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In 1801, Carl Friedrich Gauss wrote:

“The problem of distinguishing prime numbers from composite

numbers, and of resolving the latter into their prime factors, is

known to be one of the most important and useful in

arithmetic. It has engaged the industry and wisdom of ancient

and modern geometers to such an extent that it would be

superfluous to discuss the problem at length. Nevertheless we

must confess that all methods that have been proposed thus far

are either restricted to very special cases or are so laborious and

difficult that even for numbers that do not exceed the limits of

tables constructed by estimable men, they try the patience of

even the practiced calculator. And these methods do not apply

at all to larger numbers... Further, the dignity of science itself

seems to require that every possible means be explored for the

solution of a problem so elegant and so celebrated.”
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Two elementary theorems:

Wilson: If p is prime, then (p − 1)! ≡ −1 (mod p).

Fermat: If p is prime and p - a, then ap−1 ≡ 1 (mod p).

How efficient are these as primality criteria?

It would seem neither, since they both involve gigantic numbers

when p is large.
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For Fermat, the repeated squaring algorithm is quite efficient:

Use

ak mod n =











(

ak/2 mod n
)2

mod n, if k is even,

a
(

a(k−1)/2 mod n
)2

mod n, if k is odd.

Let’s check out Fermat for a = 2, p = 91. We have

25 ≡ 32 (mod p), 210 ≡ 23 (mod p), 211 ≡ −45 (mod p)

222 ≡ 23 (mod p), 244 ≡ −17 (mod p), 245 ≡ −34 (mod p)

290 ≡ 64 (mod p).

Huh?
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So, we conclude that it is efficient to check Fermat, but the

theorem is wrong!?

Actually, the theorem is correct, and the calculation proves

that 91 is composite!

Not boring you with the calculation, but if we try it we find that

2340 ≡ 1 (mod 341).

What should be concluded?

Answer: 341 is prime
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So, we conclude that it is efficient to check Fermat, but the

theorem is wrong!?

Actually, the theorem is correct, and the calculation proves

that 91 is composite!

Not boring you with the calculation, but if we try it we find that

2340 ≡ 1 (mod 341).

What should be concluded?

Answer: 341 is prime or composite.
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In fact: 341 = 11 × 31.

So the converse of Fermat is false in general.

But note that the converse of Wilson is correct:

If (n − 1)! ≡ −1 (mod n), then n is 1 or prime.

Unfortunately, we know no fast way to check the Wilson

congruence.

Returning to Fermat, it seems the converse is almost true.

Can we find some way to turn Fermat around and make it a

primality-proving engine?
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Lucas: Suppose that n > 1 and a are integers with

an−1 ≡ 1 (mod n) and

a(n−1)/q 6≡ 1 (mod n) for all primes q | n − 1.

Then n is prime.

Proof. Let h be the multiplicative order of a in the group

(Z/nZ)×. The first congruence implies that h | n − 1. The

second batch of congruences imply that h is not a proper

divisor of n − 1. Thus, h = n − 1 and so

ϕ(n) = |(Z/nZ)×| ≥ n − 1. We conclude that n is prime. �
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This delightfully simple and elegant idea of Lucas has been the

basis of essentially all of primality testing.

But first, why do we need to go further, isn’t this the converse

of Fermat that we were looking for?

Questions:

1. If n is prime, is there a number a satisfying the hypothesis?

2. If so, how do we find such a number a?

3. If we have a number a, how do we find the primes q | n − 1

needed for the second batch of congruences?
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1. If n is prime, is there a number a satisfying the hypothesis?

That is, must (Z/nZ)× be a cyclic group? Yes, by a theorem of

Gauss.

2. If so, how do we find such a number a?

A sequential search starting with a = 2 is conjectured to

succeed quickly, and this is provable assuming the GRH. The

probabilistic algorithm of choosing random numbers a is very

fast in practice and in theory. (The randomness involved is in

finding the proof that n is prime; there should be no doubt in

the conclusion.)
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3. If we have a number a, how do we find the primes q | n − 1

needed for the second batch of congruences?
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3. If we have a number a, how do we find the primes q | n − 1

needed for the second batch of congruences?

Aye, there’s the rub.

11



3. If we have a number a, how do we find the primes q | n − 1

needed for the second batch of congruences?

Aye, there’s the rub.

Well, for some numbers n it is not so hard, say if n = 22k
+ 1.

Pepin: If k ≥ 1, then n = 22k
+ 1 is prime if and only if

3(n−1)/2 ≡ −1 (mod n).

Proof. If the congruence holds, then Lucas implies n is prime.

Say n is prime. Then n ≡ 5 (mod 12) so that Euler and Gauss

imply that the congruence holds. �
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The Lucas idea applied to elliptic curve groups:

For p > 3 prime and a, b integers with 4a3 + 27b2 6≡ 0 (mod p),

consider the set of nonzero triples (x : y : z) mod p with

y2z ≡ x3 + axz2 + bz3 (mod p),

where the notation (x : y : z) means that for c 6≡ 0 (mod p), we

identify (x : y : z) with (cx : cy : cz). We can create a group

structure on these triples, with the identity being (0 : 1 : 0).

(The group law involves some simple polynomial operations

and comes from the geometric chord-tangent method for

elliptic curves.)

Hasse, Schoof: The order of the group is in the interval

(p+1−2
√

p, p+1+2
√

p); it can be quickly computed.
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Say we have a number n that we think is prime, we choose a, b

with (4a3 + 27b2, n) = 1, we compute the order h of the elliptic

curve “group” (as if n were prime), we have the complete

prime factorization of h, and we have a point P on the curve of

order h, found as with Lucas. Then if

h ∈ (n+1−2
√

n, n+1+2
√

n), then n is prime.

This is the basic idea behind ECPP (Elliptic Curve Primality

Proving), due to Goldwasser & Kilian, Atkin, and Elkies,

though you can see it is really just Lucas in another setting.

Note: The elliptic curve group need not be cyclic, but it often

is, and almost always is nearly so. Many tweaks make this idea

into a better algorithm.
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Back to the original Fermat/Lucas setting:

Proth, Pocklington, Brillhart, Lehmer, & Selfridge: Suppose

n > 1 and a are integers, F | n−1, F >
√

n,

aF ≡ 1 (mod n) and

(aF/q−1, n) = 1 for all primes q | F.

Then n is prime.

Proof. Let p denote the least prime factor of n. The

hypotheses imply that a has order F in (Z/pZ)×, so that p > F .

But F >
√

n, so n has no prime factors below
√

n, which implies

that n is prime. �
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Note that if n is prime and g is a cyclic generator of (Z/nZ)×,

then g(n−1)/F has order F . So, finding an element a of order F
as in the theorem is at least as easy as finding a cyclic

generator of the group.

But now, we only have to factor part of n − 1.

Lucas and later Lehmer also explored using the Fibonacci

sequence, and more general Lucas sequences to test n for

primality.

For example, if p ≡ ±2 (mod 5), then uk ≡ 0 (mod p) whenever

p + 1 | k (and uk denotes the kth Fibonaccci number). This can

be turned into a primality criterion for those numbers n ≡ ±2

(mod 5) provided you have the prime factorization of n + 1, or

a large factored portion. For n 6≡ ±2 (mod 5) we can use other

Lucas sequences.
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The $620 problem

If n is an odd composite number and D is 1 mod 4, |D| minimal

with (D/n) = −1, must

2n−1 6≡ 1 (mod n)

or must the rank of appearance of n in the Lucas sequence

with discriminant D not be a divisor of n + 1?

Prove this and earn $620 ($500 from me, $100 from Wagstaff,

$20 from Selfridge).

The first counterexample found (with the prime factorization of

n) also earns $620 ($500 from Selfridge, $100 from Wagstaff,

and $20 from me).
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Working with a Lucas sequence mod p, where the characteristic

polynomial f(x) is irreducible mod p, is akin to working in the

finite field Fp[x]/(f(x)) of order p2.

And taking this view there is no reason to restrict f to degree 2.

Say we have a monic polynomial f ∈ (Z/nZ)[x] of degree k with

xnk ≡ x (mod f(x)), gcd(xnj − x, f(x)) = 1 for 1 ≤ j ≤ k/2.

If n is prime, these conditions hold if and only if f is irreducible

over Fn = Z/nZ.
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The finite fields test:

Lenstra: Suppose n, k, f are as on the previous slide. Suppose

too that F | nk−1 and F >
√

n. Say g ∈ (Z/nZ)[x] satisfies

1. g(x)F ≡ 1 (mod f(x)),

2. (g(x)F/q−1, f(x)) = 1 for each prime q | F ,

3. each elementary symmetric polynomial in g(x)nj
for

0 ≤ j ≤ k−1 is in Z/nZ.

If none of the residues nj mod F for 0 ≤ j ≤ k−1 are proper

factors of n, then n is prime.
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Proof. Let p be a prime factor of n. We’ll write bars over

objects to indicate they’re taken mod p. Let f̄1 be an

irreducible factor of f̄ in Fp[x]. The first two items in the

theorem imply that α := ḡ has order F in the finite field

K = Fp[x]/(f̄1(x)). Consider the polynomial

h(t) = (t − α)(t − αn) . . . (t − αnk−1
)

in K[t]. The third item implies that h(t) ∈ Fp[t]. Then

h(αp) = 0, so that αp = αnj
for some j, and so p ≡ nj (mod F ).

�
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Note that it is easier to find a large factored divisor of nk−1

then it is of n−1. For example, if k = 2, then we automatically

have 24 | n2−1 (assuming n is coprime to 6). If k = 12, we

automatically have 24 · 32 · 5 · 7 · 13 | n12−1, and so on.

Adleman, P, & Rumely: There is a value of

k < (logn)c log log logn such that the least common multiple of

the prime powers q with ϕ(q) | k exceeds
√

n.

In particular, the finite fields test of Lenstra can be made into a

probabilistic algorithm with expected time of

(logn)O(log log logn) to decide if n is prime.
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The finite fields test contains essentially the Lucas–Lehmer

test for Mersenne primes: Suppose p is an odd prime and

n = 2p−1. Then n is prime if and only if

x(n+1)/2 ≡ −1 (mod x2 − 4x + 1)

in (Z/nZ)[x].

Proof. We apply the finite fields test with f(x) = x2 − 4x + 1,

g(x) = x and F = n+1. Suppose the congruence above holds.

Then g(x)F ≡ 1 (mod f(x)) and g(x)F/2 ≡ −1 (mod f(x)), so

that g(x)F/2 − 1 is a unit mod f(x). From xn+1 ≡ 1 (mod f(x))

we have g(x)g(x)n ≡ 1 (mod f(x)), and from x−1 ≡ 4 − x

(mod f(x)), we have g(x) + g(x)n ≡ 4 (mod f(x)). Thus, the

hypotheses hold and every prime factor of n is 1 or n mod n.

Hence n is prime.
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Now assume that n = 2p − 1 is prime. Since n ≡ 7 (mod 24),

we have (2
n) = 1, (3

n) = −1. In particular f(x) = x2 − 4x + 1 is

irreducible mod n. We compute (x − 1)n+1 in the finite field

K = Fn[x]/(f(x)) two ways. Using (x− 1)2 = 2x and xn = 4− x,

(x − 1)n+1 =
(

(x − 1)2
)(n+1)/2

= (2x)(n+1)/2 = 2x(n+1)/2,

(x − 1)n+1 = (x − 1)n(x − 1) = (xn − 1)(x − 1) = (3 − x)(x − 1) = −2.

Equating these two expressions we have the congruence in the

theorem. �
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There are drawbacks with each of the tests considered so far:

The basic Lucas test needs a large factored divisor of n−1, and

randomness is used to produce a proof.

The elliptic curve test uses randomness and it has not been

rigorously proved to run in polynomial time.

The finite fields test uses randomness and it is not a

polynomial time algorithm.

From a theoretical perspective what would be ideal is a

determininistic, polynomial-time algorithm . . .

Which brings us to the test of Agrawal, Kayal, & Saxena.
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Agrawal, Kayal, & Saxena: Suppose n, r are positive integers

with (n, r) = 1 and the multiplicative order of r ∈ Z/nZ exceeds

(log2 n)2. If, in (Z/nZ)[x],

(x + a)n ≡ xn + a (mod xr − 1)

for each integer a in [0,
√

ϕ(r) log2 n], then either n has a prime

factor in this interval or n is a prime power.

Note: It is easy to show that a number r that has the requisite

multiplicative order exists below (log2 n)5. Using some fancy

stuff, one can get r smaller.
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Using Fast Fourier Transform techniques for integer arithmetic

and polynomial arithmetic, it is possible to show that the

running time of the AKS test is O(r1.5(logn)3) times some

power of log logn.

Thus, since r can be bounded by a power of logn, it follows

that the test runs in polynomial time. And no randomness is

needed.

Heuristically, there should be a value for r near (logn)2 leading

to the complexity (logn)6, but the best that has been proved

for r is a little lower than (logn)3, leading to (logn)7.5 for the

complexity of the test.

Note that the AKS test uses the polynomial xr − 1. Might we

use other polynomials?
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Lenstra & P: Suppose f(x) ∈ (Z/nZ)[x] is a monic polynomial

of degree d > (log2 n)2 with

f(xn) ≡ 0 (mod f(x)), xnd ≡ x (mod f(x)),

(xnd/q − x, f(x)) = 1 for all primes q | d.

If

(x + a)n ≡ xn + a (mod f(x)) for all a ∈ [0,
√

d log2 n],

then either n is divisible by a prime in this interval or n is a

prime power.

The proofs of this theorem and the AKS theorem both involve

building up large groups using the given information. Sound

familiar? Again it is the idea of Lucas.
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One can show, with considerable effort, that there is a fast

algorithm to produce a valid f(x) for the theorem with degree

≤ 4(log2 n)2 (or prove n composite along the way). In fact, to

be valid, it is sufficient that f(x) is irreducible, but it is not an

easy task to quickly, rigorously, and deterministically produce

an irreducible polynomial over a finite field.

The proof uses the cyclotomic periods that Gauss used in his

proof on the constructibility of regular n-gons. We have found

it pleasing to use this signature result of Gauss to make

progress on his call-to-arms of distinguishing prime numbers

from composite numbers.
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