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1 Introduction

For a positive integer n, let ϕ(n) denote the Euler function of n, and let
τ(n), ω(n) and Ω(n) denote the number of divisors of n, the number of
prime divisors of n, and the number of prime-power divisors of n, respectively.
There have been a number of papers that have discussed arithmetic properties
of ϕ(n), many of these inspired by the seminal paper of Erdős [5] from 1935.
In particular, in [7] (see also [6]), the normal number of prime factors of
ϕ(n) is considered. It has been known since Hardy and Ramanujan that the
normal value of ω(n) (or Ω(n)) is ∼ log logn, and since Erdős and Kac that
(f(n) − log log n)/

√
log logn has a Gaussian distribution for f = ω or Ω. In

[7], it is shown that ϕ(n) normally has ∼ 1

2
(log logn)2 prime factors, counted

with or without multiplicity. In addition, there is a Gaussian distribution for

f(ϕ(n)) − 1
2
(log logn)2

1√
3
(log logn)3/2

for f = ω and f = Ω. In [2], it is shown that the normal value of Ω(ϕ(n)) −
ω(ϕ(n)) is ∼ log log n log log log logn.

Note that it is an easy exercise to show that τ(n) is on average ∼ logn.
That is,

∑

n≤x

τ(n) ∼
∑

n≤x

log n.

However, from Hardy and Ramanujan, since 2ω(n) ≤ τ(n) ≤ 2Ω(n), we know
that for most numbers n, τ(n) = (logn)log 2+o(1), where log 2 = 0.693 . . ..
Thus, τ(n) is on the average somewhat larger than what it is normally.
Similarly, for most numbers n,

τ(ϕ(n)) = 2( 1
2
+o(1))(log log n)2 .

One might suspect then that on average, τ(ϕ(n)) is somewhat larger. It
comes perhaps as a bit of a shock that the average order of τ(ϕ(n)) is con-
siderably larger.

Our main result is the following:

Theorem 1. Let

Dϕ(x) :=
1

x

∑

n≤x

τ(ϕ(n)).
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Then, the estimate

Dϕ(x) = exp

(

cϕ(x)

(

log x

log log x

)1/2 (

1 +O

(

log log log x

log log x

))

)

(1)

holds for large real numbers x where cϕ(x) is a number in the interval

[7−1e−γ/2, 23/2e−γ/2], (2)

and γ is the Euler constant.

We point out that Theorem 1 above has already been used in the proof
of Theorem 1 in [9] to give a sharp error term for a certain sum related to
Artin’s conjecture on average for composite moduli.

Recall that the Carmichael function of n, sometimes also referred to as
the universal exponent of n and denoted by λ(n), is the exponent of the
multiplicative group of invertible elements modulo n. If n = pν1

1 . . . pνk
k is the

factorization of n, then

λ(n) = lcm[λ(pν1

1 ), . . . , λ(pνk
k )],

where if pν is a prime power then λ(pν) = pν−1(p−1) except when p = 2 and
ν ≥ 3 in which case, λ(2ν) = 2ν−2.

It is clear that λ(n)|ϕ(n) and that ω(λ(n)) = ω(φ(n)). The function
Ω(ϕ(n)/λ(n)) = Ω(ϕ(n)) − Ω(λ(n)) was studied in [2]. In addition to the
result on Ω(ϕ(n)) − ω(ϕ(n)) mentioned above, it is shown in [2] that

Ω(ϕ(n)) − Ω(λ(n)) ∼ log log n log log log log n

on a set of n of asymptotic density 1.

In the recent paper [1], Arnold writes “it would be interesting to study
experimentally how are distributed the different divisors of the number ϕ(n)
provided by the periods T of the geometric progressions of residues modulo
n.” It is clear that the numbers T range only over the divisors of λ(n). We
have the following result.

Theorem 2. Let

Dλ(x) :=
1

x

∑

n≤x

τ(λ(n)).
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(i) The estimate

Dλ(x) = exp

(

cλ(x)

(

log x

log log x

)1/2 (

1 +O

(

log log log x

log log x

))

)

holds for large real numbers x where cλ(x) is a number in the interval shown
at (2).

(ii) With D∗
ϕ(x) = maxy≤xDϕ(y), the estimate

Dλ(x) = o(D∗
ϕ(x))

holds as x→ ∞.

Concerning part (ii) of Theorem 2, we suspect that even the sharper
estimate

Dλ(x) = o(Dϕ(x))

holds as x→ ∞, but we were unable to prove this statement.

We mention that in [3], in the course of investigating sparse RSA expo-
nents, it was shown that

∑

n≤x
Ω(n)=2

τ(ϕ(n)) � x log x

(see [3], page 347). In particular, the average value of the function τ(ϕ(n))
over those positive integers n ≤ x which are the product of two primes is
bounded above by a constant multiple of log2 x/log log x.

Our methods can also be applied to study the average number of divisors
of values of other multiplicative functions as well. For example, assume that
f : N → Z is a multiplicative function with the property that there exists a
polynomial Pk ∈ Z[X] of degree k with P1(0) 6= 0 such that f(pk) = Pk(p)
holds for all prime numbers p and all positive integers k. For any positive
integer n we shall write τ(f(n)) for the number of divisors of the nonnegative
integer |f(n)|, with the convention that τ(0) = 1. In this case, our methods
show that there exist two positive constants α and β, depending only on the
polynomial P1, such that the estimate

1

x

∑

n≤x

τ(f(n)) = exp

(

c(x)

(

log x

log log x

)1/2 (

1 +O

(

log log log x

log log x

))

)
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holds for large values of x with some number c(x) ∈ [α, β]. In particular, the
same estimate as (1) holds if we replace the function ϕ(n) by the function
σ(n). Indeed, the lower bound follows exactly as in the proof of Theorem 1,
while for the upper bound one only needs to slightly adapt our argument.

We close this section by pointing out that it could be very interesting
to study the average value of the number of divisors of f(n) for some other
integer valued arithmetic functions f . We mention three instances.

Let a > 1 be a fixed positive integer and let f(n) be the multiplicative
order of a modulo n if a is coprime to n and 0 otherwise. We recall that the
functions ω(f(n)) and Ω(f(n)) were studied by Murty and Saidak in [11].
It would be interesting to study the average order of τ(f(n)) in comparison
with that of τ(λ(n)).

Let E be an elliptic curve defined over Q. Let f(n) be the multiplicative
function which on prime powers pk equals pk + 1− apk , the number of points
of E defined over the finite field Fpk with pk elements, including the point at
infinity.

Let f(n) be the Ramanujan “τ function” which is the coefficient of qn in
the formal identity

( ∞
∏

k=1

(1 − qk)

)24

= 1 +
∑

n≥1

f(n)qn.

We believe that it should be interesting to study the average number of
divisors of f(n) for these functions f(n) and other multiplicative functions
that arise from modular forms. Perhaps the methods from this paper dealing
with the “easy case” of ϕ(n) will be of help. A relevant paper here is by Murty
and Murty [10] in which, building on work of Serre [12, 13], the function
ω(f(n)) is analyzed, where f(n) is the Ramanujan τ function.

Throughout this paper, we use c1, c2, . . . to denote computable positive
constants and x to denote a positive real number. We also use the Landau
symbols O and o, the Vinogradov symbols � and �, and the equal-order-of-
magnitude symbol � with their usual meanings. For a positive integer k we
use logk x for the recursively defined function log1 x := max{log x, 1} and
logk x := max{log(logk−1(x)), 1} where log denotes the natural logarithm
function. When k = 1 we simply write log1 x as log x and we therefore
understand that log x ≥ 1 always. We write p and q for prime numbers. For
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two positive integers a and b we write [a, b] for the least common multiple of
a and b.

Acknowledgements. The authors thank the anonymous referee for a
careful reading of the manuscript and for suggestions that improved the qual-
ity of this paper.

2 Some Lemmas

Throughout this section, A, A1, A2, A3, B and C are positive numbers. We
write z := z(x) for a function of the real positive variable x which tends to
infinity with x in a way which will be made more precise below. We write
Pz :=

∏

p≤z p. The results in this section hold probably in larger ranges than
the ones indicated, but the present formulations are enough for our purposes.

For any integer n ≥ 2 we write p(n) and P (n) for the smallest and largest
prime factor of n, respectively, and we let p(1) = +∞, P (1) = 1.

Lemma 3. Assume that z ≤ log x/ log2 x. (i) For any A > 0 there exists

B := B(A) such that if QPz <
x

logB x
, we then have

Ez(x) :=
∑

r|Pz

µ(r)
∑

n≤Q
r|n

(

π(x;n, 1) − π(x)

ϕ(n)

)

� x

logA x
. (3)

The constant implied in � depends at most on A.
(ii) Let A, A1, A2 > 0 be arbitrary positive numbers. Assume that u is a
positive integer with p(u) > z, u < logA1 x and τ(u) < A2. There exists

B := B(A,A1, A2) such that if QPz <
x

logB x
, then

Eu,z(x) :=
∑

r|Pz

µ(r)
∑

n≤Q
r|n

(

π(x; [u, n], 1) − π(x)

ϕ([u, n])

)

� x

logA x
. (4)

The constant implied in � depends at most on A, A1, A2.
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Proof. Note that

∑

r|Pz

µ(r)
∑

n≤Q
r|n

(

ψ(x;n, 1) − x

ϕ(n)

)

=
∑

n1≤Pz

∑

n2≤Q

γn1
δn2

(

ψ(x;n1n2, 1) − x

ϕ(n1n2)

)

, (5)

where γn1
:= µ(n1) if P (n1) ≤ z and it is zero otherwise, and δn2

:= 1 for all
n2 ≤ Q. Similarly,

∑

r|Pz

µ(r)
∑

n≤Q
r|n

(

ψ(x; [u, n], 1) − x

ϕ([u, n])

)

=
∑

n1≤Pz

∑

n2≤Q

γ′n1
δ′n2

(

ψ(x;n1n2, 1) − x

ϕ(n1n2)

)

, (6)

where γ′n1
:= γn1

and δ′n2
:= 0 if u 6 | n2, and it is the cardinality of the set

{d ≤ Q | [d, u] = n2} otherwise. Note that if n2 ≤ Q, then δ′n2
= τ(u) � 1

is a constant (i.e., does not depend on n2) provided that δ′n2
is nonzero.

The same argument as the one used in the proof of Theorem 9 in [4] leads
to the conclusion that both (5) and (6) are of order of magnitude at most
x/logA x provided that B is suitably large (in terms of A and of A, A1

and A2, respectively). Now (3) and (4) follow from (5) and (6) by partial
summation and using the fact that these sums are of order of magnitude at
most x/logA x.

From now on until the end of the paper we use c1 for the constant e−γ ,
where γ is the Euler constant.

Lemma 4. Let A > 0 and 1 < z ≤ (log x)A. We have

Lz(x) :=
∑

n≤x
p(n)>z

1

n
= c1

log x

log z
+O

(

log x

log2 z

)

, (7)

and

Mz(x) :=
∑

n≤x
p(n)>z

1

ϕ(n)
= c1

log x

log z
+O

(

log x

log2 z

)

. (8)

The constants implied by the above O’s depend only on A.
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Proof. Write

Kz(x) :=
∑

n≤x
p(n)>z

1.

By Brun’s Sieve (see Theorems 2.2 on page 68 and 2.5 on page 82 in [8]), we
have that

Kz(x) = c1
x

log z
+O

(

x

log2 z

)

if z < x1/ log2 x, (9)

and
Kz(x) �

x

log z
if 1 ≤ z ≤ x. (10)

We shall now assume that z < x1/ log3
2 x. Using partial summation, we have

Lz(x) =

∫ x

1

dKz(t)

t
=

1

x
Kz(x) +

∫ x

1

Kz(t)

t2
dt.

Clearly,
1

x
Kz(x) = O

(

1

log z

)

(11)

by estimate (9). We break the integral at x1/ log2 x. By estimate (10), we get

∫ x1/ log2 x

1

Kz(t)

t2
dt� 1

log z

∫ x1/ log2 x

1

dt

t
� log x

log z log2 x
. (12)

For the second range we use estimate (9) to get

∫ x

x1/ log2 x

Kz(t)

t2
dt =

c1
log z

(

1 +O

(

1

log z

))
∫ x

x1/ log2 x

dt

t

=
c1 log x

log z

(

1 +O

(

1

log z

))(

1 +O

(

1

log2 x

))

.(13)

Collecting together all estimates (11)–(13) we get

Lz(x) =
c1 log x

log z
+O

(

log x

log2 z
+

log x

log z log2 x
+ log z

)

,

and it is easy to see that the above error is bounded above as in (7) when
z ≤ (log x)A, as in the hypothesis of the lemma.
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For (8), note that

Mz(x) =
∑

n≤x
p(n)>z

1

ϕ(n)
=

∑

n≤x
p(n)>z

1

n

∑

d|n

µ2(d)

ϕ(d)

=
∑

d≤x
p(d)>z

µ2(d)

dϕ(d)

∑

m≤x/d
p(m)>z

1

m
=

∑

d≤x
p(d)>z

µ2(d)

dϕ(d)
Lz(x/d).

When d = 1, µ2(d)/dϕ(d) = 1, while when d > 1, since p(d) > z, it follows
that

∑

d>1
p(d)>z

µ2(d)

dϕ(d)
≤
∑

d>z

1

dϕ(d)
� 1

z
,

where the last estimate above is due to Landau. Thus,

Mz(x) = Lz(x) +
∑

1<d≤x
z≤p(d)

µ2(d)

dϕ(d)
Lz(x/d) = Lz(x) +O

(

Lz(x)

z

)

= c1
log x

log z
+O

(

log x

log2 z

)

,

which completes the proof of the lemma.

For x, z > 0, let

Dz(x) = {n ≤ x : p(n) > z}

and let τz(m) be the number of divisors of m in Dz(m).

Lemma 5. Let A > 0 and 1 ≤ z ≤ A
log x

log4
2 x

. We then have

Rz(x) :=
∑

p≤x

τz(p− 1) = c1
x

log z
+O

(

x

log2 z

)

(14)

and

Sz(x) :=
∑

p≤x

τz(p− 1)

p
= c1

log x

log z
+O

(

log x

log2 z

)

, (15)

where the constants implied in O above depend only on A.
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Proof. Let y ≤ x be any positive real number. Our plan is to estimate Rz(y),
so proving (14), and then use partial summation to prove (15).

Note that

Rz(y) =
∑

p≤y

τz(p− 1) ≤
∑

p≤y

τ(p− 1) ≤ 2
∑

d≤√
y

π(y; d, 1) � y, (16)

where the last estimate follows from the Brun–Titchmarsh inequality. (Corol-
lary 1 in [4] gives a more precise estimate.) We shall use this estimate when
y is relatively small. In general,

Rz(y) =
∑

p≤y

τz(p− 1) =
∑

p≤y

∑

d∈Dz(y)
d|p−1

1 =
∑

d∈Dz(y)

π(y; d, 1).

Assume now that y > ez log2 z. We write B for a constant to be de-
termined later. If y is large, we then split the sum appearing in Rz(y) at

Q :=
y

Pz logB y
. Then,

Rz(y) =
∑

d∈Dz(Q)

π(y; d, 1) +
∑

Q<d≤y
p(d)>z

π(y; d, 1) := R1 +R2. (17)

Note that if d > Q and p ≤ y is a prime with p ≡ 1 (mod d), then p = 1+du
with u < y/Q = Pz logB y. Thus,

R2 ≤
∑

u≤Pz logB y

π(y; u, 1).

By the Brun–Titchmarsh inequality, we get

R2 � π(y)
∑

u≤Pz logB y

1

ϕ(u)
� π(y) log(Pz logB y) � y log2 y

log y
+

yz

log y

� y

log2 z
, (18)

where the last inequality above holds because y > ez log2 z.

We now deal with R1. We claim that

R1 = π(y)
∑

d∈Dz(Q)

1

ϕ(d)
+O

(

y

log2 y

)

(19)
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holds if B is suitably chosen.

Indeed, note that by the principle of inclusion and exclusion, we have

R1 =
∑

d≤Q
p(d)>z

π(y; d, 1) =
∑

r|Pz

µ(r)
∑

n≤Q
r|n

π(y;n, 1).

Thus,

R1 = Ez(y) +
∑

r|Pz

µ(r)
∑

n≤Q
r|n

π(y)

ϕ(n)
,

where Ez(y) has been defined in Lemma 3. By Lemma 3, the estimate

R1 =
∑

r|Pz

µ(r)
∑

n≤Q
r|n

π(y)

ϕ(n)
+O

(

y

logC y

)

= π(y)
∑

d∈Dz(Q)

1

ϕ(d)
+O

(

y

logC y

)

holds with any value of C > 0 provided that B is chosen to be sufficiently
large with respect to C. We set C := 2, and we obtain (19). Since

Q =
y

Pz logB y
> y1/2 > exp

(

1

2
z log2 z

)

,

it follows that z � Q/log2Q, and we are therefore entitled to apply Lemma
4 and conclude that

R1 = c1
π(y) logQ

log z
+O

(

π(y) logQ

log2 z

)

+O

(

y

log2 y

)

= c1
y

log z
+O

(

y

log2 z

)

. (20)

Combining (17)–(20), we get that

Rz(y) = c1
y

log z
+O

(

y

log2 z

)

(21)

holds when y > ez log2 z, which in particular proves estimate (14). To arrive
at (15), we now simply use partial summation to get that

Sz(x) =

∫ x

1

dRz(t)

t
=

Rz(t)

t

∣

∣

∣

t=x

t=1
+

∫ x

1

Rz(t)

t2
dt

=

∫ ez log2 z

1

Rz(t)

t2
dt+

∫ x

ez log2 z

Rz(t)

t2
dt+O(1).
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The first integral above is, by (16),

∫ ez log2 z

1

Rz(t)

t2
dt�

∫ ez log2 z

1

1

t
dt ≤ z log2 z � log x

log2 z
, (22)

while the second integral above is, by (21),
∫ x

ez log2 z

Rz(t)

t2
dt =

c1
log z

∫ x

ez log2 z

1

t
dt+O

(

1

log2 z

∫ x

ez log2 z

1

t
dt

)

= c1
log x

log z
− c1z log z +O

(

log x

log2 z

)

= c1
log x

log z
+O

(

log x

log2 z

)

, (23)

and (15) now follows from (22) and (23).

Lemma 6. (i) Let A and z be as in Lemma 5 and 1 ≤ u ≤ x be any positive
integer with p(u) > z. Then

Su,z(x) :=
∑

p≤x
p≡1 (mod u)

τz(p− 1)

p
� τ(u)

u
Sz(x) log x. (24)

(ii) Let A1 > 0, 0 < A2 < 1/2, u < logA1 x and logA2 x < z ≤
√

log x

log6
2 x

.

Assume that p(u) > z. Then

Ru,z(x) :=
∑

p≤x
p≡1 (mod u)

τz(p− 1) = c1
τ(u)

u

x

log z
+O

(

x

u log2 z

)

(25)

and

Su,z(x) =
τ(u)

u
Sz(x)

(

1 +O

(

1

log z

))

. (26)

The implied constants depend at most on A and A1, A2, respectively.

Proof. To see inequality (24), we replace the prime summand p with an
integer summand n, so that

Su,z(x) ≤
∑

n≤x
n≡1 (mod u)

τz(n− 1)

n− 1
=

∑

n≤x
n≡1 (mod u)

1

n− 1

∑

d∈Dz(x)
d|n−1

1.

12



Thus,

Su,z(x) ≤
∑

d∈Dz(x)

∑

n≡1 (mod [u,d])
n≤x

1

n− 1
=

∑

d∈Dz(x)

1

[u, d]

∑

m≤x/[u,d]

1

m

� log x
∑

d∈Dz(x)

1

[u, d]
≤ log x

τ(u)

u

∑

d∈Dz(x)

1

d

=
τ(u)

u
Lz(x) log x � τ(u)

u
Sz(x) log x,

where in the above inequalities we used Lemmas 4 and 5.

For inequality (26), let us first notice that under the conditions (ii), we
have that Ω(u) � 1; hence, τ(u) � 1, and also that

uϕ(d)

ϕ(ud)
= 1 +O

(

1

z

)

(27)

holds uniformly in such positive integers u and all positive integers d.

The proof of (26) now closely follows the method of proof of (15). That
is, let x be large, assume that z is fixed, and for y ≤ x write

Ru,z(y) :=
∑

p≤y
p≡1 (mod u)

τz(p− 1) =
∑

d∈Dz(y)

π(y; [u, d], 1).

Let w := exp

(√
log x

log2 x

)

. Note that for large x the inequality z <
log y

(log2 y)
4

holds whenever y > w. For y ≤ w, we use the trivial inequality

Ru,z(y) �
y log y

u
. (28)

Assume now that y > w. Since log y > log1/3 x holds for large x, and
u < logA1 x, we get that u < log3A1 y. We write B for a constant to be

determined later and we split the sum appearing in Ru,z(y) atQ :=
y

Pz logB y
.

Thus,

Ru,z(y) =
∑

d∈Dz(Q)

π(y; [u, d], 1) +
∑

Q<d≤y
p(d)>z

π(y; [u, d], 1) := R1 +R2.

13



It is easy to see that

R2 ≤
∑

d≤Pz logB y

π(y; [u, d], 1).

Thus, by the Brun–Titchmarsh inequality,

R2 � π(y)
∑

d≤Pz logB y

1

ϕ([u, d])
� π(y)

τ(u)

u
log(Pz log3A1+B y)

� y log2 y

u log y
+

yz

u log y
� y

u log2 z
, (29)

where we used τ(u) � 1 together with (27).

We now deal with R1. We claim, as in the proof of Lemma 5, that

R1 = π(y)
∑

d∈Dz(Q)

1

ϕ([u, d])
+O

(

y

u log2 y

)

(30)

holds if B is suitably chosen.

Indeed, note that since u and Pz are coprime, by the principle of inclusion
and exclusion, we have

R1 =
∑

d≤Q
p(d)>z

π(y; [u, d], 1) =
∑

r|Pz

µ(r)
∑

n≤Q
r|n

π(y; [u, n], 1).

Thus,

R1 = Eu,z(y)+
∑

r|Pz

µ(r)
∑

n≤Q
r|n

π(y)

ϕ([u, n])
= Eu,z(y)+π(y)

∑

d∈Dz(Q)

1

ϕ([u, d])
, (31)

where Eu,z(y) is the sum appearing in Lemma 3. Estimate (30) now follows
from (4). Since

Q

u
>

y

Pzu logB x
>

y

Pz log3A1+B
> y1/2 > exp

(

1

2
z log4 z

)

,

14



it follows that z � Q/(u log4(Q/u)), and we are therefore entitled to apply
Lemmas 4 and 5 together with estimate (27) and conclude that

R1 = π(y)
∑

d∈Dz(Q)

1

ϕ([u, d])
+O

(

y

u log2 y

)

= π(y)
∑

d1∈Dz(Q/u)

τ(u)

ϕ(ud1)
+O









π(y)
∑

Q/u<d1≤Q
p(d)>z

1

ϕ(ud1)









+O

(

y

u log2 y

)

= π(y)
τ(u)

u
Mz(Q/u) +O

(

π(y)

uz
Mz(Q)

)

+O

(

π(y)

u
(Mz(Q) −Mz(Q/u))

)

+O

(

y

u log2 y

)

= c1π(y)
τ(u)

u

log(Q/u)

log z
+O

(

π(y) logu

u log z

)

+O

(

π(y) logQ

u log2 z

)

= c1
τ(u)

u

y

log z
+O

(

y

u log2 z

)

. (32)

Combining (28)–(32), we get that

Ru,z(y) = c1
τ(u)

u

y

log z
+O

(

y

u log2 z

)

(33)

holds when y > w, which proves estimate (25).

We now use partial summation to get that

Su,z(x) =

∫ x

1

dRu,z(t)

t
=

Ru,z(t)

t

∣

∣

∣

t=x

t=1
+

∫ x

1

Ru,z(t)

t2
dt

=

∫ w

1

Ru,z(t)

t2
dt+

∫ x

w

Ru,z(t)

t2
dt+O

(

1

u log z

)

.

The first integral above is, by (28),

∫ w

1

Ru,z(t)

t2
dt� 1

u

∫ w

1

log t

t
dt� log2 w

u
� log x

u log2
2 x

� log x

u log2 z
. (34)
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Finally, the second integral above is, by (33),

∫ x

w

Ru,z(t)

t2
dt = c1

τ(u)

u

1

log z

∫ x

w

1

t
dt +O

(

1

u log2 z

∫ x

w

1

t
dt

)

= c1
τ(u)

u

1

log z
(log x− logw) +O

(

log x

u log2 z

)

= c1
τ(u)

u

log x

log z
+O

(

log x

u log2 z

)

= c1
τ(u)

u
Sz(x)

(

1 +O

(

1

log z

))

,

which completes the proof of Lemma 6.

Lemma 7. Let z = z(x) :=

√
log x

log6
2 x

. Let I(x) := (z, z5]. Let Q(x) be the

set of all prime numbers p with z < p ≤ x such that p− 1 is not divisible by
the square of any prime q > z, and p− 1 has at most 7 prime factors in the
interval I(x). Then for large x we have

S ′
z(x) :=

∑

p∈Q(x)

τz(p− 1)

p
> 0.7Sz(x).

Proof. Let Q1(x) be the set of those primes p such that q2|p − 1 for some
q > z. Fix q. Assume first that q > logA x, where A is a constant to be
determined later. Then, by (24),

Sq2,z(x) �
log x

q2
Sz(x),

and therefore

∑

q>logA x

Sq2,z(x) � (log x)Sz(x)
∑

q>logA x

1

q2
� Sz(x)

logA−1 x log2 x
.

Choosing A = 1, we see that

∑

q>log x

Sq2,z(x) �
Sz(x)

log2 x
.
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Assume now that q ∈ (z, log x]. By (26), it follows that Sq2,z(x) � Sz(x)/q
2,

and therefore

∑

z<q≤log x

Sq2,z(x) � Sz(x)
∑

q>z

1

q2
� Sz(x)

z log z
� Sz(x)

log2 x
.

In particular, we have

∑

q>z

Sq2,z(x) = O

(

log x

log2
2 x

)

. (35)

We now let B be a positive integer to be fixed later, and assume that u
is a squarefree number having ω(u) = B, and such that all its prime factors
are in the interval I(x). Let UB be the set of such numbers u. Since B is
fixed, we have u < z5B < log5B/2 x, and therefore, by (26), we have

Su,z(x) =
2B

u
Sz(x)

(

1 +O

(

1

log2 x

))

.

Summing up over all possible values of u ∈ UB, we get

∑

u∈UB

Su,z(x) = Sz(x)2
B

(

∑

u∈UB

1

u

)

(

1 +O

(

1

log2 x

))

.

Clearly,

∑

u∈UB

1

u
≤ 1

B!





∑

p∈I(x)

1

p





B

=
1

B!

(

log2(z
5) − log2 z +O

(

1

log z

))B

=
(log 5)B

B!

(

1 +O

(

1

log2 x

))

.

Hence,
∑

u∈UB

Su,z(x) ≤
(2 log 5)B

B!
Sz(x)

(

1 +O

(

1

log2 x

))

.

Since (2 log 5)8/8! < 0.286, we have for B = 8 and large x that

∑

u∈UB

Su,z(x) < 0.29Sz(x). (36)
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Thus, with (35) and (36), and using
∑

p≤z τz(p− 1)/p =
∑

p≤z 1/p� log2 z,

S ′
z(x) =

∑

p∈Q(x)

τz(p− 1)

p− 1

≥ Sz(x) −
∑

q>z

Sq2,z(x) −
∑

u∈UB

Su,z(x) −
∑

p≤z

τz(p− 1)

p
> 0.7Sz(x)

for large x, which completes the proof of Lemma 7.

3 The Proof of Theorem 1

We shall analyze the expression

T (x) :=
∑

n≤x

τ(ϕ(n))

n
.

3.1 The upper bound

For every positive integer n we write β(n) :=
∏

p|n p. Then n can be written as

n = β(n)m where all prime factors of m are among the prime factors of β(n).
Moreover, ϕ(n) = mϕ(β(n)), and therefore τ(ϕ(n)) ≤ τ(m)τ(ϕ(β(n))).
Thus,

T (x) ≤
∑

k≤x
µ(k)6=0

∑

m≤x/k

τ(m)τ(ϕ(k))

mk
=

∑

k≤x
µ(k)6=0

τ(ϕ(k))

k

∑

m≤x/k

τ(m)

m

� U(x) log2 x, (37)

where

U(x) :=
∑

n≤x
µ(n)6=0

τ(ϕ(n))

n
.

We now let z = z(x) be as in Lemma 7. For every positive integer n we
write τ ′z(n) for the number of divisors of the largest divisor of n composed
only of primes p ≤ z. Clearly, τ(n) = τz(n)τ ′z(n). If n ≤ x and pα‖n, then
α + 1 < 2 log x. This shows that

τ ′z(n) ≤ (2 log x)π(z) < exp

(

10

√
log x

log5
2 x

)

. (38)
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Using also the fact that τz(ab) ≤ τz(a)τz(b) holds for all positive integers a
and b, together with (37) and (38), we get that the inequality

T (x) ≤ Vz(x)exp

(

O

(√
log x

log5
2 x

))

holds, where

Vz(x) :=
∑

n≤x
µ(n)6=0

∏

p|n

τz(p− 1)

p
.

To find an upper bound on the last expression, we use Rankin’s method.
Let s = s(x) < 1 be a small positive real number depending on x to be
determined later, and note that

Vz(x) ≤ xs
∑

n≤x
µ(n)6=0

1

ns

∏

p|n

τz(p− 1)

p
= xs

∑

n≤x
µ(n)6=0

∏

p|n

τz(p− 1)

p1+s

≤ xs
∏

p≤x

(

1 +
τz(p− 1)

p1+s

)

≤ exp

(

s log x +
∑

p≤x

τz(p− 1)

p1+s

)

.

We now find s in such a way as to minimize

fs(x) := s log x +
∑

p≤x

τz(p− 1)

p1+s
.

For this, recall that from the proof of Lemma 5, we have

∑

p≤x

τz(p− 1)

p1+s
=

∫ x

2

dRz(t)

t1+s
=

Rz(t)

t1+s

∣

∣

∣

t=x

t=2
+ (1 + s)

∫ x

2

Rz(t)

t2+s
dt

= (1 + s)

∫ x

2

Rz(t)

t2+s
dt + O

(

1

xs log z

)

. (39)

We shall later choose s :=
c
1/2
1√

log x log z
. In order to compute the above

integral (39), we split it at x0 := e1/(s log2 z). In the first (smaller) range, we
use the fact that Rz(t) � t and that ts ≥ 1 to get

∫ x0

2

Rz(t)

t2+s
dt�

∫ x0

2

1

t
dt ≤ log x0 =

1

s log2 z
.
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Note that x0 ≥ ez log2 z for x sufficiently large. Thus, from the estimate of
Rz(t) from Lemma 5, we have

∫ x

x0

Rz(t)

t2+s
dt =

c1
log z

∫ x

x0

dt

t1+s
+O

(

1

log2 z

∫ x

x0

dt

t1+s

)

=
c1

s log z
(x−s

0 − x−s) +O

(

1

s log2 z

)

=
c1

s log z
+O

(

1

s log2 z

)

,

where we used the fact that xs
0 = exp(1/log2 z) = 1 +O(1/log2 z). Thus,

fs(x) = s log x+
c1(1 + s)

s log z
+O

(

1

s log2 z

)

.

With our choice for s, we have

fs(x) = 2c
1/2
1

(

log x

log z

)1/2

+O

(

log1/2 x

log3/2 z

)

.

Since z =
√

log x/log6
2 x, we get

fs(x) = 23/2c
1/2
1

(

log x

log2 x

)1/2 (

1 +O

(

log3 x

log2 x

))

.

Thus, we have obtained the upper bound

T (x) ≤ exp

(

23/2e−γ/2

(

log x

log2 x

)1/2 (

1 +O

(

log3 x

log2 x

))

)

. (40)

Since Dϕ(x) ≤ xT (x), we have the upper bound in Theorem 1.

3.2 The lower bound

We write c2 for a constant to be computed later and we set

v :=

⌊

c2

(

log x

log2 x

)1/2
⌋

− 2.
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We write

y := exp

(

1

c2
(log xlog2 x)

1/2

)

.

We now write z := z(y), where the function z is the one appearing in Lemma
7. We write Q := Q(y) for the set of primes defined in Lemma 7. Recall
that Q(y) is the set of primes p ≤ y such that p − 1 is not divisible by the
square of any prime q > z and p − 1 has at most 7 distinct prime factors
in (z, z5]. Consider squarefree numbers n having ω(n) = v and such that all
their prime factors are in Q. Let N be the set of those numbers. It is clear
that if n ∈ N then n ≤ x/y2. Let

VN ,z(x) :=
∑

n∈N

τz(ϕ(n))

n
. (41)

For a number n ∈ N , we write τ ′′(n) :=
∏

p|n τz(p − 1) and we look at the
sum

WN :=
∑

n∈N

τ ′′(n)

n
.

By the binomial formula, and Stirling’s formula, it follows that

WN ≤ 1

v!

(

∑

p∈Q

τz(p− 1)

p

)v

� 1√
v

(

e

v

∑

p∈Q

τz(p− 1)

p

)v

.

A simple calculation based on Lemmas 5 and 7 shows that

0.7e
Sz(y)

v
≤ e

v

∑

p∈Q

τz(p− 1)

p
≤ e

Sz(y)

v

and that
Sz(y)

v
= c3 +O

(

log3 x

log2 x

)

,
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where c3 :=
4c1
c22

. We now observe that

1

v!

(

∑

p∈Q

τz(p− 1)

p

)v

≤ WN +
1

(v − 2)!

(

∑

p∈Q

τz(p− 1)

p

)v−2
1

2

(

∑

p∈Q

τz(p− 1)2

p2

)

= WN +O

(

1

v!

(

∑

p∈Q

τz(p− 1)

p

)v(
∑

p∈Q

τz(p− 1)2

p2

))

.

Since p ∈ Q implies that p > z, and since for large x the inequality τz(p−1) ≤
τ(p− 1) < p1/4 holds for all p > z, we get

∑

p∈Q

τz(p− 1)2

p2
≤
∑

p>z

1

p3/2
� 1

z1/2 log z
.

Hence, the above argument shows that

WN =
1

v!

(

∑

p∈Q

τz(p− 1)

p

)v
(

1 +O

(

1

z1/2 log z

))

� 1√
v

(

c4 +O

(

log3 x

log2 x

))v

,

where c4 := 0.7c3.
We now select the subset M of N formed only by those n such that there

is no prime number q > z5 such that q|p1 − 1 and q|p2 − 1 holds for two
distinct primes p1 and p2 dividing n. Note that this is equivalent to the fact
that ϕ(n) is not a multiple of a square of a prime q > z5. To understand the
sum WM restricted only to those n ∈ M, let us fix a prime number q. Then,
summing up τ ′′(n)/n only over those n such that q2|ϕ(n) for the fixed prime
q > z5, we get

Wq,N :=
∑

n∈N
q2|ϕ(n)

τ ′′(n)

n
� 1

(v − 2)!

(

∑

p∈Q

τz(p− 1)

p

)v−2

Sq,z(y)
2

� WNSq,z(y)
2.

22



Assume first that q > logA y, where A is a constant to be determined later.
In this case, by Lemmas 6 and 5,

Sq,z(y) �
Sz(y) log y

q
� log2 y

q log z
,

and therefore

Wq,N �WN
log4 y

q2 log2 z
. (42)

Summing up inequalities (42) for all q ≥ logA y, we get

∑

q≥logA y

Wq,N �WN
log4 y

log2 z

∑

q>logA y

1

q2
� WN

(log y)A−4 log2
2 y

� WN
log y

,

provided that we choose A := 5.
When q < log5 y, then the same argument based again on Lemma 6,

shows that

Wq,N �WN
log2 y

q2 log2 z
,

and therefore

∑

z5<q<log5 y

Wq,N �WN
log2 y

log2 z

∑

q>z5

1

q2
�WN

log2 y

z5 log3 z
� WN

log27
2 y

log1/2 y
.

This shows that

WM :=
∑

n∈M

τ ′′(n)

n
≥ WN −

∑

q>z5

Wq,N = WN (1 + o(1))

� 1√
v

(

c4 +O

(

log3 x

log2 x

))v

. (43)

Notice now that if n ∈ M then

τz(ϕ(n)) ≥ τz5(ϕ(n)) =
∏

p|n
τz5(p− 1) ≥

∏

p|n

(

τz(p− 1)

27

)

≥ 1

27v
τ ′′(n). (44)

Thus, with (41) and (43), we get

VN ,z(x) ≥
1

27v
WM � 1√

v

(

c5 +O

(

log3 x

log2 x

))v

,
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where c5 := 2−7c4. So, we see that

VN ,z(x) ≥ exp

(

c6

(

log x

log2 x

)1/2(

1 +O

(

log3 x

log2 x

))

)

, (45)

holds for large x with

c6 := c2 log

(

0.7 · 4e1−γ

c222
7

)

. (46)

To see the lower bound in Theorem 1, we look at integers np, where n ∈
M and p is prime with y < p ≤ x/n. Each such integer np arises in a
unique way, and the number of primes p corresponding to a particular n
is π(x/n) − π(y) ≥ 1

2
π(x/n) � x/(n log x). Further, τ(ϕ(np)) > τz(ϕ(n)).

Thus,

Dϕ(x) � x

log x
VN ,z(x). (47)

So, letting c2 = (2.8/27)1/2e−γ/2 > 1
7
e−γ/2, we have c6 = c2, and from (45)

and (47), we have the lower bound in Theorem 1 for all large x.

4 The proof of Theorem 2

Part (i) follows immediately from the proof of Theorem 1. Indeed, λ(n)|ϕ(n),
therefore τ(λ(n)) ≤ τ(ϕ(n)) holds for all positive integers n. In particular,
Dλ(x) ≤ Dϕ(x). For the lower bound, it suffices to note that if M is the
set of integers constructed in the proof of the lower bound for Dϕ(x), then
ϕ(n) is not divisible by the square of any prime p > z5. In particular, the
inequality τz(λ(n)) = τ ′′(n)/27v also holds (compare with (44)). Thus, the
lower bound on Dλ(x) follows from the proof of the lower bound for Dϕ(x).

To see (ii), we put

κ = b10 log2 xc and w =

√
log x

log2
2 x

,

and let E1(x) be the set of n ≤ x such that either 2κ|n or there exists a prime
p|n with p ≡ 1 (mod 2κ), and E2(x) be the set of n ≤ x with ω(n) ≤ w.
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Since τ(φ(ab)) ≤ τ(φ(a))τ(φ(b)), we have

∑

n∈E1(x)

τ(λ(n))

n
≤

∑

n∈E1(x)

τ(ϕ(n))

n

≤ τ(2κ)

2κ

∑

m≤x/2κ

τ(ϕ(m))

m
+

∑

p≤x
p≡1 (mod 2κ)

τ(p− 1)

p

∑

m≤x/p

τ(ϕ(m))

m
.

We majorize the inner sums with T (x), so that

∑

n∈E1(x)

τ(λ(n))

n
≤

(

κ+ 1

2κ
+ S2κ,1(x)

)

T (x) � κ log x

2κ
S1(x)T (x)

� log2 x log2 xT (x)

(log x)10 log 2
� T (x)

log2 x
, (48)

where in the above estimates we used Lemmas 5 and 6 to estimate S2κ,1(x)
and S1(x), respectively, and the fact that 10 log 2 > 4.

Furthermore, by the multinomial formula and the Stirling formula,

∑

n∈E2(x)

τ(λ(n))

n
≤

∑

n∈E2(x)

τ(ϕ(n))

n
≤
∑

k≤w

∑

n≤x
ω(n)=k

τ(ϕ(n))

n

≤
∑

k≤w

1

k!

(

∑

pα≤x

τ(ϕ(pα))

pα

)k

≤
∑

k≤w

1

k!







∑

p≤x

τ(ϕ(p− 1))

p
+
∑

2≤p
2≤α

τ(ϕ(pα))

pα







k

≤
∑

k≤w

1

k!
(S1(x) +O(1))k ≤

∑

k≤w

(

eS1(x) +O(1)

k

)k

.

Let c7 be the constant implied by the last O(1). Since S1(x) � log x, the
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function k 7→
(

eS1(x) + c7
k

)k

is increasing for k ≤ w once x is large. Thus,

∑

n∈E2(x)

τ(λ(n))

n
≤ w

(

eS1(x) + c7
w

)w

= exp

(

w log

(

eS1(x) + c7
w

)

+ logw

)

= exp

((

1

2
+ o(1)

) √
log x

log2 x

)

= o

(

T (x)

log2 x

)

, (49)

where the last estimate above follows from estimate (45) and T (x) ≥ VN ,z(x).
Finally, if we set E3(x) for the set of all positive integers n ≤ x not

in E1(x) ∪ E2(x), we then notice that if n ∈ E2(x), then 2α‖ϕ(n), where
α ≥ ω(n) − 1 ≥ w − 1, and 2β||λ(n), where β < κ. Hence,

τ(ϕ(n))

τ(λ(n))
≥ (α+ 1)

β + 1
�

√
log x

log3
2 x

.

Thus,
1

x

∑

n∈E3(x)

τ(λ(n)) � log3
2 x√

log x
Dϕ(x), (50)

while estimates (48), (49) and partial summation show that

log2 x

x

∑

n∈E1(x)∪E2(x)

τ(λ(n)) ≤ log2 x
∑

n∈E1(x)∪E2(x)

τ(λ(n))

n

� T (x) =

∫ x

1

d(tDϕ(t))

t
≤ Dϕ(x) +

∫ x

1

Dϕ(t)

t
dt

� D∗
ϕ(x)

(

1 +

∫ x

1

dt

t

)

� D∗
ϕ(x) log x.

Therefore
1

x

∑

n∈E1(x)∪E2(x)

τ(λ(n)) � D∗
ϕ(x)

log x
. (51)

Clearly, summing up estimates (50) and (51) we get

Dλ(x) �
log3

2 x√
log x

D∗
ϕ(x),

and the proof of Theorem 2 is complete.
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