x)1/8.

The rest of the proof of Theorem 3 goes through unchanged and shows
that (4.1) serves as an upper bound for the number of deficient sociable
numbers n ≤ x. Moreover, since every sociable cycle of order > 1
contains a deficient term, we deduce that this is also an upper bound
for the number of sociable cycles contained entirely in [1, x]; i.e., we
have a conditional improvement of Theorem 1(a).

Proof of Theorem 4. Define δ and J as in the proof of Theorem 3. By
Theorem 3 and Theorems B and C, at the cost of excluding O(x/ log3 x)
values of n, we may restrict our attention to those n ≤ x for which

1 + δ ≤ s(n)/n ≤ 2 log5 x − 1.

Put y := x(2 log5 x)K where K = K(x) = 1
9
log3 x/ log6 x, so that

(4.2) y = x(log2 x)1/9+o(1).

We may assume that for all 1 ≤ j < J for which sj−1(n) ≤ y, we have

(4.3)

∣

∣

∣

∣

s(sj(n))

sj(n)
− sj(n)

sj−1(n)

∣

∣

∣

∣

<
(log3 y)2

(log2 y)1/4
<

(log3 x)2

(log2 x)1/4
,

since by Theorem 7, the number of sociable n for which this fails is

� J
y

(log2 y)1/4
� y

(log2 x)1/8
=

x

(log2 x)1/72+o(1)
,

which is negligible.
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We can further assume that {n, s(n), . . . , sJ(n)} is not entirely con-
tained in the interval [1, y]. Indeed, if it is, then by (4.3), we have

sj(n)/sj−1(n) ≥ 1 + δ − (j − 1)(log3 x)2/(log2 x)1/4 ≥ 1 + δ/2

for all 1 ≤ j ≤ J , so that

n ≤ sJ(n)(1 + δ/2)−J ≤ y exp

((

−1

2
+ o(1)

)

(log3 x)3

)

.

This upper bound is o(x/ log3 x) by (4.2), and so these n may be ig-
nored.

Say 1 ≤ j ≤ J is such that sj(n) > y = x(2 log5 x)K . Since the
cycle containing n has at most K consecutive terms exceeding x, there
is some 1 ≤ k ≤ j with sk(n)/sk−1(n) > 2 log5 x. Moreover, if k is the
smallest such index, we must have {n, s(n), s2(n), . . . , sk−1(n)} ⊂ [1, y].
But this is impossible, as (4.3) implies that

sk(n)/sk−1(n) ≤ s(n)/n + (k − 1)(log3 x)2/(log2 x)1/4

≤ 2 log5 x − 1 + o(1) < 2 log5 x.

This completes the proof. �

Remark. The proof of Theorem C (cf. [33, Lemme 7]) shows that for t
sufficiently large, if n ≤ x satisfies σ(n)/n ∈ [2, 2 + 1/t), then either n
belongs to an exceptional set of size

� x/ exp

(

1

5

√

log t log log t

)

or n has a small perfect number divisor. If, as is conjectured, there do
not exist odd perfect numbers, then every odd n automatically has no
perfect divisors. This gives a conditional improvement of Theorem C
for ρ = 2 and odd n, which in turn allows one to establish the following
variant of Theorem 4: If no odd perfect numbers exist, then all but

O(x/L(x)1/5
√

8+o(1)) odd sociable numbers n ≤ x belong to a cycle with
more than 1

9
log3 x/ log5 x consecutive terms exceeding x. For the same

reasons as in the proof of Theorem 3, one can replace the exponent on
L(x) by 1/12. We leave the details to the reader.

Proof of Theorem 5. The idea of the proof is the same as that of The-
orem 3, but now we trace backwards through our cycle instead of for-
wards. Choose δ and J as in the proof of Theorem 3. We can restrict
attention to even abundant sociable n which satisfy s(n)/n ≥ 1 + δ,
since by Theorem C the exceptional n make up a set of size � x/ log3 x.

In analogy with the proof of Theorem 3, we would like to prove that
for all but O(x/ log3 x) of the remaining n, we have s−(j−1)(n)/s−j(n) ≥
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1 + δ/2 for all 1 ≤ j ≤ J . We prove something a little stronger:
all but O(x/ log3 x) of the even abundant sociable n ≤ x satisfying
s(n)/n ≥ 1 + δ also satisfy

(4.4) s−j(n) is even, and
s(s−j(n))

s−j(n)
≥ s(s−(j−1)(n))

s−(j−1)(n)
− (log3 x)2

(log2 x)1/4

for every 1 ≤ j ≤ J . To see this, suppose we have an n for which (4.4)
fails for some 1 ≤ j ≤ J , and let j(n) be the least integer where either
of the conditions of (4.4) is violated. Set m = s−j(n)(n). Since both
conditions hold up to j(n) − 1, we have

s−(i−1)(n)

s−i(n)
≥ 1 + δ − i

(log3 x)2

(log2 x)1/4
≥ 1 +

δ

2

for all 1 ≤ i ≤ j − 1. So

s(m) = s−(j−1)(n) = n

j−1
∏

i=1

s−i(n)

s−(i−1)(n)
≤ x(1 + δ/2)−(j−1),

and in particular s(m) ≤ x. Suppose that at step j, it is the first
condition of (4.4) that is violated, so that m is odd. Since s(m) =
s−(j−1)(n) is even, it must be that σ(m) is odd, forcing m = l2 for some
odd l. But the number of values of l for which s(l2) ≤ x is � x/ log x.
(Indeed, s(l2) ≥ l3/2 unless l is prime, in which case s(l2) = l + 1.)
So m can assume at most O(x/ log x) possible values, and the same is
therefore true for n = sj(m). If the first condition of (4.4) holds but
the second is violated, then

m

2
≤ s(m) ≤ x,

so that m ≤ 2x and

s(m)

m
<

s(s(m))

s(m)
− (log3 x)2

(log2 x)1/4
<

s(s(m))

s(m)
− (log3 (2x))2

(log2 (2x))1/4
.

By Theorem 7, there are only O(x/(log2 x)1/4) possibilities for m and
so also for n = sj(m). Summing over j ≤ J , we see that the number
of possibilities for n violating one of the conditions (4.4) is

� J
x

log x
+ J

x

(log2 x)1/4
� x

(log2 x)1/8
,

which is o(x/ log3 x).
So we can assume n is such that (4.4) holds for all j ≤ J . But then

s−J(n) ≤ n(1 + δ/2)−J ≤ x exp

(

−
(

1

2
+ o(1)

)

(log3 x)3

)

,
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which is o(x/ log3 x). Since s−J is injective on the set of sociable num-
bers, the number of these n is also o(x/ log3 x). �

Proof of Theorem 6(a). By Theorem 3 we may restrict attention to
abundant n. Choose δ and J as in the proof of Theorem 5. Then all
but O(x/ log3 x) of the abundant n ≤ x satisfy s(n)/n ≥ 1 + δ, so that
we can restrict attention to these n. We claim that all but o(x/ log3 x)
of the n ≤ x under consideration in this theorem satisfy the second
condition of (4.4), i.e.,

(4.5)
s(s−j(n))

s−j(n)
≥ s(s−(j−1)(n))

s−(j−1)(n)
− (log3 x)2

(log2 x)1/4

for all 1 ≤ j ≤ J . Once this is established, the proof is completed just
as for Theorem 5.

We partition the n which do not satisfy the entire sequence of in-
equalities (4.5) into sets Sj according to the first index j ≤ J for which
(4.5) is violated, and we estimate the size of each Sj. Let n be an
element of Sj and put m := s−j(n). As in the proof of Theorem 3, we
have that s(m) is abundant and bounded by x.

Let us show that for all but x/L(x)1/2+o(1) elements n ∈ Sj, the
integer m is abundant. Since the cycle corresponding to n does not
contain any special sociable numbers, the integer s(m) is not special,
and so (using s(m) ≤ x)

m = s−1(s(m)) ≤ s(m)L(s(m))1/2 ≤ xL(x)1/2 =: y,

say. But by Theorem A, the number of sociable m ≤ y for which m is
deficient but s(m) is abundant is

≤ y/L(y)1+o(1) = x/L(x)1/2+o(1).

Thus m, and hence also n = sj(m), can assume at most x/L(x)1/2+o(1)

values.
Suppose now that n ∈ Sj is such that m is abundant. Then m <

s(m) ≤ x. Since (4.5) fails to hold, we have

s(m)

m
≤ s(s(m))

s(m)
− (log3 x)2

(log2 x)1/4
.

But then the number of possibilities for m, and hence also n = sj(m),
is O(x/(log2 x)1/4) by Theorem 7.

Summing over 1 ≤ j ≤ J , we find that the total number of possibil-
ities for n for which (4.5) fails to hold for some j ≤ J is

� Jx/L(x)1/2+o(1) + Jx/(log2 x)1/4 � x/(log2 x)1/8,

which is o(x/ log3 x). �
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Proof of Theorem 6(b). We are to show that if the set of special socia-
bles has density zero, then the set of sociable numbers also has density
zero. By Theorem 3 we can restrict our attention to abundant n.

Let ε > 0. By the continuity of the distribution function D(u), we
may fix δ > 0 so that D(2 + δ) − D(2) < ε. Then for large x, we have
s(n)/n ≥ 1 + δ for all but εx abundant n ≤ x. Now let J be a large,
fixed positive integer, to be specified more precisely momentarily. We
claim that for all but o(x) of the abundant sociable n ≤ x satisfying
s(n)/n ≥ 1 + δ, we have

(4.6)
s(s−j(n))

s−j(n)
≥ s(s−(j−1)(n))

s−(j−1)(n)
− δ

2J

for all 1 ≤ j ≤ J . Notice that for such n, we have s−(j−1)(n)/s−j(n) ≥
1 + δ/2 for all 1 ≤ j ≤ J , which implies that

s−J(n) ≤ x(1 + δ/2)−J .

Since s−J is injective on sociables, it will follow that the upper density
of the sociable numbers is at most

ε + (1 + δ/2)−J ,

which is less than 2ε if J was fixed sufficiently large. So it is enough to
prove the claim.

As in the proof of (a), we partition those n which fail to satisfy (4.6)
for all 1 ≤ j ≤ J into sets Sj according to the first index for which
(4.6) fails to hold. Since J is fixed, to prove our claim above it is
enough to show that each Sj has size o(x). For each j, let S ′

j be that
subset of Sj consisting of those n for which s(s−j(n)) is not special;
essentially the same argument as given in (a) shows that S ′

j contains
only o(x) elements. But if n ∈ Sj \ S ′

j, then s−(j−1)(n) is a special
sociable number l (say), not exceeding x. But, by assumption, there
are only o(x) possibilities for l, and so also for n = sj−1(l). �

5. Remarks on odd abundant numbers

5.1. Nonsociable odd abundants. Though we cannot prove that a
positive proportion of odd abundant numbers are not sociable, we can
prove that infinitely many of them are not sociable. In fact, we can
prove that the sum of the reciprocals of the nonsociable odd abundants
is infinite.

Theorem 8. The number of nonsociable odd abundant numbers in
[1, x] is at least x/(log x)1/2+o(1) as x → ∞.
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Proof. Let m be an arbitrary but fixed odd abundant number with the
property that gcd(σ(m), m) = 1. (Note that if m0 is any squarefree
odd abundant number and p > m0 is any prime, then m = mp−1

0 is odd
abundant and gcd(σ(m), m) = 1.) Let A denote the set of integers a
such that gcd(a, 2mσ(m)) = 1 and gcd(σ(a), am) = 1. Let

ρ(m) =
∏

q|m
q prime

(

1 − 1

q − 1

)

.

We first show that

(5.1)
∑

a≤x
a∈A

1

a
� (log x)ρ(m)

(log2 x)5/2
.

Since we are looking for a lower bound for
∑

1/a it suffices to consider
just the squarefree members of A. Such numbers a have the properties
that for each prime r | a we have r - 2mσ(m) and gcd(r + 1, m) = 1.
Let R be the set of these primes r, so that the density of R within the
set of primes is ρ(m). Let

u = bρ(m) log2 x − 2 log3 xc.
Then, for x sufficiently large, we have

(5.2) R1 :=
∑

r∈R
(log2 x)2<r≤x1/u

1

r
> u.

If we choose u distinct primes from R that are in ((log2 x)2, x1/u], then
their product a will be at most x, and a ∈ A provided gcd(σ(a), a) = 1.
To ensure this last condition, we insist that when we choose the primes
to form a, we never choose a pair r1, r2 with r1 | r2 + 1. Let

R2 =
∑

r∈R
(log2 x)2<r≤x1/u

1

r2
, R3 =

∑

r1,r2∈R
(log2 x)2<r1,r2≤x1/u

r1|r2+1

1

r1r2
.

Thus,

(5.3)
∑

a∈A
a≤x

1

a
≥ 1

u!
Ru

1 −
1

(u − 2)!
(R2 + R3)R

u−2
1 .

We have

R2 � (log2 x)−2
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and from the Brun–Titchmarsh inequality, we have

R3 � (log2 x)−1.

Thus, (5.2) and (5.3) imply that

∑

a∈A
a≤x

1

a
≥ 1

u!
Ru

1

(

1 − u2(R2 + R3)R
−2
1

)

=
1

u!
Ru

1

(

1 + O((log2 x)−1)
)

.

Using the inequality u! � uu+1/2/eu, we thus have

∑

a∈A
a≤x

1

a
�
(

eR1

u

)u
1

u1/2
>

eu

u1/2
� (log x)ρ(m)

(log2 x)5/2
,

which establishes the estimate (5.1).
Next, consider integers map ≤ x where a ∈ A and p - ma is prime.

We suppose that a ≤ x1/3. We have gcd(s(ma), σ(ma)) = 1, and so by
the lower bound estimate in the sieve (see, e.g., [20, Theorem 2.5′]), the
number of primes p ∈ (ma, x/ma] for which s(map) = s(ma)p+σ(ma)
has no prime factors below (log x)2 + 1 is

� x/(ma log x log2 x).

The numbers n = map constructed this way are easily seen to be
distinct and bounded by x, and, by (5.1), their number is

(5.4) � x

m log x log2 x

∑

a∈A
a≤x1/3

1

a
� x

(log x)1−ρ(m)(log2 x)7/2
,

since m is assumed fixed.
But note that for a number n so constructed we have that n is odd

abundant and

s(s(n)) = s(n)

(

σ(s(n))

s(n)
− 1

)

< s(n)









∏

q|s(n)
q prime

(

1 +
1

q − 1

)

− 1









≤ s(n)

(

(

1 +
1

(log x)2

)ω(s(n))

− 1

)

,

where we write ω(k) for the number of prime divisors of k. Now for
n ≤ x we have s(n) � x log2 x and ω(s(n)) � log x/ log2 x. Thus,

s2(n) � x

log x
.
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Since the function s2 is injective on the sociable numbers, it follows that
the number of n counted above that are sociable is at most O(x/ log x).
Thus, using (5.4) we have that

(5.5)
∑

n≤x, m|n
n odd abundant
n not sociable

1 � x

(log x)1−ρ(m)(log2 x)7/2
.

We now make a judicious choice for m. Let B be a large number, let
m0 be the smallest squarefree abundant number composed of primes
all greater than B, and let m = mp−1

0 , where p > m0 is prime. It is
easy to see that as B → ∞, this construction gives an odd abundant
number m with ρ(m) → 1/2. But for each such m we have (5.5). This
completes the proof of the theorem. �

5.2. The distribution function for odd numbers. Let B(u) de-
note the set of odd numbers n with σ(n)/n ≥ u and let B(u) denote
the asymptotic density of B(u). It follows from the Erdős–Wintner
theorem that B(u) exists, is continuous, and is strictly decreasing for
u ≥ 1.

The number B(2), as the density of the odd abundant numbers, is of
interest to us since it stands as our upper bound for the upper density
of the sociable numbers. We can also prove an upper bound for the
upper density of the special sociable numbers which is considerably
smaller than B(2). In fact, we will show in Theorem 10 that its value
is about 1/6000, while B(2) ≈ 1/500.

Theorem 9. The set of special sociable numbers has upper density at
most α, where

α =

∫ ∞

1

B(1 + u)

u2
du.

Here α is the asymptotic proportion of odd abundant numbers n ≤ x
with s(n) > x.

Proof. Let D0(x) denote the set of odd abundant numbers n ≤ x, and
let D1(x) denote the set of n ∈ D0(x) with s(n) ≤ x. Let Ti(x) =
S ∩Di(x) for i = 0, 1, where S is the set of sociable numbers. Let T2(x)
denote the set of integers s(n) with n ∈ T1(x). Since s is injective on S
it follows that #T2(x) = #T1(x). Also, let T3(x) denote the set of odd
abundant sociable numbers in [1, x] that are not special. Clearly, each
member of T2(x) is not special, so we have T ′

2 (x) ⊂ T3(x), where T ′
2 (x)

is the set of odd abundant members of T2(x). As we have seen, the set
of odd abundant numbers n for which s(n) is not odd abundant has
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density 0, so that #T2(x) = #T ′
2 (x) + o(x). Thus, if T4(x) denotes the

set of special sociable numbers in [1, x], then

T4(x) = T0(x) \ T3(x) ⊂ T0(x) \ T ′
2 (x),

so that

#T4(x) ≤ #T0(x) − #T ′
2 (x) = #T0(x) − #T1(x) + o(x)

= #(T0(x) \ T1(x)) + o(x) ≤ #(D0(x) \ D1(x)) + o(x)

= #D0(x) − #D1(x) + o(x).

Now,
#D0(x)

x
= B(2) + o(1)

as x → ∞, and by the continuity of B(u), we have

#D1(x)

x
= B(2) −

∫ ∞

1

B(1 + u)

u2
du + o(1)

as x → ∞. We complete the proof by subtracting the second asymp-
totic relation from the first. �

We remark that if we have strict inequality in Theorem 9, i.e., if
the upper density of the special sociable numbers is < α, then there is
a positive proportion of odd abundant numbers that are not sociable.
This follows from the argument given for Theorem 6(a): Say a sociable
number n is a climber if there is some integer j ≥ 0 such that s−j(n)
is a special sociable number, and each of s−i(n) for i = 0, 1, . . . , j is
odd abundant. From the proof of Theorem 6(a) we have that the set of
sociable numbers that are not climbers has density 0. But the number
of odd abundant numbers n ≤ x with s(n) > x is (α + o(1))x. Clearly,
no two of these numbers can be climbers corresponding to the same
special sociable. Thus, if the upper density of the special sociables is
β < α, then at least (α−β +o(1))x odd abundant numbers up to x are
not climbers, and so at least (α − β + o(1))x odd abundant numbers
up to x are not sociable.

5.3. Numerical estimates. Using methods found in Deléglise [7], we
compute bounds for B(u), for various values of u. We prove the fol-
lowing.

Theorem 10. The density B(2) of the set of odd abundant numbers
satisfies

0.002042 < B(2) < 0.002071,

and the constant α in Theorem 9 satisfies

0.0001600 < α < 0.0001772.
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To prove this theorem, we introduce certain subsets of B(u), namely

By(u) = {n : σ(n)/n ≥ u, gcd(n, Π(y)) = 1} ,

where Π(y) denotes the product of the primes p ≤ y and y ≥ 2. Denote
the density of By(u) by By(u). (This density is denoted Aπ(y)(u) in
[7].) Let P (n) be the largest prime factor of a number n if n > 1 and
P (1) = 1, and define Ny to be the set of odd numbers n such that
P (n) ≤ y. As with Proposition 1.1 in [7], we have the following result.

Proposition 1. For each u ≥ 1, we have

B(u) =
∑

n∈Ny

1

n
By

(

u

σ(n)/n

)

.

The summation here has infinitely many terms, so to get numerical
estimates it is convenient to truncate and estimate the error. Let

Ny(z) = Ny ∩ [1, z].

We have, imitating the argument in [7], the following result.

Proposition 2. Let y ≥ 2. Then the density B(u) has bounds

Fy

∑

n∈Ny(z)
σ(n)/n≥u

1

n
≤ B(u) ≤

∑

n∈Ny(z)

1

n
By

(

u

σ(n)/n

)

+
1

2
− Fy

∑

n∈Ny(z)

1

n
,

where Fy =
∏

p≤y(1 − 1/p), the product taken over primes p ≤ y.

In order to estimate By(u) from above, let hy(n) be the multiplicative
function with hy(p

a) = 1 for p ≤ y and hy(p
a) = σ(pa)/pa for p > y.

The idea is to compute estimates for high moments of hy. Towards this
goal, let

Hy,j(n) =
∑

d|n
µ
(n

d

)

hy(d)j,

so that Hy,j(n) ≥ 0 for all n. Then,

∑

n≤x

hy(n)j =
∑

d≤x

Hy,j(d)
⌊x

d

⌋

≤ x
∞
∑

d=1

Hy,j(d)

d
= xMy,j ,
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say. Since hy(n) ≥ 1 for all n, we have

By(u) = Fy · lim
x→∞

1

x

∑

n≤x
hy(n)≥u

1

≤ Fy · lim
x→∞

1

x

∑

n≤x
hy(n)≥u

hy(n)j − 1

uj − 1
≤ Fy

My,j − 1

uj − 1
.

In [7], the mean value My,j is denoted by Λπ(y)(j); upper bounds are
computed there for y = 500 and j = 2i for i = 0, 1, . . . , 12. We have
recalculated these values, using the program PARI/GP, and present
them in the table below. Note that our values are slightly smaller than
those in [7] when j = 2i, 0 ≤ i ≤ 10, but are larger for j = 211 and 212.

j M500,j − 1 ≤ j M500,j − 1 ≤
1 0.0002732982 128 0.03814735
2 0.0005469571 256 0.08377620
4 0.001095360 512 0.20651323
8 0.002196521 1024 0.7076500

16 0.004416412 2048 12.96156
32 0.008927653 4096 1.661395×1017

64 0.01824571

With these bounds, we calculated upper and lower bounds for B(2)
using y = 500 and z = 1016, as well as bounds for B(u) using y = 500
and z = 1014, where u = 2.0000, . . . , 2.0500 in increments of 0.0005,
u = 2.051, . . . , 2.400 in increments of 0.001, and u = 2.405, . . . , 2.700
in increments of 0.005. These estimates for B(u) were used to calcu-
late our upper and lower bounds for α. We warmly thank Professor
Deléglise for kindly providing us with his program for calculating upper
and lower bounds for these values of B(u).
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