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In 1801, Carl Friedrich Gauss wrote:

“The problem of distinguishing prime numbers from composite
numbers, and of resolving the latter into their prime factors, is
known to be one of the most important and useful in arithmetic.
It has engaged the industry and wisdom of ancient and modern
geometers to such an extent that it would be superfluous to dis-
cuss the problem at length. Nevertheless we must confess that all
methods that have been proposed thus far are either restricted
to very special cases or are so laborious and difficult that even
for numbers that do not exceed the limits of tables constructed
by estimable men, they try the patience of even the practiced
calculator. And these methods do not apply at all to larger num-
bers... Further, the dignity of science itself seems to require that
every possible means be explored for the solution of a problem so
elegant and so celebrated.”

In this call to arms, Gauss separates the problem of prime factorization
into two problems: recognizing primes and factoring composites. This article
discusses the first of these, the problem known as primality testing. In the
following we take a historical perspective, but not necessarily in a normal

∗This paper is based on a talk with the same title given by the author as the Lucas
Lecture at the 13th meeting of the Fibonacci Association in Patras, Greece, July 2008.
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historical progression: the order of topics is chosen for mathematical, not
historical reasons. For pointers to more scholarly works, see the comments
at the end of the article.

Let us begin our investigation.

Two elementary theorems

Wilson: If p is prime, then (p − 1)! ≡ −1 (mod p).

Fermat: If p is prime and p - a, then ap−1 ≡ 1 (mod p).

How efficient are these as primality criteria? It would seem neither is,
since they both involve gigantic numbers when p is large.

For Fermat though, the repeated squaring algorithm is quite efficient.
Use the recursion

ak mod n =

{

(

ak/2 mod n
)2

mod n, if k is even,

a
(

a(k−1)/2 mod n
)2

mod n, if k is odd.

Let’s check out Fermat for a = 2, p = 91. Backing down from exponent
90, we get 90, 45, 44, 22, 11, 10, 5, . . . ; well perhaps “5” is low enough to get
started:

25 ≡ 32 (mod p), 210 ≡ 23 (mod p), 211 ≡ −45 (mod p)

222 ≡ 23 (mod p), 244 ≡ −17 (mod p), 245 ≡ −34 (mod p)

290 ≡ 64 (mod p).

Huh? So, we conclude that it is efficient to check Fermat, but the theorem
is wrong!?

Actually, the theorem is correct, and the calculation proves that 91 is
composite!

Not boring you with the calculation, but if we try it we find that

2340 ≡ 1 (mod 341).1

What should be concluded?
Answer: 341 is prime or composite.

1It can be seen even more easily that 2340 ≡ 1 (mod 341) as follows. Note that 3×341 =
1023 = 210 − 1, so that 210 ≡ 1 (mod 341), which upon taking the 34th power of both
sides, yields the stated congruence.
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It is good we mathematicians do not routinely reason from the converse;
indeed 341 = 11 × 31.

So the converse of Fermat is false in general. But note that the converse
of Wilson is correct: If (n − 1)! ≡ −1 (mod n) and n > 1, then n is prime.

Unfortunately, we know no fast way to check the Wilson congruence.
Returning to Fermat, it seems the converse is almost true. That is, num-

bers such as 341, known as (base 2) pseudoprimes, appear numerically to
be fairly rare. Can we find some way to turn Fermat around and make it a
primality-proving engine? An answer was supplied in 1876.

Lucas: Suppose that n > 1 and a are integers with

an−1 ≡ 1 (mod n) and

a(n−1)/q 6≡ 1 (mod n) for all primes q | n − 1.

Then n is prime.
Proof. Let h be the multiplicative order of a in the group (Z/nZ)×. The
first congruence implies that h | n − 1. The second batch of congruences
imply that h is not a proper divisor of n − 1. Thus, h = n − 1 and so
ϕ(n) = |(Z/nZ)×| ≥ n − 1. We conclude that n is prime. �

This delightfully simple and elegant idea of Lucas has been the basis of
essentially all of primality testing. The idea of Lucas can be summed up as
follows: Build up a group that is so large that n is forced to be prime.

But first, why do we need to go further, isn’t this the converse of Fermat
that we were looking for? Perhaps, but we would need to resolve the following
questions:

1. If n is prime, is there a number a satisfying the hypothesis?

2. If so, how do we find such a number a?

3. If we have a number a, how do we find the primes q | n − 1 needed for
the second batch of congruences?

For question 1, we are asking: if n is prime, must (Z/nZ)× be a cyclic
group? Yes, by a theorem of Gauss. This is known in elementary number
theory as the theorem on the primitive root.

For question 2, we are asking for an algorithm to find a primitive root. A
sequential search starting with a = 2 is conjectured to succeed quickly, and
this is provable assuming the Generalized Riemann Hypothesis (GRH). The
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probabilistic algorithm of choosing random numbers a is very fast in practice
and in theory. (The randomness involved is in finding the proof that n is
prime; there should be no doubt in the conclusion.)

For question 3, we are asking how to find the complete prime factorization
of n − 1. To quote Shakespeare’s Hamlet, “Aye, there’s the rub.”

Well, for some numbers n it is not so hard, say if n = 22k
+ 1.

Pepin: If k ≥ 1, then n = 22k
+ 1 is prime if and only if 3(n−1)/2 ≡ −1

(mod n).
Proof. If the congruence holds, then Lucas implies n is prime. Say n is
prime. Then n ≡ 5 (mod 12) so that 3 is a quadratic nonresidue mod n.
The congruence is then just Euler’s criterion. �

The Lucas idea applied to elliptic curve groups

For p > 3 prime and a, b integers with 4a3 + 27b2 6≡ 0 (mod p), consider
the set of nonzero triples (x : y : z) mod p with

y2z ≡ x3 + axz2 + bz3 (mod p),

where the notation (x : y : z) means that for c 6≡ 0 (mod p), we identify
(x : y : z) with (cx : cy : cz). We can create a group structure on these
triples, with the identity being (0 : 1 : 0). (The group law involves some
simple polynomial operations and comes from the geometric chord-tangent
method for elliptic curves.)

Hasse, Schoof: The order of the group is in the interval

(p + 1 − 2
√

p, p + 1 + 2
√

p);

this group order can be quickly computed.

Say we have a number n that we think is prime, we choose a, b with
gcd(4a3 + 27b2, n) = 1, we compute the order h of the elliptic curve “group”
(as if n were prime), we have the complete prime factorization of h, and
we have a point P on the curve of order h, found as with Lucas. Then if
h ∈ (n+1−2

√
n, n+1+2

√
n), then n is prime.

This is the basic idea behind ECPP (Elliptic Curve Primality Proving),
due to Goldwasser & Kilian, Atkin, and Elkies, though you can see it is really
just Lucas in another setting. The advantage is that while n−1 may be hard
to factor, the number h discovered may be easily factored. And if it isn’t,
another elliptic curve can provide a fresh chance.
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Note: The elliptic curve group need not be cyclic, but it often is, and
almost always is nearly so. Many tweaks make this idea into a better algo-
rithm. For example, the factorization of h may include a very large prime
factor, but is it really prime? Thus, the method is iterated. As it stands,
ECPP is the fastest algorithm in practice for “general” numbers.

Back to the original Fermat/Lucas setting

What if one only has a portion of n − 1 factored? The Lucas result can
be extended if this portion is large enough.

Proth, Pocklington, Brillhart, Lehmer, & Selfridge (PPBLS): Sup-
pose a, F, n > 1 are integers, F | n−1, F >

√
n,

aF ≡ 1 (mod n) and

gcd(aF/q−1, n) = 1 for all primes q | F.

Then n is prime.
Proof. Let p denote the least prime factor of n. The hypotheses imply that
a has order F in (Z/pZ)×, so that p > F . But F >

√
n, so n has no prime

factors below
√

n, which implies that n is prime. �

Note that if n is prime and g is a cyclic generator of (Z/nZ)×, then
g(n−1)/F has order F . So, finding an element a of order F as in the theorem
is at least as easy as finding a cyclic generator of the group. But now, we
only have to factor part of n − 1.

Here are two families of numbers for which this method works well. They
appear in a recent article of Denomme and Savin [5], where the authors found
primality tests involving elliptic curves.

Example 1. Say nl = 22l − 22l−1

+ 1, where l is a positive integer. For
example, n1 = 3, n2 = 13, n3 = 241, etc. Can we find a fully factored divisor
Fl of nl − 1 with Fl >

√
nl? That’s easy, take Fl = 22l−1

. Good, but can
we easily find a candidate for the number a in the PPBLS result? Let us
try al = 7(nl−1)/Fl mod nl. Assume that l ≥ 2, so that nl ≡ 1 (mod 4). Also
note that nl ≡ 3 (mod 7) when l is odd and nl ≡ 6 (mod 7) when l is even.
Thus, if l ≥ 2 we have the Jacobi symbol ( 7

nl
) = −1. Let us prove: for l ≥ 2,

nl is prime if and only if

7(nl−1)/2 ≡ −1 (mod nl). (1)
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Indeed, if this congruence holds, then both

aFl
l ≡ 1 (mod nl), gcd(a

Fl/2
l − 1, n) = 1,

so that nl is prime by PPBLS. Conversely, if nl is prime, (1) holds by the
Euler criterion for quadratic residues. �

Example 2. Let ml = 32l − 32l−1

+ 1. Now we can take Fl = 32l−1

. And we
have the following result of Gauss [6] from his collected works (thanks are
due to Paul Pollack for the reference): Let p be a prime that is 1 mod 3, so
that there are integers L, M unique up to sign with 4p = L2 + 27M2. Then
2 is a cube (mod p) if and only if L and M are both even. Well,

4ml = (32l−1 − 2)2 + 27(32l−1
−1)2,

so that if ml is a prime, then 2 is not a cube modml. Let a = 2(ml−1)/Fl mod
ml in the PPBLS test, so that: ml is prime if and only if

2ml−1 ≡ 1 (mod ml), gcd(2(ml−1)/3 − 1, ml) = 1.

Enter the Fibonacci numbers

Lucas, and later Lehmer also explored using the Fibonacci sequence and
more general Lucas sequences to test n for primality.

For example, if p ≡ ±2 (mod 5), then up+1 ≡ 0 (mod p), where uk de-
notes the kth Fibonacci number. This can be turned into a primality criterion
for numbers n ≡ ±2 (mod 5) provided you have the prime factorization of
n + 1, or a large factored portion. For n 6≡ ±2 (mod 5) we can use other
Lucas sequences.

The $620 problem

If n is an odd composite number and D is 1 mod 4, |D| minimal with
(D/n) = −1, must either

2n−1 6≡ 1 (mod n)

or must the rank of appearance of n in the basic Lucas sequence with dis-
criminant D not be a divisor of n + 1?

Prove this and earn $620 ($500 from me, $100 from Wagstaff, $20 from
Selfridge). The first counterexample found (with the prime factorization of
n) also earns $620 ($500 from Selfridge, $100 from Wagstaff, and $20 from
me). In particular, you can earn $620 if you are the first to come up with a
composite number n and its prime factorization such that n ≡ ±2 (mod 5),
the (n + 1)st Fibonacci number is 0 (mod n), and 2n−1 ≡ 1 (mod n).
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Generalizing Lucas sequences

Working with a Lucas sequence mod p, where the characteristic poly-
nomial f(x) is irreducible mod p, is essentially working in the finite field
Fp[x]/(f(x)) of order p2. And taking this view there is no reason to restrict
f to degree 2.

Say we have a monic polynomial f ∈ (Z/nZ)[x] of degree d with

xnd ≡ x (mod f(x)), gcd(xnd/q − x, f(x)) = 1 for each prime q | d. (2)

If n is prime, these conditions hold if and only if f is irreducible over Fn =
Z/nZ. Thus, we have an easily checkable criterion that would allow us to
create the finite field Fnd if n were prime. This idea lies behind the next
topic.

The finite fields test

Lenstra: Suppose n, d are positive integers with n > 1 and f ∈ (Z/nZ)[x]
is monic of degree d. Suppose too that F | nd−1 and F >

√
n. Say g ∈

(Z/nZ)[x] satisfies

1. g(x)F ≡ 1 (mod f(x)),

2. gcd(g(x)F/q−1, f(x)) = 1 for each prime q | F ,

3. each elementary symmetric polynomial in g(x)nj
for 0 ≤ j ≤ d−1 is in

Z/nZ.

If none of the residues nj mod F for 0 ≤ j ≤ d−1 are proper factors of n,
then n is prime.
Proof. Let p be a prime factor of n. We’ll write bars over objects to indicate
they’re taken mod p. Let f̄1 be an irreducible factor of f̄ in Fp[x]. The first
two items in the theorem imply that α := ḡ has multiplicative order F in the
finite field K = Fp[x]/(f̄1(x)). Consider the polynomial

h(t) = (t − α)(t − αn) · · · (t − αnd−1

)

in K[t]. The third item implies that h(t) ∈ Fp[t]. Then h(αp) = 0, so that

αp = αnj
for some j, and so p ≡ nj (mod F ). �

Suppose n is prime. If f satisfies (2) and g is an element in the finite
field (Z/nZ)[x]/(f(x)) of multiplicative order F , then all three items in the
theorem hold.
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Note that it can be easier to find a large factored divisor of nd−1 then
it is of n−1. For example, if d = 2, then we automatically have 24 | n2−1
(assuming n is coprime to 6). If d = 12, we automatically have 24 ·32 ·5 ·7 ·13
dividing n12−1, and so on. In fact, there is always a fairly small d yielding a
large cheap factor.

Adleman, Pomerance, & Rumely: There is a value of d with

d < (log n)c log log log n

such that the least common multiple of the prime powers q with ϕ(q) | d
exceeds

√
n. Here c is an absolute constant.

In particular, the finite fields test of Lenstra can be made into a prob-
abilistic algorithm with expected time of (log n)O(log log log n) to decide if n is
prime. To be polynomial time, the runtime estimate should be (log n)O(1).
The finite fields test just misses!2

Mersenne primes

The finite fields test contains the Lucas–Lehmer test for Mersenne primes:
Suppose p is an odd prime and n = 2p−1. Then n is prime if and only if

x(n+1)/2 ≡ −1 (mod x2 − 4x + 1)

in (Z/nZ)[x].
Proof. We apply the finite fields test with f(x) = x2 − 4x + 1, g(x) = x
and F = n+1. Suppose the congruence above holds. Then g(x)F ≡ 1
(mod f(x)) and g(x)F/2 ≡ −1 (mod f(x)), so that g(x)F/2 − 1 is a unit mod
f(x). From xn+1 ≡ 1 (mod f(x)) we have g(x)g(x)n ≡ 1 (mod f(x)), and
from x−1 ≡ 4− x (mod f(x)), we have g(x) + g(x)n ≡ 4 (mod f(x)). Thus,
the hypotheses hold and every prime factor of n is 1 or n mod n. Hence n is
prime.

Now assume that n = 2p − 1 is prime. Since n ≡ 7 (mod 24), we have
( 2

n
) = 1, ( 3

n
) = −1. In particular f(x) = x2 − 4x + 1 is irreducible mod n.

We compute (x− 1)n+1 in the finite field K = Fn[x]/(f(x)) two ways. Using
(x − 1)2 = 2x, 2(n−1)/2 = 1, and xn = 4 − x,

(x − 1)n+1 =
(

(x − 1)2
)(n+1)/2

= (2x)(n+1)/2 = 2x(n+1)/2 and

(x − 1)n+1 = (x − 1)n(x − 1) = (xn − 1)(x − 1) = (3 − x)(x − 1) = −2.

2The joke I like to tell is that though it has been proved that log log log n goes to infinity
with n, it has never been observed doing so.
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Equating these two expressions, we have the congruence in the theorem. �

This does not look like the familiar Lucas–Lehmer test, which is as follows:
For p an odd prime, let n = 2p − 1, and consider the sequence (`j), where
`0 = 4 and `j+1 = `2

j − 2 mod n. Then n is prime if and only if `p−2 = 0.
However, it is easy to prove the equivalence: We work in the ring R =

(Z/nZ)[x]/(x2 − 4x + 1). Note that x(4 − x) = 1. Thus, x(n+1)/2 = −1 if
and only if x(n+1)/2−k = −x−k = −(4 − x)k for any integer k. Use this when
k = (n+1)/4, so that x(n+1)/2 = −1 if and only if x(n+1)/4 +(4−x)(n+1)/4 = 0.
Let `j = x2j

+ (4 − x)2j
. One easily checks that `0 = 4 and `j+1 = `2

j − 2, so
this is the same sequence `j as in the traditional Lucas–Lehmer test. �

The reader might have noticed that the sequence

vj = xj + (4 − x)j

in the ring R is the Lucas sequence 4, 14, 52, . . . mod n obeying the recurrence
vj+1 = 4vj − vj−1. We have `j = v2j .

Drawbacks

There are drawbacks with each of the tests considered so far:
The basic Lucas test or the PPBLS test needs a large factored divisor of

n−1, and randomness is often used to find a number a.
The elliptic curve test uses randomness and it has not been rigorously

proved to run in expected polynomial time.
The finite fields test uses randomness and it is not a polynomial time

algorithm.
From a theoretical perspective what would be ideal is a deterministic,

polynomial time algorithm. It is interesting that the basic idea of Lucas
settles this immediately if one is prepared to assume the GRH. If p is an odd
prime, we not only have the Fermat congruence ap−1 ≡ 1 (mod p) when p - a,
but it is also true that the only square roots of 1 (mod p) are ±1. Putting
these two thoughts together and writing p− 1 = 2st, where t is odd, we have
that either at ≡ 1 (mod p) or a2it ≡ −1 (mod p) for some 0 ≤ i ≤ s − 1.

Given an odd number n > 1 where n− 1 = 2st with t odd, let Gn be the
subgroup of (Z/nZ)× generated by those residues a such that either

at ≡ 1 (mod n) or a2it ≡ −1 (mod n) for some 0 ≤ i ≤ s − 1. (3)

It follows from a result of E. Bach and predecessors that assuming the GRH,
the group (Z/nZ)× is generated by its members smaller than 3(log n)2. Fur-
ther, it basically follows from a result of M. Rabin that, unconditionally, if n
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is an odd composite, the group Gn is a proper subgroup of (Z/nZ)× (and has
index at least 4 when n > 9). Thus, assuming the GRH, if n > 1 is odd, then
n is prime if and only if (3) holds for all integers 1 ≤ a ≤ min{n−1, 3(log n)2}.
In fact, this last assertion is true with coefficient 3 replaced with 2. The first
to give a GRH-conditional test like this was G. Miller.

Again, the influence of Lucas is unmistakable: just build up a group that
is too large for n to be composite.

But, we still have the drawback that this deterministic, polynomial time
test requires the assumption of the GRH. This brings us to our final topic.

The AKS test

In 2002, for their senior thesis, N. Kayal and N. Saxena solved the problem
with their advisor, M. Agrawal.

Agrawal, Kayal, & Saxena: Suppose n, r are coprime positive integers
with n > 1 and the multiplicative order of r ∈ (Z/nZ)× exceeds (log2 n)2. If,
in (Z/nZ)[x],

(x + a)n ≡ xn + a (mod xr − 1)

for each integer a in [0,
√

ϕ(r) log2 n], then either n has a prime factor in
this interval or n is a prime power.

Here ϕ is Euler’s function and log2 is the base-2 logarithm. It is not so hard
to show via an elementary method that a number r that has the requisite
multiplicative order exists below (log2 n)5. Further, it is simple to check
numerically if a number is a power of a smaller number or if a number has
a small prime factor. Thus, the theorem can be turned into a deterministic,
polynomial time algorithm to recognize primes. Finally, we have a resolution
to the quest of Gauss!

Using Fast Fourier Transform techniques for integer arithmetic and poly-
nomial arithmetic, it is possible to show that the running time of the AKS
test is O(r1.5(log n)3) times some constant power of log log n. Thus, with
r < (log2 n)5, the runtime is essentially bounded by (log n)10.5.

Heuristically, there should be a value for r near (log n)2 leading to the
complexity (log n)6, but the best that has been proved for r is a little lower
than (log n)3, leading to (log n)7.5 for the complexity of the test.

The AKS test is based on the polynomials xr − 1, where the condition
on the multiplicative order of r (mod n) guarantees when n is prime that
xr − 1 has an irreducible factor over Fn of large degree. Might we use other
polynomials than xr − 1? Indeed we can.
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Lenstra & Pomerance: Let n > 1 be an integer. Suppose f(x) ∈ (Z/nZ)[x]
is a monic polynomial of degree d > (log2 n)2 with f(xn) ≡ 0 (mod f(x)) and
such that (2) holds. If

(x + a)n ≡ xn + a (mod f(x)) for all a ∈ [0,
√

d log2 n],

then either n is divisible by a prime in this interval or n is a prime power.

The proofs of this theorem and the AKS theorem both involve building
up large groups using the given information. Sound familiar? Again it is the
idea of Lucas.

One can show, with considerable effort, that there is a fast algorithm
to produce a valid f(x) for the theorem with degree ≤ 4(log2 n)2 (or prove
n composite along the way). It thus follows that we have a deterministic
algorithm to test n for primality that runs in about (log n)6 elementary op-
erations.3

Our difficulties with producing an f(x) would be obviated if only one
could quickly and deterministically produce an irreducible polynomial over
a finite field of given degree. However, we know no such method, even for
degree 2! Our proof uses the cyclotomic periods that Gauss used in his
proof on the constructibility of regular n-gons. We have found it pleasing
to use this signature result of Gauss to make progress on his call to arms of
distinguishing prime numbers from composite numbers.

The last word

This article leaves much unsaid—it would take a book to give a thorough
synopsis of primality testing. For example, [2]. Further, the emphasis in
this article has been on the simplicity and commonality of some of the basic
ideas. For a more accurate historical treatment, see [3], [4] (thanks due to
Hugh Williams for informing me of these), and [8]. For many more details on
the AKS test, see not only the book [2], but the original paper of Agrawal,
Kayal, and Saxena [1] and the survey paper of Granville [7]. Lenstra and I
are still working on our improvement of the AKS test, though a proof of the
theorem above can be found in [2] and [7]. Finally, [2] and the Internet have
information about implementations and records.

3As of yet, tests in the AKS family have not proven to be computer-practical. They
are of interest as theorems in the field of algorithmic number theory.
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[8] H. C. Williams, Édouard Lucas and primality testing, Canadian Math.
Soc. Monographs 22, Wiley, New York, 1998.

12


