A NEW LOWER BOUND FOR THE PSEUDOPRIME COUNTING FUNCTION

BY

CARL POMERANCE

1. Introduction

A composite natural number n is called a *pseudoprime* (to base 2) if

$$2^{n-1} \equiv 1 \pmod{n}.$$

The least pseudoprime is $341 = 11 \cdot 31$. Let $\mathcal{P}(x)$ denote the number of pseudoprimes not exceeding x. It is known that there are positive constants c_1 , c_2 such that for all large x,

$$c_1 \log x \le \mathcal{P}(x) \le x \cdot \exp\left\{-c_2(\log x \cdot \log \log x)^{1/2}\right\}.$$

The lower bound is implicit in Lehmer [6] and the upper bound is due to Erdös [4]. Very recently in [9] we have obtained an improvement in the upper bound. There have been improvements on the lower bound, but they have only concerned the size of the constant c_1 . For example, see Rotkiewicz [13].

In this paper we show that there is a positive constant α such that for all large x,

$$\mathcal{P}(x) \ge \exp\{(\log x)\}.$$

In particular, we may take $\alpha = 5/14$.

Erdös conjectures that $\mathcal{P}(x) = x^{1-\varepsilon(x)}$ where $\varepsilon(x) \to 0$ as $x \to \infty$. See Pomerance, Selfridge, Wagstaff [10] for more on this.

Our main result holds for pseudoprimes to any base and in fact for strong pseudoprimes to any base (see Section 2 for definitions). Moreover our result holds if we just count those pseudoprimes n with at least $(\log n)^{5/14}$ distinct prime factors.

On the negative side, if $\mathscr{P}'(x)$, $\mathscr{P}''(x)$, and $\mathscr{P}^k(x)$ denote respectively the counting functions for pseudoprimes that are square-free, not square-free, and have at most k distinct prime factors, then we cannot show any one of $\mathscr{P}'(x)/\log x$, $\mathscr{P}''(x)$, $\mathscr{P}^k(x)/\log x$ is unbounded.

We wish to thank H. W. Lenstra, Jr. and S. S. Wagstaff, Jr. for some helpful comments during early stages of this paper.

Received January 11, 1980.

2. Preliminaries

If b, n are natural numbers and (b, n) = 1, let $l_b(n)$ denote the exponent to which b belongs modulo n. Let $\lambda(n)$ denote the largest of all the $l_b(n)$ where b varies over a reduced residue system modulo n. We always have $l_b(n)|\lambda(n)$. From the theorem on the primitive root we have, for prime powers p^a ,

$$\lambda(p^{a}) = \begin{cases} p^{a-1}(p-1) & \text{if } p > 2 \text{ or if } a \le 2, \\ 2^{a-2} & \text{if } p = 2 \text{ and } a \ge 3. \end{cases}$$

For a general n we have $\lambda(n)$ equal to the least common multiple of the $\lambda(p^a)$ for the $p^a||n$.

A composite natural number n is called a pseudoprime to base b if

$$b^{n-1} \equiv 1 \pmod{n}.$$

If n is an odd pseudoprime to base b and if there is an integer $k \ge 0$ such that $2^k \| l_b(p)$ for each prime factor p of n, then n is called a strong pseudoprime to base b. This slightly unorthodox definition is easily seen to be equivalent to the usual definition of strong pseudoprime (see [10], for example).

If $m \ge 1$, $b \ge 2$ are integers, we let $F_m(b)$ denote the mth cyclotomic polynomial evaluated at b. We have $F_m(b) \ge 1$. If $F_m(b)$ is divisible by a prime p with $l_b(p) \ne m$, then $m = p^k l_b(p)$ for some integer k > 0. In this case, p is called an intrinsic prime factor, and is evidently unique. The common case for prime factors q of $F_m(b)$ is for $l_b(q) = m$. Such prime factors q are called non-intrinsic or primitive. Moreover $F_m(b)$ has at least one primitive prime factor except in the cases m = 1, b = 2; m = 2, $b = 2^n - 1$ for some integer $n \ge 2$; m = 6, b = 2. This result is due to Bang [2] and many others. (Artin [1] is a more accessible reference on this topic.) Thus if m = pc where p is prime and larger than the largest prime factor of c and if $c \ne l_b(p)$, then every prime factor of $F_{pc}(b)$ is primitive and $F_{pc}(b) > 1$.

If $\mathcal S$ is a set, by $\#\mathcal S$ we mean the cardinality of $\mathcal S$.

3. The constant E

If $n \ge 2$ is an integer, let P(n) denote the largest prime factor of n. Let $\Pi(x, y)$ denote the number of primes $p \le x$ such that $P(p-1) \le y$. Let

$$E = \sup \{c \colon \Pi(x, x^{1-c}) \gg x/\log x\}.$$

Erdös [3] showed that E > 0. In [8] we showed that E > 0.55092. Furthermore we indicated that a new result of Iwaniec [5] and our method give E > 0.55655. Erdös [4] conjectured that E = 1. We remark that E = 1 follows from the method of [8] and the conjecture of Halberstam (see Montgomery [7], equation 15.10) that Bombieri's theorem holds for moduli up to $x^{1-\varepsilon}$ rather than just up to $x^{1/2-\varepsilon}$.

The interest in the constant E comes from the following result which is a variation on a theme of Erdös (see [3]).

THEOREM 1. For every $\varepsilon > 0$, there is an $x_0(\varepsilon)$ such that for each $x \ge x_0(\varepsilon)$, if A is the least common multiple of the integers up to $\log x/\log \log x$, then

$$\#\{a \leq x : \lambda(a) \mid A, a \text{ square-free}\} \geq x^{E-\epsilon}.$$

Proof. We may assume $E > \varepsilon > 0$. Let $z = (\log x)^{(1-E+\varepsilon/2)^{-1}}$. Let

$$\mathcal{A} = \{ p \le z \colon p \text{ prime, } p - 1 \mid A \}.$$

From the definition of E, there is a $\delta > 0$ such that for all large x,

$$\Pi(z, \log x/\log \log x) \ge \delta z/\log z$$
.

If p is a prime with the properties $p \le z$, $P(p-1) \le \log x/\log \log x$, and yet $p \notin \mathcal{A}$, then it must be that there is a prime power $q^c \mid p-1$ with $c \ge 2$ and $q^c > \log x/\log \log x$. Now the number of such primes p is at most

$$\sum [z/q^{c}] \ll z(\log \log x/\log x)^{1/2} = o(z/\log z).$$

Thus for all large x we have

$$\# \mathcal{A} \geq (\delta/2)z/\log z$$
.

Now let \mathcal{N} denote the set of square-free integers $a \le x$ composed only of the primes in \mathscr{A} . Every member p of \mathscr{A} satisfies $p \le z$, so that \mathcal{N} has at least as many elements as \mathscr{A} has subsets of cardinality $[\log x/\log z]$. Thus, for large x,

$$\# \mathcal{N} \ge \begin{pmatrix} \#, \mathcal{A} \\ [\log x/\log z] \end{pmatrix} \ge \begin{pmatrix} \#, \mathcal{A} \\ [\log x/\log z] \end{pmatrix}^{[\log x/\log z]}$$

$$\ge \frac{1}{z} \left(\frac{(\delta/2)z/\log z}{\log x/\log z} \right)^{\log x/\log z}$$

$$= \frac{1}{z} \left(\frac{\delta}{2} \right)^{\log x/\log z} \cdot x^{E-z/2} \ge x^{E-z}.$$

But if $a \in \mathcal{N}$, then $a \leq x$, a is square-free, and $\lambda(a) | A$.

4. The main result

Let $\mathcal{P}_b(x)$ denote the number of pseudoprimes to base b that do not exceed x.

THEOREM 2. For every $\varepsilon > 0$ and integer $b \ge 2$, there is an $x_0(\varepsilon, b)$ such that for all $x \ge x_0(\varepsilon, b)$, we have

$$\mathcal{P}_b(x) \ge \exp \{(\log x)^{E/(E+1)-\epsilon}\}.$$

Proof. Let $\varepsilon > 0$, $b \ge 2$ be given. Let x be large and let $y = (\log x)^{(E+1)^{-1}}$. Let A denote the least common multiple of the integers up to $\log y/\log \log y$. Let p denote the first prime that is congruent to 1 modulo 2A. By Linnik's

theorem (see Prachar [11], Kapitel X, Satz 4.1) there is an absolute constant c with

$$(1) p \le A^c \le y^{2c/\log\log y}.$$

Let q be any fixed prime between A+1 and 2A. Let

$$\mathcal{N} = \{ a \leq y : \lambda(a) \mid A, \text{ a square-free, } a \neq l_b(q), \text{ } aq \neq l_b(p) \}.$$

The last two conditions delete at most 2 elements that otherwise would be in \mathcal{N} . By Theorem 1 and possibly deleting some elements of \mathcal{N} , we may assume $\#\mathcal{N} = [y^{E-\epsilon}]$.

For each set $\mathscr{S} \subset \mathscr{N}$ with at least 2 elements, let

$$n(\mathcal{S}) = \prod_{a \in \mathcal{S}} F_{pqa}(b).$$

We claim that

- (i) $n(\mathcal{S})$ is a pseudoprime to base b,
- (ii) $n(\mathcal{S}) \leq x$, and
- (iii) if $\mathscr{S}' \subset \mathscr{N}$, $\#\mathscr{S}' \geq 2$, $\mathscr{S}' \neq \mathscr{S}$, then $n(\mathscr{S}') \neq n(\mathscr{S})$.

Our theorem then follows, for we have for large x

$$\mathcal{P}_b(x) \ge 2^{\#,V} - \# \mathcal{N} - 1$$

> $2^{y^{E-e-1}} - y^{E-e} - 1$
 $\ge \exp \{ (\log x)^{E/(E+1)-e} \}.$

We now show (i). Let m denote the least common multiple of the elements of \mathcal{N} . We claim that if $a \in \mathcal{N}$, then

(2)
$$F_{pqa}(b) \equiv 1 \pmod{pqm}.$$

First, since every prime factor of $F_{pqa}(b)$ is primitive $(l_b(p) \neq qa, p > P(qa))$, we have

$$F_{pqa}(b) \equiv 1 \pmod{pq}$$
.

Next, since every prime factor of $F_{qa}(b)$ is primitive $(l_b(q) \neq a, q > P(a))$, if r is such a prime factor, then $r \equiv 1 \pmod{q}$, so $r \nmid m$. Hence we have $(F_{qa}(b), m) = 1$. Thus

$$F_{pqa}(b) = \frac{F_{qa}(b^p)}{F_{qa}(b)} \equiv \frac{F_{qa}(b)}{F_{qa}(b)} = 1 \pmod{m}$$

since $\lambda(m)|A|(p-1)$ and m is square-free imply $b^p \equiv b \pmod{m}$. We thus have (2) and so $pqm|n(\mathcal{S})-1$. Thus

$$n(\mathcal{S}) \Big| \prod_{d \mid nam} F_d(b) = b^{pqm} - 1 \Big| b^{n(\mathcal{S}) - 1} - 1.$$

Also, since $\mathscr S$ has at least 2 elements, $n(\mathscr S)$ is composite. Thus $n(\mathscr S)$ is a pseudoprime to base b.

For (ii), note that if x is large and using (1),

$$n(\mathcal{S}) < b^{pq\sum_{a \in \mathcal{S}^a}} \le \exp\left\{pq(\log b) \sum_{a \in \mathcal{A}^c} a\right\}$$

$$\le \exp\left\{pq(\log b) y^{E-\varepsilon+1}\right\}$$

$$\le \exp\left(y^{E+1}\right)$$

$$= y$$

Now note that if r is a prime factor of $F_{pqa}(b)$, then $l_b(r) = pqa$. This immediately gives (iii).

Remarks. (1) We mentioned above that from [8] we have E > 0.55655. Thus

$$E/(E+1) > 0.35755 > 5/14$$
.

(2) Some people like to insist in their definition of pseudoprime to base b that it be odd. Note that all of the pseudoprimes created in the proof of Theorem 2 are odd and in fact are relatively prime to every prime $r \leq 2pq$. Also note that

$$2pq > \exp(\log \log x/\log \log \log x)$$
 for all large x.

- (3) In the proof of Theorem 1, if we insist in the definition of $\mathscr A$ that $p \neq 2$, we have the same theorem as before, but now every member of $\mathscr N$ is odd. Thus in the proof of Theorem 2, we conclude that if r is any prime factor of $n(\mathscr S)$, then $l_b(r)$ is odd. Since also $n(\mathscr S)$ is odd (Remark 2), we conclude that the pseudoprimes $n(\mathscr S)$ are all strong pseudoprimes.
- (4) We would still obtain our result if we restricted \mathcal{L} to those subsets of \mathcal{N} which have a majority of the elements of \mathcal{N} . The pseudoprimes so constructed have at least $(\log x)^{5/14}$ distinct prime factors.
- (5) A slight modification of the above proof gives a lower bound for $\mathcal{P}_b(x)$ that has an explicit dependence on b:

$$\mathscr{P}_b(x) \ge \exp \left\{ (\log x / \log b)^{E/(E+1)-\epsilon} \right\}$$

for all $x \ge b^{x_0(\varepsilon)^2}$, where $x_0(\varepsilon)$ is the constant in Theorem 1. To see this, we change the definition of y in the proof of Theorem 2 to

$$y = (\log x/\log b)^{(E+1)^{-1}}$$
.

Then if $x \ge b^{x_0(\varepsilon)^2}$, we have $y \ge x_0(\varepsilon)$, so that Theorem 1 can be used to estimate $\# \mathcal{N}$.

(6) Consolidating Remarks 1 and 5, we have an absolute constant C such that for all $b \ge 2$ and $x \ge b^C$,

$$\mathscr{P}_b(x) \ge \exp \{ (\log x / \log b)^{5/14} \}.$$

5. Cyclotomic pseudoprimes

If $b \ge 2$ is an integer and if $1 \le d_1 < d_2 < \cdots < d_k$ are integers, we shall call the number $\Pi F_{d_i}(b)$ a cyclotomic number to base b. A cyclotomic pseudoprime to base b is then a cyclotomic number to base b which is also a pseudoprime to base b. For example, $341 = F_5(2)F_{10}(2)$ is a cyclotomic pseudoprime to base b. Let $\mathcal{C}_b(x)$, $\mathcal{PC}_b(x)$ denote respectively the counting functions for the cyclotomic numbers to base b, the cyclotomic pseudoprimes to base b.

It is clear that Theorem 2 holds for $\mathcal{PC}_b(x)$ in place of $\mathcal{P}_b(x)$. Our point is that Theorem 2 is near to best possible for cyclotomic pseudoprimes. Indeed $\mathcal{PC}_b(x) \leq \mathcal{C}_b(x)$ and an argument which uses estimates for the partition function p(n) (see Rademacher [12]) shows that

$$\mathscr{C}_b(x) = \exp \{(\log x)^{1/2 + o(1)}\}.$$

This is the same estimate we would have for $\mathscr{PC}_b(x)$ if we knew, as Erdös has conjectured, that E = 1.

We conclude that if there is to be substantial further progress on lower bounds for $\mathcal{P}_b(x)$, one will have to consider pseudoprimes to base b that are not cyclotomic.

REFERENCES

- 1. E. ARTIN, The orders of the linear groups, Comm. Pure Appl. Math., vol. 8 (1955), pp. 355-366.
- 2. A. S. BANG, Taltheoretiske Undersogelser, Tidsskrift Math., vol. 5, IV (1886), pp. 70-80 and 130-137.
- P. Erdös, On the normal number of prime factors of p 1 and some related problems concerning Euler's φ-function, Quart. J. Math. (Oxford Ser.), vol. 6 (1935), pp. 205-213.
- P. Erdös, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen, vol. 4 (1956), pp. 201-206.
- 5. H. IWANIEC, On the Brun-Titchmarsh theorem, to appear.
- D. H. Lehmer, On the converse of Fermat's theorem, American Math. Monthly, vol. 43 (1936), pp. 347-354 (see the third footnote on p. 348).
- H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math., vol. 227, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
- 8. C. Pomerance, Popular values of Euler's function, Mathematika, vol. 27 (1980), pp. 84-89.
- 9. _____, On the distribution of pseudoprimes, Math. Comp., to appear.
- 10. C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr., The pseudoprimes to 25 · 10°, Math. Comp., vol. 35 (1980), pp. 1003-1026.
- 11. K. PRACHAR, Primzahlverteilung, Springer-Verlag, Berlin, 1957.
- H. RADEMACHER, Topics in analytic number theory, Springer-Verlag, New York, 1973 (see Section 121).
- 13. A. ROTKIEWICZ, On the number of pseudoprimes $\leq x$, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 381-409 (1972), pp. 43-45.

University of Georgia Athens, Georgia