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A NEW LOWER BOUND FOR THE PSEUDOPRIME
COUNTING FUNCTION
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CARL POMERANCE

1. Introduction

A composite natural number » is called a pseudoprime (to base 2) if
2""'=1 (mod n).

The least pseudoprime is 341 = 11 - 31. Let #(x) denote the number of pseudo-
primes not exceeding x. It is known that there are positive constants c,, ¢, such
that for all large x,

¢y log x < P(x) < x - exp {—c,(log x - log log )2,

The lower bound is implicit in Lehmer [6] and the upper bound is due to Erdés
[4]. Very recently in [9] we have obtained an improvement in the upper bound.
There have been improvements on the lower bound, but they have only con-
cerned the size of the constant ¢,. For example, see Rotkiewicz [13].

In this paper we show that there is a positive constant « such that for all
large x,

2(x) = exp{(log )},

In particular, we may take o = 5/14.

Erdds conjectures that #(x) = x' =™ where &(x) - 0 as x — oo, See Pomer-
ance, Selfridge, Wagstall [10] for more on this.

Our main result holds for pseudoprimes to any base and in fact for strong
pseudoprimes to any base (see Section 2 for definitions). Moreover our result
holds if we just count those pseudoprimes n with at least (log n)>'* distinct
prime factors.

On the negative side, if #/(x), #"(x), and #*(x) denote respectively the
counting functions for pseudoprimes that are square-free, not square-free, and
have at most k distinct prime factors, then we cannot show any one of
#'(x)/log x, 2"(x), #*(x)/log x is unbounded.
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2. Preliminaries

Il b, n are natural numbers and (b, n) = 1, let I(n) denote the exponent to
which b belongs modulo n. Let A(n) denote the largest of all the I,(n) where b
varies over a reduced residue system modulo n. We always have Iy(n)|A(n).
From the theorem on the primitive root we have, for prime powers p°,

. p"lp—1) ifp>2orifa<2,
A(p)=1u-2( ) i =
|2 ifp=2and a>3.

For a general n we have A(n) equal to the least common multiple of the A(p®) for
the p?||n.
A composite natural number # is called a pseudoprime to base b if

b""'=1 (mod n).

If n is an odd pseudoprime to base b and if there is an integer k > 0 such that
2¥|4(p) for each prime factor p of n, then nis called a strong pseudoprime to base
b. This slightly unorthodox definition is easily seen fo be equivalent to the usual
definition of strong pseudoprime (see [10], for example).

Ifm> 1, b > 2 are integers, we let F (b) denote the mth cyclotomic polyno-
mial evaluated at b. We have Fo(b) = L. If F (b) is divisible by a prime p with
Iy(p) # m, then m = p*ls(p) for some integer k& > 0. In this case, p is called an
intrinsic prime factor, and is evidently unique. The common case for prime
factors g of F,(b) is for I,(q) = m. Such prime factors q are called non-intrinsic
or primitive. Moreover F,(b) has at least one primitive prime factor except in
thecasesm=1,b=2:m= 2,b=2"—1 for some integern > 2;m=6,b = 2.
This result is due to Bang [2] and many others. (Artin [1] is a more accessible
reference on this topic.) Thus if m = pc where p is prime and larger than the
largest prime factor of ¢ and if ¢ + Iy(p), then every prime factor of F sdb) is
primitive and F.(b) > 1.

If & is a set, by #% we mean the cardinality of &,

3. The constant E

If n > 2 is an integer, let P(n) denote the largest prime factor of 1. Let II(x, y)
denote the number of primes p < x such that P(p — 1) < y. Let

E = sup {c: IT(x, x' %) > x/log x}.

Erdds [3] showed that E > 0. In [8] we showed that E > 0.55092. Furthermore
we indicated that a new result of Iwaniec [5] and our method give E > 0.55655.
Erdds [4] conjectured that £ = 1. We remark that E=1 follows from the
method of [8] and the conjecture of Halberstam (see Montgomery [7], equation
15.10) that Bombieri’s theorem holds for moduli up to x'~* rather than just up
to x12e,

The interest in the constant E comes from the following result which is a
variation on a theme of Erdos (see [3]).
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THEOREM 1. For every ¢ > 0, there is an xq(g) such that for each x > x4(e), if’
A is the least common nultiple of the integers up to log x/log log x, then
#{a < x: Ma)| A, a square-free} = xF~r.
Proof. We may assume E > ¢ > 0. Let z = (log x)!! "¥+¥27" Let
o ={p<zipprime p— 1]|A}.
From the definition of E, there is a 8 > 0 such that for all large x,
I(z, log x/log log x) > 8z/log =.
If p is a prime with the properties p < z, P(p — 1) < log x/log log x, and yet
p ¢ o/, then it must be that there is a prime power ¢°|p — 1 with ¢ > 2 and
g° > log x/log log x. Now the number of such primes p is at most
Y. [z/4°] < z(log log x/log x)''* = o(z/log z).
Thus for all large x we have
#of > (6/2)z/log =.

Now let . ™ denote the set of square-free integers a < x composed only of the
primes in .o/. Every member p of .o/ satisfies p < z, so that . {” has at least as
many elements as o/ has subsets of cardinality [log x/log z]. Thus, for large x,

. #.o/ #.of (log x/log =]
whe (.[fog x/log ]) = ([Tém)

> l ((_5/‘);):_/}0&)lng xflog 2
log x/log =

log x/log =
— l (2) . -\,E—ﬂ,’l =~ _\.E—r..

“

“

But if ae . V", then a < x, a is square-free, and A(a)|A.

4. The main result
Let #,(x) denote the number of pseudoprimes to base b that do not exceed x.
THEOREM 2. For every e > 0 and integer b = 2, there is an x (g, b) sueh that
for all x = xy(g, b), we have
Pyfx) = exp {(log x)EHETD=<),

Proof. Lete>0,b > 2 be given. Let x be large and let y = (log x)E* 17",
Let 4 denote the least common multiple of the integers up to log y/log log .
Let p denote the first prime that is congruent to I modulo 2A. By Linnik’s
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theorem (see Prachar [11], Kapitel X, Satz 4.1) there is an absolute constant ¢
with
(1) p< A< ylc,’]clg log y.

Let g be any fixed prime between A + 1 and 24, Let
N ={a < y: Ua)| A, a square-free, a + l(q), ag # 1,(p)).

The last two conditions delete at most 2 elements that otherwise would be in
4". By Theorem 1 and possibly deleting some elements of . 1", we may assume
#47 =[5

For each set & = . with at least 2 elements, let

()= ] F pqalb)-
ae Y
We claim that

(i) n(%)is a pseudoprime to base b,
(i) »(&) < x, and
(i) if 4, #9229 + %, then n(S’) & n(F).
Our theorem then follows, for we have for large x
Py(x) = 2%V — g4 — 1
> 2)'7'-'-2-1 - yE—c -1
2 exp {(log x)*E+ -2

We now show (i). Let m denote the least common multiple of the elements of
A”. We claim that if a e . 4", then

(2) Foulb)=1 (mod pgm).

First, since every prime factor of F paa(b) is primitive (I,(p) # qa, p > P(qa)), we
have

Foulb)=1 (mod pq).
Next, since every prime factor of Fou(b) is primitive (I,(q) # a, g > P(a)), if r is

such a prime factor, then » = 1 (mod q), so rfm. Hence we have (F b)) m)=1.
Thus

Foo(b”)
F‘I“(b)

since A(m)| 4 |(p — 1) and m is square-free imply b% = b (mod m). We thus have
(2) and so pgm|n(<) — 1. Thus

W) [T Fulb) = bram — 1|1 _

dlpgm

n

Fhealb) = ;L“g—; =1 (mod m)
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Also, since & has at least 2 elements, n(%’) is composite. Thus n(&) is a
pseudoprime to base b.
For (ii), note that if x is large and using (1),

n(&) < brev? < exp {pq(log b) 3 a

ae. "
< exp {pq(log b)y*~*1}
<exp (y**1)

Now note that if r is a prime factor of F,(b), then I,(r) = pga. This im-
mediately gives (iii).

Remarks. (1) We mentioned above that from [8] we have E > 0.55655. Thus
E/(E + 1) > 035755 > 5/14.

(2) Some people like to insist in their definition of pseudoprime to base b
that it be odd. Note that all of the pseudoprimes created in the proof of
Theorem 2 are odd and in fact are relatively prime to every prime r < 2pgq. Also
note that

2pq > exp (log log x/log log log x) for all large x.

(3) In the proof of Theorem 1, if we insist in the definition of « that p + 2,
we have the same theorem as before, but now every member of. " is odd. Thus
in the proof of Theorem 2, we conclude that if r is any prime factor of n{s),
then Ii(r) is odd. Since also #(¥’) is odd (Remark 2), we conclude that the
pseudoprimes n(¥’) are all strong pseudoprimes.

(4) We would still obtain our result if we restricted & to those subsets of . 1~
which have a majority of the elements of . 4. The pseudoprimes so constructed
have at least (log x)*** distinct prime factors.

(5) A slight modification of the above proof gives a lower bound for Py(x)
that has an explicit dependence on b:

2y(x) = exp {(log x/log b)E/E+ 1<)

for all x = b™7% where x4(¢) is the constant in Theorem 1. To see this, we
change the definition of y in the proof of Theorem 2 to

y = (log x/log b)
Then if x > b, we have y > x,(e), so that Theorem 1 can be used to estimate
#.A7.
(6) Consolidating Remarks 1 and 5, we have an absolute constant C such
that for all b > 2 and x > b€,

Py(x) = exp {(log x/log b)>14),

(E+1)-1
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5. Cyclotomic pseudoprimes

Ifb>2isaninteger andif 1 <d, <d, < < d,are integers, we shall call
the number ITF,(b) a cyclotomic number to base b. A cyclotomic pseudoprime to
base b is then a cyclotomic number to base b which is also a pseudoprime to
base b. For example, 341 = F s(2)F 10(2) is a cyclotomic pseudoprime to base 2.
Let ©,(x), P%,(x) denote respectively the counting functions for the cyclotomic
numbers to base b, the cyclotomic pseudoprimes to base b.

It is clear that Theorem 2 holds for »% s(x) in place of #,(x). Our point is
that Theorem 2 is near to best possible for cyclotomic pseudoprimes. Indeed
PEy(x) < €4(x) and an argument which uses estimates for the partition func-
tion p(in) (see Rademacher [12]) shows that

€(x) = exp {(log x)"2+ 1),

This is the same estimate we would have for P%Ey(x) if we knew, as Erdos has
conjectured, that E = 1.

We conclude that if there is to be substantial further progress on lower
bounds for 2,(x), one will have to consider pseudoprimes to base b that are not
cyclotomic.
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