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SOME NEW RESULTS ON ODD PERFECT NUMBERS

G. G. DANDAPAT, J. L. HUNSUCKER AND

CARL POMERANCE

If ra is a multiply perfect number (σ(m) = tm for some
integer ί), we ask if there is a prime p with m = pan,
(pa, n) = 1, σ(n) = pα, and σ(pa) = tn. We prove that the only
multiply perfect numbers with this property are the even
perfect numbers and 672. Hence we settle a problem raised
by Suryanarayana who asked if odd perfect numbers neces-
sarily had such a prime factor. The methods of the proof
allow us also to say something about odd solutions to the
equation σ(σ(n)) ~ 2n.

1* Introduction* In this paper we answer a question on odd
perfect numbers posed by Suryanarayana [17]. It is known that
if m is an odd perfect number, then m = pak2 where p is a prime,
p Jf k, and p = a z= 1 (mod 4). Suryanarayana asked if it necessarily
followed that

( 1 ) σ(k2) = pa , σ(pa) = 2k2 .

Here, σ is the sum of the divisors function. We answer this question
in the negative by showing that no odd perfect number satisfies (1).

We actually consider a more general question. If m is multiply
perfect (σ(m) = tm for some integer t), we say m has property S if
there is a prime p with m = pan, (pa, n) = 1, and the equations

(2) σ(n) = pa , σ(pa) = tn

hold. Note that if n, p, a, t is a solution of (2) with p prime, then
1 = (pa

9 σ(pa)) = (pa, n), so that σ(pan) = tpan; that is pan is multiply
perfect. Hence the multiply perfect numbers with property S are
in oiίe-to-one correspondence with the solutions of (2). We shall
prove:

THEOREM 1. If p is a prime, n, a, t are positive integers, and

(2) holds, then either

(3) n = 21 , p = 2 , a = 5 , ί = 3

or

(4) n = 2k, p - 2 f e + 1 - l , α = l , ί = 2 .

COROLLARY. If m is a multiply perfect number with property
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S, then m = 672 or m is an even perfect number. In particular,
no odd perfect number has property S.

Write the odd perfect number m = pak2 as a product of primes
pap{aι . . . pla\ (Note that Pomerance [12] and Robbins [14] have
shown that v ^ 6.) Let N{m) be the number of subscripts i for
which there is a subscript j such that ((τ(pϊaίpfj), PiPj) > 1. Then
0 ^ N(m) ^ v. It is not difficult to see that Suryanar ay ana's equa-
tions (1) are equivalent to the odd perfect m satisfying N(m) = 0.
Hence the above corollary implies N(m) > 0. We show however that
N(m) is not even close to 0, but more nearly v.

THOREM 2. // m is an odd perfect number, then

( 5 ) v + 1 - [log (y + l)/log 2] ^ N(m) ^ v .

Several authors (Kanold [8], Niederreiter [11], Suryanarayana
[16], [18]) have considered the equation

( 6 ) o(σ(n)) = 2n ,

calling the solutions n super perfect. The even super perfects have
been completely classified, but it is not known if any odd super
perfects exist. The methods we develop to consider (1), (2), and (5)
allow us also to get some results on odd solutions of (6). We shall
prove:

THEOREM 3. If n is an odd super perfect number, then neither
n nor σ(n) is a prime power and either n or σ(n) is divisible by at
least 3 distinct primes.

Note that Suryanarayana [18] has already shown that n is not
a prime power, but we give a new proof here for completeness.
We (the second and third authors) have actually been able to prove
much more than Theorem 3, but we do not give the details in this
paper. (We have proved that if n is an odd super perfect number,
then n > 7 1024, ω(nσ(n)) ^ 5, and ω(n) + ω(σ(n)) ̂  7. Here ω{n) is
the number of distinct prime factors of n.)

The main tool of this paper (Theorem A in § 2) has the remarkable
distinction of having been proved independently nine times.

In the research for this paper, the first author worked separately
from the other authors.

2. Preliminaries* If x, y are integers, we shall write x\\y if
x I y and (x, y/x) = 1. If p, q are distinct primes, we shall denote
by ordg (p) the exponent p belongs to mod q, that is, the smallest
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natural number d for which pd = 1 (mod q). We denote by aq(p) the
integer e such that qe || pd — 1, where d = ordg (p). Clearly ordg (p) | g — 1
and αg(p) ^ l

From Theorems 94 and 95 in Nagell [10] and the fact that
σ(px) = (p*+1 - l)l(p - 1), we have:

LEMMA 1. Suppose p, q are distinct primes with q Φ 2 and
b, c are natural numbers. Then

( i ) if p ΞΞΞ 1 (mod q), then qb || σ(pc) if and only if qb \\ c + 1,
(ii) ifp^l (moάq), then qb || σ{pc) if and only if b ^> α*(p),

ordg (p) | c + 1, and qb-a^ || c + 1.

LEMMA 2. Suppose p, q are distinct primes, x, y, b, c are natural
numbers, o{qx) — pv and qb || σ(pc). Assume q Φ 2. Then

( i ) if p = 1 (mod #), ίAe^ gδ || c + 1,
(ii) if p Έ£ 1 (mod #), ίλew ord9 (p) | c + 1 cmd g6"11| c + 1.

Proof. Now (i) follows from (i) of Lemma 1. Also (ii) will
follow from (ii) of Lemma 1 provided we show aq{p) = 1. Now
py = #(#*) = 1 + q + . . . + gr% so that / - U g (mod q2). Then since
p Ξ£ 1 (mod g), we have q \\ (py — ϊ)/(p — 1) = (/(p2'"1). Lemma 1 now
implies aq(p) — 1.

There is a well-known result about expressions of the form
(ah - l)/(α - 1) (see Bang [2], Zsigmondy [20], Sylvester [19], Birkhoίf
and Vandiver [3], Dickson [4], Kanold [7], Artin [1], Leopoldt [9],
Richter [13]), which implies the following:

THEOREM A. If p is a prime, x is a natural number, and
1 < d I x + 1, then there is a prime q \ σ(px) with ord9 (p) = d, unless

( i ) p — 2 and d = 6,
(ii) p is a Mersenne prime (that is, of the form 2k — 1) and

3* The main results* In this section we prove Theorems 1
and 2.

Proof of Theorem 1. We first consider the case p = 2. From
the equation σ(n) = 2a and Theorem A, we see that n is a product
of distinct Mersenne primes (cf. Sierpinski [15]); say n = pλp2 ps

where each pi = 2fe* — 1, &z is prime and k, < k2 < < &s. Then
a = Σ &i. Now to = σ(2°) - 2 1 + Σ^ - 1. Hence for 1 <> j ^ s, we
have 2kJ - 11 21+Σki - 1, so that &,-1 Σ ^ Since the ks are distinct
primes, we have
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(7) Π/

Then s ^ 2. Now the expression Π K — 1 — Σ kt increases separately
in each of the s "var iables" ku k2, , k8. If s = 2, kt = 2, &2 = 3,
we have 2 3 11 + 2 + 3. This gives the solution (3). If s = 2 and
&2 ^ 5, then kjc2 — 1 — Λ1 — fc2^2 5 - - l — 2 — 5 > 0 , so that (7)
fails. Also if s ^ 3, Π h - 1 - Σ h > 2* - 1 - 2s > 0, so again (7)
fails.

We now consider the case p > 2. Since σ(n) = p α is odd, we
have n = 2fep2αi p 2 α ' where & Ξ> 0, r ^ 0, and pl9 , p r distinct
odd primes. Suppose r = 0, so that w = 2fc. Then σ(w) = 2fc+1 — 1 = pa.
Suppose a > 1. By Theorem A, there is a prime g | σ{p2a~ί) with
ord, (p) = 2a. Then g | (p2α - ϊ)/(pa - 1) = pa + 1 = 2*+1, an impossi-
bility since g is odd (cf. Gerono [6]). Hence a = 1 and we have
solution (4). Thus we may assume r ^ 1. Now for 1 ^ i ^ r, we
have σ(pTή | pα and p 2 α ί | (j(pα). Lemma 2 then implies pt \ a + 1, so
that p2p2 •.• pr I α + 1. Theorem A implies there is a prime g | σ(pα)
with ordg (p) = Pχp2 p r . Then q Φ 2, pu , p r , and since q | ί^,
we have q\t. Hence

n pa n

_ pa+1 - 1 2 fe+1 - 1 π pfi+1 -

p - 1 p< - 1

so that

P - 1 (P* - 1) = (P ~ l)(Pi ~ 1) = 2-4 ^ '

a contradiction.

Proof of Theorem 2. If i is such that 1 ^ ί ^ v and (σ(p
p ^ ) = 1 for all j , l^ j^v, then pjβ* | σ{pa) and σ(pjβ*) | p α . Let Ω
be the set of such subscripts i, and let ω be the cardinality of Ω.
Lemma 2 implies that ]JΩ pt | α + 1. Since also 2 | a + 1, we have
at least 2ω+1 — 1 divisors d of a + 1 with ώ > 1. Since p is not a
Mersenne prime (we have p == 1 (mod 4)), Theorem A implies for each
such d, there is a prime r = rd\ σ(pa) with ord r (p) = d. Then each
r d is odd, and since m is perfect, we have rd e {pu p2, , pv). Hence
2ω+1 - 1 £ v, so that ω ^ [log (v + l)/log 2] - 1.
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4* Super perfect numbers*

LEMMA 3. Let n be an odd super perfect number. Then
( i ) n is a square,
(ii) σ(n) is odd,
(iii) the prime factorization of σ{n) is pap2^ p*» where

p ΞΞ a = 1 (mod 4) and v ;> 0.

Proof. Kanold [8] proved (i) and (ii). Then m = σ{n) is an odd
integer for which 2\\σ(m). Then such an odd integer must have
the prime factorization indicated in (iii) (cf. Euler [5]).

Proof of Theorem 3. Suppose σ(n) is the prime power pa. Then
σ(pa) = σ(σ(n)) = 2w, so that Theorem 1 implies pan is even, contra-
dicting Lemma 3.

Suppose n is the prime power qh. Then, in the notation of
Lemma 3, we have just proved that v^l, so that for 1 ̂  i <£ v
we have pfι | σ{qh) and σ(pfi) \ qh. Say r = max {p^ p2, , p j . Now
Lemma 2 implies either r2 [ δ + 1 or r ordr (<?) ( δ + 1 in which case
ordr (q) > 1. In the first case δ + 1 has the 2 divisors r and r2 which
are multiples of r. In the second case, δ + 1 has the 2 divisors r
and r ordr (g) which are multiples of r. Since q is odd, in either
case Theorem A implies there are 2 distinct primes dividing σ(qb)
which are 1 (modr). This contradicts (iii) of Lemma 3 and the choice
of r.

Suppose both n and σ(n) are divisible by precisely 2 distinct
primes. Now if (n, σ(n)) = 1, then nσ(n) is divisible by precisely 4
distinct primes and σ(nσ(n)) = σ(n)σ(σ{n)) = 2nσ(ri). Then Lemma 3
implies nσ(n) is an odd perfect number. This contradicts the previ-
ously stated result ([12], [14]) that every odd perfect number is
divisible by at least 7 distinct primes. Hence (n, σ(ri)) > 1. Hence
from Lemma 3 we have the prime factorizations

n = q2br2c

σ(n) = qasβ .

Now σ(q2h) | sβ and since n \ σ(σ(n)), we have q2h | σ(sβ). Then, as in
the above paragraph, there are at least 2 distinct primes dividing
σ(sβ) which are l(modg). This contradicts σ(sβ)\2n.
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