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1. Imtroduction

What is the cardinality of the largest subset of {1, 2,...,N} that does not
contain two relatively prime numbers? This is a typical problem in combinatorial
number theory. That the problem is one in number theory, there is no doubt. But
someone who leans towards combinatorics might prefer to think of it as a
question of the largest complete subgraph of that graph on {1, 2,...,;N} with
edges that connect two numbers when they are not coprime.

The above question illustrates a common theme in combinatorial number
theory. Namely, what arithmetic properties must a “dense” subset of the integers
possess? One of the greatest theorems of this type, Szemerédi’s theorem, is
discussed in section 6. But combinatorial number theory also deals with other
issues. For example, under what conditions is a subset of the natural numbers a
basis, i.e., for some A, every number can be represented as a sum of A or fewer
elements from the subset. Such issues are discussed in section 3. Combinatorial
sieve methods, the subject of section 2, takes its starting point at the inclusion—
exclusion principle. Its simpler aspects might be described as a device for
controlling the “combinatorial explosion” in the number of terms involved in an
inclusion—exclusion argument. :

Combinatorial number theory can also deal with some classical problems of
number theory when the methods used have a strong combinatorial flavor. In
section 7 we present a proof of Wirsing’s theorem on perfect numbers. This gem
uses nothing but simple counting arguments from elementary combinatorics.

Combinatorial number theory is ‘a relatively young field. In 1850, P. L.
Chebyshev proved that -

x x .
, 1ng<11r(x)<czgl%§ forx=2, (1.1)

where a(x) denotes the number of primes up to x, and ¢, ¢, are positive
constants. This result constituted important progress towards the prime number
theorem, w(x) =(1+o(1))x/logx, which was not proved until some 45 years
later. Chebyshev’s proof of (1.1) (which was later analyzed and simplified by
Landau, ErdGs and Diamond) had a certain combinatorial flavor.

In the period 1915-1924, V. Brun essentially single-handedly began the subject
of combinatorial sieve methods. In 1927, B.L. van der Waerden proved his
famous theorem that whenever the set of natural numbers is partitioned into two
sets, then one set contains arbitrarily long arithmetic progressions. L.G. Schnairel-
mann, in 1930, used both Brun’s results and his own ideas on the relationship
between density and bases to prove that the set consisting of one and the primes is
a basis. Inspired by these works, combinatorial number theory came into full
flower in the 1930s and 1940s. Certainly the most significant force to shape and
define the subject both then and now has been P. Erdds. We are much indebted to
him for his generous help with this chapter. |

In writing a chapter such as this, certain hard choices were necessarily forced
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upon us. The subject is very broad and does not have clearly delineated
boundaries. It soon became clear that we had no chance of covering it all.
Moreover, our philosophy for this chapter mandated the inclusion of representa-
tive proofs. Thus even the few areas that we do cover are not done encyclopaedi-
cally. Fortunately there are several excellent books that treat various aspects of
combinatorial number theory with great thoroughness, books that we refer to
frequently throughout for further problems, details, and references. These are
Sequences by Halberstam and Roth (1983), Old and New Problems and Results in
Combinatorial Number Theory by Erdés and Graham (1980), and Unsolved
Problems in Number Theory, 2nd edition, by Guy (1994).

Some may comsider the subject of integer partitions an important part of
combinatorial number theory. Unfortunately, though, it is a subject we complete-
ly ignore. The interested reader is referred to the excellent monograph of
Andrews (1976).

We now say a word about notation. If n €N (the set of positive integers), then
() is the number of positive divisors of n, ¥(n) is the number of prime divisors
of n, and ((n) is the number of prime and prime power divisors of n. For
example, 7(12) =6, »(12) =2, and 2(12) =3. We say n EN is squarefree if n has
no square factor exceeding 1. We define the M&bius function p(n) by u(n) =
(=1)*® if n is squarefree, and u(n) =0 if # is not squarefree. The sum of the
positive divisors of » is denoted o). The number of integers in {1, 2,...,n}
that are coprime to n is denoted ¢(n); this is Euler’s function, of course.

The symbols &, %, . .. are reserved for sets of non-negative integers. If & is
such a set, then A(x) denotes the number of members of & not exceeding Xx. By
o + 9 we mean the sct of numbers representable as a + b with a € o, b € %. By
29 we mean & + &, by 35 we mean 24 + o, etc. By & — & we mean the set of
pumbers a — a’, where a, a' € &. By |&/| we mean the cardinality of . |

The letters p, ¢ shall always denote primes. The function logx is the natural
logarithm. When we say f(x) ~ g(x) as x— ®, we mean fx) = (1+o(1)gx).

So as not to have too long a reference section, we often give only one or a few
later references on a particular problem so that an interested reader may begin a
literature search. We do mot mean to imply that the articles for which we give
bibliographic data are necessarily the most important ones. Sometimes we defer
all references to the extensive listings in Erdés and Graham (1980) or Guy -

(1994). - _
Have you solved the problem at the start of the introduction? Suppose N > 1. If
| o is the set of even numbers in {1, 2,...,N}, then |sf]=[1N] and no two
' members of & are coprime. Moreover, if a set % C {1, 2, ..., N} has more than

[1N] members, then either 1 € % or % contains two consecutive numbers (which
are clearly coprime). Thus the answer is L%NJ if N >1; the case N =1 is clearly
degenerate. See section 7.4 for more on this problem.

2. Combinatorial sieve methods

Many number-theoretic problems can be reduced to a problem of the following
type. A finite set & CN and a finite set & of prime numbers are given. Estimate

| ‘ | | |
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the number of of members of & that are not divisible by any primes belonging to
®. In other words, we “sift out” the multiples of the prime numbers belonging to
P from o leaving the residual set whose cardinality S(sf, ) we wish to estimate.
As an illustration, we are going to consider the following three problems:

(i) Estimate 7(x); :

(i) Estimate the number of prime twins g, ¢’ with g’ =g + 2and q' <x;
(iii) For each x €N, estimate the number of prime pairs g, 7 with g +r=x.
Problem (ii) is connected with the famous twin prime conjecture which asserts
that there are infinitely many such pairs g, ¢ + 2. Problem (iii) is connected with
Goldbach’s conjecture which asserts that if x is an even integer at least 4, then x is
a sum of two primes. These are among the most famous unsolved problems in

mathematics.
For any set & CN, let

Ad)={neA:d|n} .. (2.1)

First we are going to study problem (i). Let x =1, and let us write
d={neN:n<x}, k (2.2)

so that | ‘ '
|st(d)| = Lx/d] . | 2.3)

Furthermore, let us write
P ={pprime: p=<vx}. (2.4)

Consider the following simple fact: an integer n with vx <n < x is a prime if and
only if there is no prime p € ? with p |n. Thus if we start out from the set & in
(2.2) and we sift by the primes in the set # in (2.4), then the set left after the
sifting procedure consists of the number 1 and the primes g with Vx<g=x [s0
that S, ) =1+ =(x) — 7(Vx)]. .

On the other hand, the number of integers left after the sifting procedure can
be computed. by the well-known inclusion-exclusion principle of elementary’
combinatorics (cf. chapter 21). In this way, we get the following formula:

{1} U {g prime: V& <g <x}|
a(Vx) '
=lgl+ 2D % el 2.5)

PL<pa<<pysVx

In fact, to prove this identity, we have to show two facts:

(a) the contribution of 1 and of each prime g with vk <g=<x to the right-hand
side of (2.5) is 1;

(b) if n<x and it is divisible by at least one p € 2, then its contribution to the
right-hand side of (2.5) is 0. :

[Note that only positive integers n<x contribute to the right-hand side of
(2.5).]

We have (a) immediately since in the first term, |s¢|, every positive integer
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n<x is counted exactly once, while 1 and the primes g with vx <g =<x are not
multiples of any prime p<V%, so are counted in none of the terms
(—1)*[et(pyp, - Pl

To show (b), assume that 1 <z <x and p;, p,, - . . , p; are all the distinct prime
divisors not cxceeding vx of n, where [=1. Then the first term || on the
right-hand side of (2.5) contributes with a weight 1. Any other term
(-1)*|#(p,p,- - pi)| contributes with a weight (-1)* if and omly if p,,

" Pas - - . » Py are chosen from py, p;, . .., p;; for a fixed k there are (1) such terms

with this property. Thus the total contribution of this n to the right-hand side of
(2.5) is

1+§1 (—1)* (ilc)

By the identity

; ,
! : '

S 1(})=a-1'=o0, (2.6)
k=0 Ak

this contribution is 0, which completes the proof of (2.5).

Writing

Il p=P@), 27
p=z

we rewrite (2.5) in the following equivalent form:
1+ a) —a(vR= 2 w@d)|L@d), (2.8)

d|P(Vx)

where u is defined section 1. In view of (2.3), we obtain:

Theorem 2.9. If x =1, then

1+ 7)) —a(VD)= 2, wud)lx/d).
' d1P(VE)
In fact, Legendre used this formula in his numerical studies of 7(x). The sieve
method described above is called the sieve of Eratosthenes.
By choosing the sct & in an appropriate way, problems (ii) and (iii) can be
studied similarly. For example, in the case of problem (ii) we choose

A={nn+2)xneEN,nsx—2}, @ = {p prime: p <VXx}. _(2:10)

Then by using the inclusion—exclusion principle, one may similarly derive the
following formula analogous to (2.8), where & is now defined by (2.10) rather
than (2.2):

l{g: g, g + 2 are primes, VX <g <x —2}| = > wd@)]. (2.11)
d|P(Vx)
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Here we have
|(@d)| = [{n(n+2):nEN, n<x—2,d[n(n+2)}].
It is easy to see that |sf{d)| =~ w(d)x/d, where
o(d) = |{n EN: 0<n<d, n(n +2)=0 (mod d)}| (2.12)

Clearly, w(p) =1 for p=2, w(p) =2 for any odd prime p, and by the Chinese
Remainder Theorem, the function w(r) is multiplicative [i.e., w(mn) = w(m)o(n)
when (m, n) = 1]. Thus for p(d)#0, i.e., for d squarefree, we have

[|t(d)| — e(d)x/d] < w(d) s_z"("i, _ (2.13)

where »(d) is defined in section 1.
Finally, to attack problem (iii), one may choose

A= {n(x—n):neEN,n=<x} (2.14)

and P as in (2.4) and (2.10). We lcave the further details to the reader.

The main problem with the sieve of Eratosthenes is that as in (2.8) and (2.12),
it gives the number of integers left after the sifting in the form of a sum, and this
sum has “too many” terms. For example, the sum on the right-hand side of (2.8)
has r(P(Vx)) =270 terms and, in view of (1.1), this is much bigger than the
number ar(x) which is being computed. As a consequence, one canfot use

Theorem 2.9 for estimating m(x) as x—> . Indeed, the best we can do is use the.

approximation
lx/d] =x/d,

whose error is less than 1 so that, in view of |u(d)| =<1, the total error would be

bounded by the number of terms, namely 27,
Ignoring the error, this approximation would lead to the estimate

X d 1
W~ 2 pd)g=x 2 %)wx IT (1——). (2.15)
d|P(VE) d|P(VE) PV p
We now recall Mertens’ theorem, an elementary result in prime number theory:

11 (1—1)

p=<z P

where y is Euler’s constant. Thus, from (2.15) and (2.16), we get the. approxi-
mation

~ log 2 asz—>o, | (2.16)

w(x)~c Togx (2.17)
where ¢=2¢ ¥=~1.123, but we get this approximation with an error tern‘;
bounded only by 27 which is much greater than the approximating function.

This error term is certainly not negligible since, by the prime number theorem, we
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have

() = (14 o(1) 1o

while the constant ¢ appearing in (2.17) is larger than 1. The heuristic (2.17) does

give the correct order of magnitude for m(x), a fact that we shall see can be

expected (at least for upper bounds) from sieve methods.

The situation is even slightly worse in case of problems (ii) and (iii). For
example, in the case of problem (ii), if we re lace |#(d)| by w(d)x/d, our only
bound for the error in each term of (2.11} is 2” ) as given by (2.13). This is worse
than the error bound of 1 per term in our analysis of 7(x). [Note that the number
of terms in (2.8) and in (2.11) are the same.] If we nevertheless make the
approximation |#(d)| = w(d)x/d in (2.11) we get

l{g: g, q +2are primes, g <x —2}| = > pde@x/d. (2.18)
d4jP(Vx)

Using the fact that u(d)w(d)/d is a multiplicative function of d, we have for any z
that |

| _ «(p)
%z) p(d)w(d)/d—p];[z(l— > ) (2.19)

Then, using Mertens’ theorem (2.16) and the fact that w(2) =1, and o(p) =2 for
p >2, we have by an easy calculation that

I (1 —*ﬂ}—p)) ~e Pgllog’z asz—, (2.20)
p<z

where |
e=2[I1-(p-1)""]=13202..., (2.21)

p>2

the so-called “twin prime constant”. Putting (2.19) and (2.20) (with z = Vx) into
the heuristic approximation (2.18), we have the “conclusion” that the number of
twin primes up to x is of order of magnitude x/log’x with the “suggestion” that
the asymptotic constant is 4e"%"q. In fact, this is not far from the strong twin
prime conjecture which asserts that the number of twin primes up to x is
(a +o(1))x/log’x. That is, the above heuristic gives the conjectured order of
magnitude, but not the conjectured constant. '

In general, the above attempts at using a sieve lead us to the following
thoughts. There is no hope of giving asymptotics for the number of integers left
after the sifting process if we sieve by a “large” set of primes %. On the other
hand, one may hope to get good bounds for the number of these integers (even if

'@ is “large™) by some sort of refinement that reduces the number of terms in the .

sum 3, w(d)lsd(@))
V. Brun, working in the period 1915-1924 and at least in part basing his work
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on that of J. Merlin, was the first to succeed in modifying the sieve of
Eratosthenes to prove highly non-trivial results with a sieve. First we are going to
discuss a relatively simple version of Brun’s method which is called Brun’s simple
(or pure) sieve. As we shall see it enables one to derive estimates very close to the
conjectured best possible one in a quite cheap way. '

Brun’s first idea is to reduce the number of terms in the sum Y, u(d)|«(d)| by
reducing the number of sifting primes. The simplest way to do this is to replace
the condition p <% in the definitions (2.4) and (2.10) of # by p <z, where z is
a parameter much smaller than v whose exact value should be fixed as some
function of x depending on the problem being studied. This means that, for
example, in the case of the twin prime problem, we sift out only those integers »
for which n(n + 2) has a small prime factor (i.e., at most z). Since the remaining
integers include all the twin primes larger than z, in this way we get an upper
bound for the number of twin primes between z and x. On the other hand we do
not get any lower bound for this number. We might only hope to get a lower
bound for the number of twin “almost primes” up t0 x, where g in an “almost
prime” if it has no prime factor up to z. (Usually in sieve methods the term
“almost prime” is reserved for the case when log z/log x is bounded away from 0,
so that if g <x is an almost prime, it has a bounded number of prime factors. We
do not follow this convention here.)

So let us now study the general sieve problem: given & C N finite and

P ={pprime: p<z}, (2.22)
estimate .
S(t, P):=|{nEL: (n, P(2)) =1}, (2.23)

where P(z) is defined by (2.7). Then by using the inclusion—exclusion principle,
we get in the now familiar way that

S(st, 2y =2, u(@|s(d),
d|P(z) -
where &(d) is given by (2.1).
The inclusion—exclusion formula is based on the identity (2.6). This identity is
only a special case of the following more general identity:

é‘,o (—1)* (,lc) = (-1)’ (1; 1) forall j,IEN, (2.24)

which can be proved easily by induction on j. This identity implies that the sum on
the left-hand side is =0 for even j and <0 for odd j.

The second idea of Brun is to utilize this alternation of sign for the sum in
(2.24). We are going to show that for every t EN we have both

S(st, Py < d%) p(d)|(@)] - (2.25)
v(d)<=2t
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and

S, P) = d; p(d)|s(@)| . (2.26)
v(d)ls.(zzr)—l ' ‘

To prove (2.25) we will show that if n € &, then the contribution of n to the |

right-hand side of (2.25) is

(@) 1 for (n, P(2)) =1,

(b) =0 for (n, P(z))>1.
The assertion (a) is trivial since if # € & and (1, P(z)) = 1, then n is counted only
in the term d = 1 with weight ©(1) = 1. To show (b), write (n, P(2)) =p,p>"* - P,
so that p,, p,, ..., p; are distinct primes up to z and /=1. Then n is counted on
the right-hand side of (2.25) only for d’s of the form

d=pip;  pelppa o pr, k<2t.

For a fixed k= 2t, the number of these d’s is (}), and they get counted with
weight (—1)*. Thus the total contribution of z to the right-hand side of (2.25) is

£ 0 (e).

By (2.24), this sum is non-negative, which completes the proof of (b) and (2.25).
In a similar way we can prove (2.26).

As an application of Brun’s simple sieve we adapt (2.25) and (2.26) to the twin
prime problem, getting a relatively sharp bound in a relatively simple way.

Theorem 2.27. The number N of integer;s n<x — 2 such that both n and n + 2 are
free of prime factors up to z satisfies

N~e Pax/log’z ,

where « is the constant defined in (2.21), and where the asymptotic relation holds
as x,z— w in the region z <x'/**1° 1°g")

Thus Brun’s simple sieve actually gives an asymptotic formula for the number
of twin “almost primes” up to x. Moreover, by making the largest choice of z
allowed, it gives a non-trivial upper estimate for the distribution of twin primes:

Corollary 2.28. The number of primes p<x with p+2 also prime Iis
O(x(log log x)*/log*x). In particular, the sum E 1/p for primes p with p + 2 prime
is either convergent or finite.

The number }; 1/p described in the corollary is referred to as Brun’s constant.
Note that the O-estimate in the corollary is only off by a factor (log logx)® from
the conjectured order of magnitude.

On the other hand, Theorem 2.27 does not give any lower bound for the
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distribution of twin primes. We still do not know if there are infinitely many; as
mentioned above, this is one of the great unsolved problems in mathematics. We
have witnessed a general pattern with sieve methods: they often give good upper
bounds; but no or weak lower bounds, unless one is interested in “almost primes”
of some kind.

Proof of Theorem 2.27. Define & by (2.10), ? by (2.22), and S(f, #) by (2.23).
Then the quantity N in the theorem is just S(s¢, ?). In view of (2.19) and (2.20)
it is thus sufficient to prove

S, PY=x > ;L(djw(d)/d +o(x/log’z) . (2.29)

dlP(2)

Note that from the upper bound and lower bound for S(sZ, ) given by (2.25)
and (2.26), we have

S, P)= 2 p@|@)|+0{ 2 |#4@)
e, s,

for any choice of t&N. Thus by (2.13) we have

S(st, P)=x % ,.c(d)—“-’%m(x S _“’fiﬁ)m( s 2»(4))

d|P(z) d|P(z) d|P(z)
p(d)y=2t »(d)=2¢ w(d)=21
d d
=x X pa(d)—w%-l-O(x > #)»&o( > 2"(‘”)
4|P(z) d|Pz) d|P(z)
) v(d)=2t v(d)=2zt
w(d)
=x 2 )= +OE) + Oy, (2.:30)
d|P(z)

say. |
We shall show that E,, E, are O(x/log®z), O(x''*), respectively, if we clioose

t=|5loglogz]

(and z large enough so that ¢=1). Thus (2.30) will imply a strong version of
(2.29) and thus prove the theorem. '

To estimate E,, we use a weak form of Mertens’ theorem. In fact, by taking the
logarithm of (2.16), we have

1
>, —=<loglogz +c
p&zp

for some constant ¢ and all large z. (This inequality is actually a weak form of a
much older theorem of Euler.) Thus using w(d) <2"® and the multinomial
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theorem,

—_xz <232 3 <

4| P(z) =2t 4|P(z)
v{d)=21 w{d)=1
2!
<x > o (2 —.) <x D, l,(2log10gz+2c)
l>2: pEZ P =2

The terms in this last sum are decaying at least geometrically with a common ratio
bounded below 1, so that the sum is majorized by its first term. Thus

( [23 loglogz + 2ce]2‘)
* 2t

—_ 2t
E =0 ([Zt]' 12 loglog z + 2c} )
= O(x(1e)'* "8 '°8%) = O(x/10g°z) .
The majorization of E, is easier. We have
2 '
S opagr S oo (’F(Z)) <2%n(2)”
d|P(z) 41P(z) par
v(d)=<2t v(d)=2:
For large z, we have w(z) <1z (in fact, z =8 will do), so that
E2 QZZI — O(xll’Z) .
This estimate concludes our proof of Theorem 2.27. [
To eliminate the unwanted (loglogx)® factor in Corollary 2.28, one needs
Brun’s sieve in its complete form. To explain the crucial idea of Brun’s sieve we

start out from the inequalities (2.25) and (2.26). These inequalities can be
rewritten in the form

> ()| d)] <S(st, )< E Xz(d)ﬂ(dﬂ&f(d)l (2.31)

d|P(z)
where :
1) = 1 forv(d)=<2t—1
D=0 forwd)>2—-1,

1) = 1 forw(d)=2t,
%@)=10 for v(d) >2t.

(2.32)

The idea is to replace these two functions by certain other functions x:(d), x.(d)
with the following properties:

(@) x:(d), x,(d) satisfy (2.31),

(0) x:(1)=x, (D=1,

(© xd)=00r1i#d|P() fori=1,2.

H
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The goal is to make the choice for x;, X, 50 that we get better upper and lower
bound estimates than that afforded by (2.32).

Brun succeeded in constructing functions x,(d), x,(d) with all these properties
and giving very good estimates for,S(sf, P). The construction is too complicated
to describe here; see, e.g., Halberstam and Richert (1974) for further details.

We now cite one general theorem that may be proved by Brun’s sieve—it is a
special case of Theorem 2.3 in Halberstam and Richert (1974).

Theorem 2.33. Let k€N, let a;, b, be pairs of integers for i=1,... , k such that
each (a;,b;) =1 and '

E= (ﬁ ai) ( IT (b, - asb,)) #0.

i=1 1=r<ssk

Let 1>e>0, x, y ER be arbitrary with 2<y <X, and let z=y". Let

« :
.9¢={H (a,-n+bi):nEN,x—y<n=<_x} (2.34)
i=1

and denote the number of solutions of Hf=1 (an +b;)=0 (mod p) by w(p) for
each prime p. Then if @ = {p prime: p <z},

]_ w(p)—k y
S(s, P)<c H(l——) ,
4, ) (F!E ! )logky

F=y

where the constant ¢ depends only on k and s.

Note that all of the sets & as in (2.2), (2.10), and (2.14) are of the form (2.34).
For example, by choosing k=2, a; =1, by = 0,a,=1,b,=2,y=x,and z= vx
we obtain:

Corollary 2.35. There is a positive constant ¢ such that if x =2, then

-|{q: g, q + 2 are primes, g sij -2} =c g

Similarly, if weletk=2,a, =1, b,=0,a,=—1,b,=n,x=y=n, and z = Vn,
we get:

Corollary 2.36. There is a positive constant ¢ such that if n €N and n is even, then

11 (1 _é)d) 1022;1 '

|{p: p and n — p are primes}| <¢ (

pln

Even for the simpler problem (i) where the prime number theorem gives us an
asymptotic formula for (x), Theorem 2.3 can tell us something non-trivial when
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y is small compared to x. By choosing k=1, a, =1, and b, =0, we have the
following result originally due to Hardy and Littlewood.

Corollary 2.37. If 2<y=<x, there is an absolute constant ¢ such that

Y
a(x)—aw(x —y)=sc gy -
Brun’s sieve has numerous applications and many of these are due to P. Erd6s ‘
who, perhaps more than any other person, showed that sieve methods are indeed |
a powerful tool in number theory. For example, ErdGs used Brun’s sieve to
- estimate the differences between the consecutive primes. Let p; denote the ith
prime (so that p, =2, p, =3, p, =35, etc.), write d, =p, —p,_, for n>1, and let
d,=2. It follows easily from the prime number theorem that

liminfd, /logn<1.

We now prove the following result due to Erdés (1940).

Theorem 2.38. There is a constant ¢ <1 such that
liminfd, /logn=<c. (2.39)

Proof. Let >0 be arbitrary, but fixed. Suppose that
liminfd,/logn>1-7e. (2.40)

Then there is some x, such that for x =x,, if n>7(x/logx) we have d,> (1 —
g)logx. Let L = ar(x) — w(x/log x) and assume & = 8(x, £) is such that there are
exactly 6L values of n with w(x/logx) <n=<m(x) and d, is between (1~ ¢)logx
and (1+ e)logx. Then for x = x,, there are (1 — §)L values of # in this range with
i d, = (1 + g)log x. Thus

SL(1—e)logx+(1—8)L(1+s)logx=< 2, d,<x,

n=w{x)

so that

s(1-28) < ~1. (2.41)

X
Llogx
By the prime pumber theorem, L log x = (1 4+ 0o(1))x, so that (2.41) implies (smce
g >0 is fixed) there is some x,(¢) such that if x = x,(g) we have 6 > 1.

We now use Theorem 2.33 to show that § = O(e) so that if & is sufﬁciently
small, (2.40) cannot hold. This will prove the theorem. For any ¢ €N, let D(z, x)
denote the number of primes p <x with p + ¢ prime. Thus

SL < > D(t, %) . (2.42)

(1-e)togx<t<(l+eMlogx

But by Theorem 2.33 with k=2,4a,=1,5,=0,a,=1,b,=t, y=x, and z = VX,

R
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we have some absolute constant ¢’ with

-1
pe,D<c 11 (1—1) X (2.43)
plt p log’x :

From elementary arguments it is not difficult to prove that

~1
2 H (1—%) ~c'y asu—>o

=k plt

for some constant ¢”. Thus

> D(t,x)<c'(c" +o(1))2¢ log x

(1-&) log x<t<(1+sa)log x lo 2
Since L ~x/log x, (2.42) thus implies for x =x,(z)
6 <3c'c"s,

which is what we wanted to prove. [

Since 1942, the value of the constant ¢ in (2.39) has been improved by several
authors. The best estimate (derived by both combinatorial and analytic tools) has
¢ <1 and is due to Maier (1988). Of course the twin prime conjecture implies that
c=0. : ‘ ’

Theorem 2.33 can be proved also by another sieve method of less combinatorial
nature which is due to A. Selberg. In some applications, Selberg’s sieve is slightly
superior to Brun’s.

Returning to the three problems at the beginning of this section, note that in
problem (i) we counted integers n 70 (mod p) for primes p <z, in problem (ii)
we counted integers satisfying 7 20 (mod p) and n #2 (mod p), and in problem
(iii) the excluded classes were n#0 (mod p), » #x (mod p). In other words,
there are 1, 2 and 2 “forbidden” residue classes, respectively. Brun’s sieve and
Selberg’s sieve have a common feature: both methods can be used only in the case
that the number of forbidden residue classes is bounded or it grows only very
slowly in terms of p. If the number of forbidden residue classes grows rapidly (for
example, more than cp residue classes for each p), then other sieve methods must
be used. The most important sieve method of this type is the large sieve of Linnik
and Rényi. T

See Halberstam and Richert (1974) for detailed discussion of “‘small sieves”
(Brun’s and Selberg’s sieves) and Montgomery (1971) for the large sieve. The
former reference also contains proofs of J. Chen’s remarkable theorems that (1)
there are infinitely many primes p such that p + 2 is either prime or the product of
two primes, and (2) every sufficiently large even number is the sum of a prime
and apother number which is either prime or the product of two primes.

Finally we mention Rosser’s sieve, a general principle for a combinatorial small
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sieve. Iwaniec (1981) has done extensive work developing this general principle
and has given details for some important special cases.

3. Bases and density theorems on addition of sets

As mentioned in the preceding section, it is conjectured that every even number
exceeding 2 is a sum of two primes. This conjecture, which was stated by
Goldbach in a letter to Euler in 1742, has the immediate corollary that every
number exceeding 5 is a sum of three primes and that every number exceeding 1
is a sum of at most three primes.

In 1770, Waring stated without proof that for every » there is some number g(#)
such that every natural number is the sum of at most g(n) positive nth powers. In
that same year, Lagrange solved Waring’s problem for n =2, showing that every
natural number is the sum of at most four squares. In 1909, Waring'’s conjecture
was finally proved by Hilbert using a combinatorial argument.

Let N, = NU {0} denote the set of non-negative integers. A set of TN, is said
to be a basis of order k if every natural number can be represented as the sum of
at most k elements of <. If every sufficiently large integer can be represented as
the sum of at most k elements of &, then & is said to be an asymptotic basis of
order k. Thus Goldbach’s conjecture implies ‘that the set of primes is an
asymptotic basis of order 3 and that the set of primes together with 1 is a basis of
order 3. Not only has Waring’s problem been settled, the minimal choices for the
numbers g(r) are “known” for every n. If G(n) is the least number such that the
positive nth powers form an asymptotic basis of order G(n), then no value of
G(n) is known except for n=1, 2, and 4. See Vaughan (1981) and Balasubrama-
nian et al. {1986) for more details. '
_If of €N, then the lower asymptotic density d(s{), the upper asymptotic density
d(sf), and, if it exists, the asympfotic density d(sf) of s are defined by:

d(st) =l nf A(W)In,
d(sf) =limsup A(n)/n,
d(£) =lim Ar)/n,

respectively.

Assuming the Riemann hypothesis, Hardy and Littlewood proved in 1922 that
every sufficiently large odd integer can be represented as the sum of three primes,
which would imply, of course, that the set of primes is an asymptotic basis of
order 4. The Hardy and Littlewood theorem was proved unconditionally in 1937
by Vinogradov. But the first to unconditionally prove that the set of primes is an
asymptotic basis of some finite order was Schnirelmann in 1930.

This work of Schnirelmann opened up an important chapter in combinatorial
number theory. His starting point was the following simple corollary of Brun’s
sieve and, in particular, Theorem 2.33.
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Corollary 3.1. The set of integers which can be represented as the sum of two
primes has positive lower asymptotic density. That is, if P denotes the set of
primes, then d(2P) > 0.

Thus to prove that 2 is an asymptotic basis of finite order, it would be
sufficient to show .that any set of positive lower asymptotic density must
necessarily be an asymptotic basis of finite order. Unfortunately, this is not so, as
the set

#={0,2,4,..) (3.2)

of even non-negative integers show. This set has asymptotic density 3, but no odd
integer is a sum of members of &.

However, Schnirelmann was able to save this idea with his concept of
Schnirelmann density. f & CN, and we write A*(n) for the number of positive
members of & up to n, then the Schnirelmann density o(sf) of & is defined by:

o(s) =nlgfm A*(n)/n .

Thus o(£) >0 holds if and only if both 1€ sf and d(«¢) >0 hold. In addition,
o(£)=1 if and only if /=N or Np. Schnirelmann proved the following
theorems on the Schnirelmann density of sum sets.

Theorem 3.3. If 54, B CN, with 0€ o N 9, then
o(d +B)=o(A)+ o(B) — o(A)(B) .

Proof. We may assume o(sf)>0. Let n be an arbitrary natural number and
suppose

l=a,<a,<---<a,<n ,

are the positive members of & that do not exceed n. Since 0 € B, we have also
Qyy... a4, €+ 9. What other members in & + % do not exceed n? We now
count those members of & + B of the form a;+b, where i<k, b€ %, and
@;<a;+b<a,,,. This number is B*(a,,, —a;, — 1) = (a,,, —a,— 1)a(®). Simi-

I

larly the number of a, + b, where b € B and a, <a,+b<n,is B*(n—a,)=(n —
a,)o(#). Thus the number of positive members of & + & up to » is at least

A*n) + (0~ a)o(B) + 2 (ay,, —a,— 1)o(B)

=A*m)+(n—a,—k+1)a(R)
=AY+ (n— A¥(m)o(B)

=(1—o(B)A*(n) + no(%)

zn(l - o(% Do) +no(B),

which proves the theorem. O
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Theorem 3.4. If £, B CN, with 0 N B and o(d) + o(®B)=1, then o(d +
B)=1. That is, every non-negative integer can be represented in the form a+b
with a €4, and b € %.

Proof. If n€ s U, then n € & + B. So suppose n & N, and n#& s J%R. Then
n>1. We have

n<A*(n)+B*n)=A*(n-1)+B*n-1).

Consider the positive integers a € of for a<n, and n — b for bEB, 0<b<n.
There are at least n of these numbers and they all lie in {1, 2,...,7— 1}. Thus
we have g =n — b for some a €4, b € B, so that n=a+bed+%R O

Corollary 3.5. If of CN, with o(f)>0, then & is a basis of some finite order.

Proof. Write &, = & U {0}. Then by Theorem 3.3 and induction, a(ksdy) =1~
(1 — o(sfy))* for every kEN. Thus there is some k with o(ksfy) =%. Thus by
Theorem 3.4, with of = & = ksf,, we have 2ksfy =N U {0}. Thus < is a basis of
order 2k. O

Schnirelmann’s theorem on the set of primes @ follows easily from Corollaries
3.1 and 3.5 as we now see.

Theorem 3.6. The set of primes is an asymptotic basis of finite order.

Proof. Write %, =% U {0,1}. Then by Corollary 3.1, o(29,) >0, so that by
Corollary 3.5, 2%, is a basis of some finite order. Thus P, is a basis of some order
k. Thus every n € N may be represented in the form s +v, where s is a sum of at
most k primes and 0=<v=<k.

We now show that every » > 2 may be represented as a sum of at most 2k +1
primes. Indeed, n —2 EN, so we may write 1 —2 =g+ v, where s is a sum of at
most k primes and O<v<k. Then n=s+ (v+2)and 2<v+2<k+2. Butitis
trivial that every integer m =2 can be represented as a sum of 2’s and 3’s with at
most m summands. Thus v +2 is a sum of at most 1(k + 2) primes, each prime
being 2 or 3. Thus n =35+ (v +2) is a sum of at most 2k +1 primes. O

In 1942, Mann improved on Schnirelmann’s theorems 3.3 and 3.4 by proving
the following result which had come to be known as the o + B conjecture.

Theorem 3.7. If sf, % CN, with 0€ A N B, then o(s + B)=min{l, o(L) +
a(RB)}.

Thus in the case o(£)> 0, o(B) >0, and o(f) + o(%) <1, Theorem 3.7 gives
a sharper result than Theorems 3.3 and 3.4. As we saw above, these latter
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theorems can be proved relatively easily. However, Mann’s theorem 3.7 is much

+ deeper. :

A disadvantage of Schnirelmann’s and Mann’s theorems is that in both cases,
the statement is formulated in terms of Schnirelmann density which is a fairly
artificial concept. In particular, if we use these results for estimating the order of a
basis, then we often get rather poor estimates. Thus in many applications it would
be preferable to have an addition theorem involving asymptotic (lower) density.
Yo 1953, Kneser proved the following (very deep) theorem.

Theorem 3.8. If s4,, . . . , o, C N, are infinite, then either

d(sty + - - - + o) Zlim inf (A m)y+---+AM®R)/n

or there are natural numbers g, a,, . . . , @y, Such that :
(i) each i, is contained in the union s of a; distinct congruence classes
(mod g), :
(ii) there are at most finitely many positive members of g+ -+ + 54, not in
Sy + -+ o, .

(iii) d(sfy+ -+ A)=(ag+ - +a, —k)/g.

The following result of Nathanson and Séarkézy (1989) gives a particularly
simple application of Kneser’s theorem 3.8.

Theorem 3.9. If &£ CN is an asymptotic basis of order h and if d({)>1/h, then
for every B with 1/h < B <d(sf), there is a set B C sf with d(B)=p and with 3B
also an asymptotic basis of order h.

Proof. Let o be as described and choose 8 with 1/A < <d(sf). Let € be any
subset of of with d(€)=pB. Let H=(h - 1)/(28 — 1) and let sf, C & be a finite
set such that for each j=< H, s, contains a representative of each residue class
(mod j) that has at least one representative in &. We claim that & =% U &,
fulfills the conditions of the theorem.

First, it is clear that d(%) = 8, since , is finite. To show & is an asymptotic
basis of order », we apply Kneser’s theorem 3.8 with & copies of %. Since
d(®B) > 1/h, the first condition cannot hold. Thus there is some number g and a
set B’ of a residue classes (mod g) such that % C %', all sufficiently large
members of A% ' are in A%, and

ha—(h—1 h—1
_._-g.——) = h B _—
g
Thus g < H, so that % contains representatives of exactly the same residue classes
(mod g) as does &f. Since B C B’ and B’ is a union of complete residue classes

(mod g), we have & C%'. Thus %' is an asymptotic basis of order £, as is %.
a

1= dhB)=
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Kneser’s theorem 3.8 serves a unifying role in additive number theory in that
certain prior results with longer proofs can also be seen as fairly immediate -
corollaries of Theorem 3.8. For example, it is possible to prove via Schnirel-
mann’s theorem 3.3 that if &/ C N, d(«) >0, and & contains a finite subset that is
relatively prime, then 5/ is an asymptotic basis of some order — this is essentially
what is done in the proof of Theorem 3.6. But assuming Kneser’s theorem, the
result is virtually immediate.

As one further example, we state the following corollary of Kneser’s theorem,
Jeaving the proof for the reader. [The proof is not completely trivial —for help,
consult Halberstam and Roth (1983, pp. 54-55).] Parts of this result are due
independently to Cauchy in 1813, Davenport in 1935, and I. Chowla in 1935. It is
also possible to give a (relatively simple) direct proof, not using Kneser’s
theorem.

Theorem 3.10. (The Cauchy—Davenport-Chowla Theorem). If &, B CZ/g with
|| =7, |B|=s, 0EB, and every other member of & is coprime to g, then
| + B|=min{g, r+s—1}. : |

When we are studying a finite set & CN and we need an addition theorem,
then the only assumption that one might like to use is that & C {1,2, ..., N} and
[#|/N is large. Improving on a joint theorem with Nathanson, Sérkdzy has -
recently proved the following addition theorem of this type, see Sarkdzy (1989/
1994). - : '

Theorem 3.11. Assume that £ C{1, 2,...,N} and that || > (N/k) + 1, where
kEN. Then there are d, lEN with d <k, 1<118/k such that I« contains an
N-term arithmetic progression of multiples of d.

Bourgain (1990) and Freiman et al. (1992) have recently shown that if & is
“dense”, then there are “long” arithmetic progressions in 25/ and considerably
longer ones in 34. .

Using exponential sums and methods from the geometry of numbers, Freiman,
(1973) gave a deep analysis of the structure of sum sets of the form ks for finite
sets & assuming that |ksf| is not much greater than |&#|. Indeed, suppose
k,,...,k, ate integers at least 2, u, vy, . ..,v, are integers, and there are k, - - - k,
distinct integers of the form

d
n=u+2,xu, wherex,€{1,...,k}fori=1,....d.
i=1

Then the set P of such numbers 7 is called a d-dimensional arithmetic progression
of size |P| =k, - - - k,. Freiman’s most important result, the so-called “doubling
theorem™, says that if [2s| is not much greater than |#|, then |sf| can be
well-covered by a generalized arithmetic progression:
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Theorem 3.12. For all a > 1 there are constants ¢, = ¢,(a), €y = c,(e) such that ,Lf
|2st| < a|st|, then there is a generalized arithmetic progression P of dimensiop
d<c, with A CP and |9’|<c2|.9¢|

Many further details, results and problems on addition theorems and bases can
be found in Halberstam and Roth (1983), Stohr (1955), and Ostmann (1956).

A set & C N, is said to be a minimal basis of order k if o is a basis of order k,
but no proper subset of & is a basis of order k. A set & CN; is said to be a
maximal nonbasis of order k if o is not a basis of order &, but A U {a} is a basis
of order k for every a € N\« Stéhr, Hirtter, Erdfs, Nathanson and others have
studied properties of minimal bases and maximal nonbases, see Stéhr (1955),
Erdés and Nathanson (1987) and Nathanson (1989).

Similarly one can define the concept.of a minimal asymptotic basis or maximal

asymptotic nonbasis. Note that an immediate corollary of Theorem 3.9 is that if &/
is a minimal asymptotic basis of order 4, then d(s¢) =< 1/Ah. That this result is sharp
is shown in Erd6és and Nathanson (1988).

If B CN, is such that

A CNyand 0<o(H) <1imply o(f + B) > o(sAL),

then 9 is said to be an essential component. In 1933, Khintchin proved that the
set of squares is an essential component. In 1936, Erdds generalized this theorem
as follows by proving that every basis is an essential component.

Theorem 3.13. If & CN, is a basis of order h and o C N, is arbitrary, then
o(Hd +B)=o(A) +on (1 o(AYo(sf).

Landau slightly sharpened this result. Using a complicated graph-theoretic
argument, Pliinnecke improved the conclusion of Theorem 3.13 to the much
sharper o(sf + B)=o(s£)' """, Ruzsa (1990/91) analyzed Pliinnecke’s method

and gave further applications.
In 1942, Linnik proved the existence of a “thin” essential component & with

- B(x) <exp[(log x)°'1°*°].

This shows that an essential component need not be a basis. Wirsing improved on
this estimate and Ruzsa (1987), using exponential sums, proved the following
theorem (which settles the problem).

Theorem 3.14. For every £>0 there is an essential component 9B with B(x)=
O((log x)'**). Moreover, if % is any essential component, then there is some ¢ >0
such that B(x) > (log x)**° for all sufficiently large x.

It is not known if B = {2°3/: i, jEN,} is an essential component. Note that
B(x) ~clog®x for some ¢ > 0.
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4. Other additive problems )

4.1. Sidon sets

As before, let Ny=NU {0}. If sf CN,, let s(sf,n) denote the number of
solutions of ' ‘

a+a' =n witha,a' €4, a<a’.

In 1931, S. Sidon posed the following two problems:

(i) How “dense” can & be if s(sf, n) <1 for all n?

(ii) What is the slowest growing function f(n) such that for some s,
1=<s(sf, n) <f(n) holds for all nEN,? :

The first question motivates the following definition. If a set & C N, satisfies
s(sf, n) <1 for all n, then it is called a Sidon set. The first remarkable fact about
Sidon sets is that the greedy algorithm provides a simple way to show the
existence of relatively dense, finite Sidon sets.

The?;'em 4.1. If NEN, then there is a Sidon set s C {'1, 2,...,N} with |d|=
N2 : ‘

Proof. Clearly it suffices to show that if {a,, a,,...,a,C{1, 2,..., N} is a
Sidon set of cardinality ¢ and .

t=NY -1, . (4.2)

then there is an integer b such that _
1sbsN, bg{a,,a,...,a}, (4.3)
and
{a,,a5,...,a,1U{b}isaSidonset. ' (4.4)

To show this, note that if an integer b satisfying (4.3) does not satisfy (4.4), then
there are a;, a;, a, with ‘

g,+b=a+a,,
or there are a,, a, with

b+b=a,ta,.

There are at most £ choices for triples a,, a;, a, and at most t* choices for pairs

a,, a,, so there are at most £ + £* “bad” b’s. Thus in view of (4.2), the number of

u? v?

“good” b’s satisfying (4.3) and (4.4) is at least
N—t—(@E+)=N-(t+1)y’+1=1,

so there is at least one “good” b. O
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This argument can be modified easily to give the existence of a dense infinite
Sidon set.

Theorem 4.5. There is a Sidon set s CN such that A(n)= |n*"| for all n€EN.

In the finite case, the estimate obtained in this way can be improved
considerably. In fact, by using Singer’s theorem on perfect difference sets, Erdds
and Chowla independently proved in 1944 the following result.

Theorem 4.6. For infinitely many N €N, there is a Sidon set £ C{1,2,...,N}
with |sg|>N'"?. For all NEN, there is a Sidon set &' C{1, 2,...,N} with
lst| > N2 — ctN*''® (for some absolute positive constant c).

On the other hand in 1941 Erdés and Turén had proved the following.

Theorem 4.7. There is an absolute positive constant ¢ such that if NEN and
AC{1,2,...,N} is a Sidon set, then || <N'?+cN*"*,

Erdds conjectures that the expressmn cN*'*® in Theorem 4.6 can be replaced
with ¢ and that the expressmn ¢N''* in Theorem 4.7 can be replaced with N o)

Much less is known in the infinite case. The best-known lower bound, due to
Ajtai et al. (1981) is annoyingly only slightly better than the near-trivial Theorem
4.5.

Theorem 4.8. There is a Sidon set &£ CN such that A(n) >10"%(n log n)'"* for all
sufficiently large n.

We can do much better if we only want an £2-result. Improving on a result of
Erdés, Kriickeberg showed the following in 1961.

Theorem 4.9. There is a Sidon set of CN such that
lim sup A(n)/Vr=1/V2.
ErdSs conjectures that this lim sup is 1. Note that by Theorem 4.7, it is at most
1.

We do know the lim sup in Theorem 4.9 cannot be replaced by lim inf, as the
following result of Erdds in 1955 shows.

Theorem 4.10. There is an absolute constant ¢ such that if ${ TN is any infinite"
Sidon set, then

lim inf Am)/Vnllogn<c.

The gap between Theorems 4.8 and 4.10 remains an important unsolved
problem in the subject.
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" We can obtain interesting problems and results if we relax the condition
s(sf, n) <1 of a Sidon set to s(#f, n)<g. In 1960, using probability theory, Erd6s
and Rényi proved, among other interesting results, the following.

Theorem 4.11. For every £>0, there is a number g =g(e) and an infinite set
o CN with s(#f,n)<g for all n EN and

lim A(m)/in'?t =0,

In connection with problem (ii), in 1956 Erdds, using a probabilistic method,
proved the following.

Theorem 4.12. There are positive constants ¢y, €, and a set S CN such that
c,logn<s(sd,n)<c,logn foralln€ N .

* It is not known if s(s, n) ~clogn for some positive constant ¢ is possible.
Another attractive problem is whether s(s£, n) =1 for all n € N implies s(s, n) is
unbounded. : '

The following result due to Erdés and Fuchs in 1956 involves analytic methods.
Let r(sf,n) denote the total number of solutions of a +a’ =n with a,a’' €,
where now, we do not require @ <a'. '

Theorem 4.13. If ¢ >0 and o TN, then

>, r(d, n)=cN +o(N""*(log N)VH

n=N

cannot hold.

_As a corollary one can get an f2-result for the error term in the circle problem;
that is, for the quantity

mr? — 2 1.

(i,))EZ?
242

Recently, Montgomery and Vaughan (1990) have shown that the “factor
. (log N)"** in Theorem 4.13 may be dropped. See Halberstam and Roth (1983,
including the footnote on p. 106) and ErdSs (1956) for further information.

The results and problems discussed so far have been extended and generalized
by many people. For further references, see Hayashi (1981) and Erdds et al.
(1986).
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4.2. The arithmetic structure of sum sets and difference sets

In 1934, ErdSs and Turdn proved the following theorem.

Theorem 4.14. There is a positive constant ¢ such that if {a;, a,,...,a,} CN,
then

( I1 (a+a))>c10gn

1=i, j=n

Thus the set of integers with prime factors coming from a small set cannot
contain a subset of the form 2/ with || large.

Since then many papers have beén written on the arithmetic properties of sum
sets & + % and difference sets & — sf. For example, in 1978-79, Furstenberg and
Sarkozy (independently) studied the solvability of the equation a —a’ = n’ for a,
a’ & . In these papers written on *“‘hybrid” problems (i.e., problems involving
both general sets and special sets of integers), combinatorial, analytic, and
ergodic methods are used. See Sarkozy (1989) for a survey of these results; see
also Pintz et al. (1988) and Gyory et al. (1988) for further recent efforts.

Recently it has been proved that if s¢, & are “dense”, then (i) the sum set
o + 9B contains an element a + b all whose prime factors are “small” (Balog and
Sdrkoézy), (ii) there is a sum a + b which is “almost prime” in the strong sense

* that it is the product of a prime and a bounded integer (Sarkézy and Stewart),

(iii) there is a sum @ + b with “many” distinct prime factors (Erdds et al. 1993),
(iv) the members of & + %, weighted with respect to the number of their
representations, behave like normal integers for the function »(n) (Erdds et al
1987). This last result has been sharpened and extended in various directions by
Elliott and Sirkdézy and by Tenmenbaum. Several authors have studied the
structure of the difference set & — & for “dense” sets &; see Stewart and
Tijdeman (1983) for references.

4.3. Complete sets and subset sums

For references, see ErdSs and Graham (1980, pp. 53-60).

A set o CN is said to be complete if every large integer can be written as the
sum of the elements in some finite subset of &. For example, the powers of 2
form a complete set. It is less well known that the squares form a complete
set —indeed, every integer greater than 128 can be represented as a sum of distinet
squares.

Must a dense enough set be complete? Improving on a result of Erdds,
Folkman proved in 1966 the following result.

Theorem 4.15. Suppose s{ CN is such that A(x)>x"">"* for some &>0 and all

large x. Suppose further that the set of subset sums from # contains a complete
residue system (mod m) for every m €N. Then & is complete.
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A somewhat stronger statement, that is still open, was conjectured by Erdds in
1962. In some sense, though, Theorem 4.15 is best possible, for in 1960 Cassels
showed that “1/2” cannot be replaced with apy smaller number in the theorem.
By using Theorem 3.11, Sérkozy (1989/1994) proved a finite analog of Theorem
4.15 which has many applications. (Slightly later, Freiman independently proved
nearly the same theorem.)

Let s(#f ) be the largest number of subsets of of with the same sum. Improving
on a result of Erdss and Moser, Sarkozy and Szemerédi proved (by using
Sperner’s theorem) that if & is a set of positive reals with || =r, then
s(sf) = c2"n %" for some absolute constant ¢. This result has since been improved
by Nicolas, Beck, van Lint, and Stanley. In particular, Stanley showed that s(«)
is maximized over all sets &/ of n positive reals when &f is an arithmetic
progression and in this case the most popular subset sum is a subset sum closest to
the average of the members of .

How dense can o C {1, 2, ..., N} be if the subset sums from & are distinct?
One of Erd6s’s first conjectures is that
log N
max || = Tog2 +0(1).

Towards this conjecture, Erdés and Moser proved that

log N N loglog N
log?2 2log?2

In 1969, Conway and Guy gave the lower bound (log N)/(log2) +2 for N= 2%
which is just 1 better than the trivial example of taking the powers of 2. However,
no one has succeeded in giving any example that is 2 better than the trivial.
Ryavec showed that

1
Yy —<2.

aEsd a

max || < +0(1).

if & is a finite set of natural numbers with distinct subset sums.

In 1969, Erdés and Heilbronn showed that if o CZ/p, where p is prime and
|| > 31/6p, then the subset sums of sf cover all of Z/p. Olson improved on the
constant 3V6 and Szemerédi (1970) extended the result to arbitrary finite Abelian
groups. Sarkozy (1989/1994) studied the case when the elements of & are not
necessarily distinct. '

5. Multiplicative problems

5.1. Primitive sets

For many references, see chapter V of Halberstam and Roth (1983) and Hall and
Tenenbaum (1988).
Say % CN has the property that whenever b € B, every positive multiple of b
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is in %. Examples of sets with this property include the set of even natural
numbers, the set of composites, and the set of natural numbers with a divisor
between 100 and 200. An example with historic interest is the set of abundant
numbers, i.e., natural numbers » such that the sum of the positive divisors of n
(other than n) exceeds n.

More generally, if o CN is arbitrary, then the set %B(sf) of all positive
multiples of members of & evidently has the property that if & € B(sf), then all
positive multiples of b are in B(sf). Is every set & with this property in the form
%‘(&i ) for some o/ ? The answer is clearly yes. In fact, if & has this property and
& is the set of primitive elements of %, i.e., members of & not d1v151ble by any
other members of &, then B = B(«).

We say a set &€ C N is primitive if no member of & divides another member of
&f. Thus &f < %B(sf) is a one-to-one correspondence between primitive sets and
sets B C N such that kb € B whenever b € %.

The set of prime numbers is a primitive set. More generally, the set of nEN
with 2(n) = k is primitive for any fixed ¥ €N. The case k =2 is the primitive set
for the set of composites. If N €N, then

={n: IN<n=N}

is primitive. Clearly any subset of a primitive set is primitive.
These considerations suggest several questions:
(i) Is #y the most numerous primitive subset of {1, 2,...,N}?
(if) Must a primitive set have asymptotic density of 0?
(iii) Must a set B(sf) have asymptotic density?
At least one of these questions is fairly easy as is seen in the following result.

Proposition 5.1. $,, is the most numerous primitive subset of {1, 2,...,N}.

Proof. For each n €N, let n’ denote the largest odd divisor of n. Clearly if
m'=n' and m <n, then m |n. Thus the mapping n->n' must be one-to-one on
any primitive set . There are exactly N — |1 N] odd integers in {1, 2, ..., N},
so no primitive subset of {1, 2,..., N} can have more than N — [1N] =|%]
members. O '

The sets #, can be essentially glued together to get a counter-example to
question (ii). The key tool is the following, perhaps surprising, result of Erdés
from 1935. We first note that, concerning question (iii), if &/ CN is finife, then
clearly d(%(s)) exists.

Theorem 5.2. Let &, =d(B(F,)); that is, &, is the asymptotic density of the
integers with a divisor in (1N, N]. Then lim,_,_ ey =0.

This result can be proved by consideration of the “normal” number of prime
factors below N of a random integer. We still do not have an asymptotic formula
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for €,; the best results to date are due tO Tenenbaum. Finally, it should be
remarked that ErdGs actually proved a stronger version of Theorem 5.2 where
(1N, N] is replaced by (N =%y N and 8y—> 0 arbitrarily slowly.

The following result is due to Besicovitch in 1934.

Theorem 5.3. For each £>0, there is a primitive set s with d(sf)=1 —e.

Proof. We use Theorem 5.2; the original proof of Besicovitch used a weaker form
of this result. Let N, <N, <-:+ be a sequence of natural numbers with &y <
n~i=12 and such that the number of integers up to N, divisible by some member of
U U Fy,_, is at most

(2ey, + -t 28y N, < eN, . (5.9

Thus if we denote by ¥ ;,i the set of members of ‘ng, not divisible by any member
of Sy, U--- Uy, then |#5]> (G = &)l
Further, if o is the union of all .9’;\,1_, then & is evidently primitive and

AN =I5l = G N,
for each i. Thus d(sf)=%—¢. O

The set o just constructed (with 0<<e < 1) also answers question (iii) in the
negative. Indeed, : '

AB(A)) =d(4) =5 > 5

and since the number of members of B(s4) up to N, is by (5.4) at most &N;, we
have

AB(L)) <2 <%.

Thus %B(sf) does not possess asymptotic density.
It is a simple exercise to show the following.

Proposition 5.5. If &£ CN is such that Ve La <, then d(B(L )) exists.

It is a slightly more difficult exercise to show that if furthermore 1 & o, then
d(B(s)) <1; see Pomerance and Sarkozy (1988). )

As we have seen, a primitive set & need pot have density 0. However, if one
considers a weaker density than asymptotic density, namely logarithmic density,
then every primitive set has density 0. The logarithmic density of a set &f CNis
defined by

. 1 1
8(#) =}}—% log N Ex a’ (-6)
a=sN

P —
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2 where
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should this limit exist. It is not hard to show that if d(sf ) exists, then so does 8(s£)
and it is equal to d(sf).
In 1935, Erdés proved the following result.

Theorem 5.7. There is an absolute constant ¢ such that

>l .

ccx Bloga

for every primitive set of CN except sf = {1}.

(Erdds conjectures that the maximal value of the sum in this theorem is
attained when & is the set of primes.) It follows immediately that §(sf) =0 for
every primitive set &f. Since d(«f ) =< 6(s#f) always (this is easy), another corollary
is that the lower asymptotic density of any primitive set is 0.

In 1937, Davenport and Erd6s proved the following result.

Theorem 5.8. (i) If & CN has positive upper logarithmic density, then s contains
an infinite sequence a, <a, <--- with a)la,., fori=1,2,....
(ii) For any o CN, 8(B(sf)) exists.

Of course, by “upper logarithmic density’” we mean that the lim in (5.6) is
replaced with lim sup. These results really underline the fact that logarithmic
density is the “correct” measure when considering primitive sets and sets of
multiples.

How large can b « 1/a be for a primitive set & C {1, 2, ..., N}? This question

is partially answered by the following result of Behrend from 1935.

Theorem 5.9. There is a positive constant ¢, such that if N =3, then

1
> ~< ¢,(log N)(loglog N)™*?
aest a
for any primitive set of C{1, 2,...,N}.

Proof. Let s(i) denote the cardinality of the largest primitive set made up of
divisors of u. We begin our proof by using Sperner’s theorem (see chapter 24) to

* compute s(x) when u is squaretree. Indeed, if u is squarefree and »(u) = &, then

each divisor of u corresponds to a subset of the & primes of u. Thus Sperner’s
theorem immediately gives

s(u)=(|_%kkj) . (5.10)

We now show the connection of s() to our problem. Let u’ denote the largest
squarefree divisor of u. If of C {1, 2, ..., N} is primitive and every member of &

—_——
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1s squarefree, then

Ssuy=3 2 1=3 S1-3 [2]

usN us=N a|u e u=N acs a
o alu
1
>N 2, =—N.
aesd

Thus it will suffice to prove that
>, s(u')<cN(log N)(loglog N)™? (5.11)

w=<N
for some constant ¢ and all N=3.
To do this, we apply Stirling’s formula to (5.10), getting

su) =c2”(p@)""?, usquarefree

for some constant c. Since »(u) = »(u'), we thus bave (with /= [loglog N|)
> ssc 2 27“(w) "
u=sN

—c z 2v(u)(v(u))-1i2+c Z 2v(u)(V(u))-—1!2
u=N

u=N
v{u)=<l v{u)>1

<c-2'N -+ 2@

=N

< cN(log NY°82 + ™11 3 =(u), (5.12)
usN
where 7(u) is defined in section 1. The final sum in (5.12) is easily majorized. We
have

2 rw=2 X1=> 2 1=2 |N/d]

u=N u=EN dlu d=N u=N d<N
dlu

<N 2, 1/d<N(logN+1).

dsiN

-~

Putting this estimate in (5.12) gives (5.11) and thus the theorem for the case when
every member of &f is squarefree. :

Now suppose & C {1, 2,..., N} is an arbitrary primitive set. For each kK EN,
let o, denote the set of a € o with largest square divisor being k*. Thus {a/k*:
a €, } is a primitive set of squarefree numbers not exceeding N/k*. Thus

1 < 1 o1 1
agﬂ a_kE'—‘zl aglka _kgl kz ;ﬂk ﬂ/kz
1
F:

a

<c(log N)(log log Ny 21




(5.11)

NJ)

(5.12)
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by our theorem for primitive sets of squarefree numbers. Since X 1/k* is
convergent, the general case of our theorem follows. [l '

‘That Theorem 5.9 is essentially best possible was shown by Pillai in 1939.
Namely, Pillai showed that there is a positive constant ¢, such that for each large
N there is a primitive set of C {1, 2, ..., N} with

1
2, —>cy(log N)(log log N)7/2. (5.13)
acH
The gap between Theorem 5.9 and eq. (5.13) was eliminated by Erd6s, Sarkézy
and Szemerédi in 1967. They show that if L(N) is the maximum value of X, 1/a
for all primitive sets & C {1, 2, ..., N}, then '

L(N) = (2m) Y% + o(1))(log N)(log log N) "%  (5.14)

The lower bound in (5.14) had already been shown by Erdés in 1948 by taking £
to be the set of m & {1, 2, ..., N} with Q(m) = [loglog N|.
Interestingly, if &/ is an infinite primitive set, then we have

Zﬁ%= o{(log N)(log log N3 | (5.15)

and no statement stronger than (5.15) is true, a result of ErdSs, Szemerédi and
Sérkozy in 1967. For references, see Brdés et al. (1970). :

3.2. Product sets and other multiplicative problems

If o, B CN, we denote by A% the set of products ab where a € &, b € B. Also
we write o for df, o* for 4>, etc.
In 1960, Erdds proved the following remarkable theorem.

Theorem 5.16. If s ={1, 2,..., N}, then |#*| = N*(log N)™***)), where a =
1—(1+loglog2)/log2.

Thus there are only o(N”) distinct integers in the N X N multiplication table!
This seeming paradox is explained by-the fact that a “normal product” of integers
a,, a;<N has about 2loglog N prime factors, which is quite abrormal for
integers below N°. The idea of looking at the normal number of prime factors of
an integer is often fruitful; in fact this idea was mentioned above in connection
with Theorem 5.2 whose proof is actually quite similar to the proof of Theorem
5.16. '

What can one say about |f%]| if o and B are just “dense” subjects of {1,
2,...,N}? This question is addressed in a recent paper of Pomerance and
Sarkdzy (1990). ‘

Theorem 5.17. Ife >0 is arbitrary and o, B C{1,2, ..., N} with ||, |B|> eN,
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then |4B|= N*(log N)'"2°82* () Moreover, there is a set sty C{1,2,...,N}
with |sly| ~N and |.sa{li,| =N2(log N)I—ZIOg 2+0(1)

We say a set of C N is a multiplicative basis of order k if ¥ =N. See Wirsing
(1957) for a study of density properties of multiplicative bases.

Following Theorem 4.12 we asked the Sidon problem: if & is a basis (additive)
of order 2, must s(n), the number of representations of n as a, + a, with a,,
a, € sf, be unbounded? The multiplicative analog of this problem was solved by
Erdés in 1965 (see Erdés and Graham 1980, p. 100).

Theorem 5.18. If o is a multiplicative basis of order 2, then (n), the number of
representations of n as a,a, with a,, a, € of, must be unbounded.

How large a set & C {1, 2, ..., N} can we choose with all of the products 2,4,
(with a,, a, € o, a, <a,) distinct? If k(N) denotes the maximal cardinality of
such a set &, then Erdés has shown (with graph-theoretic tools) that

a(N) + ¢, N**/log®*N < k(N) < #(N) + c,N*"* log>°N

for certain positive conmstants c,, c, and all large N. Erd6s and Posa have
considered the analogous problem where all of the subset products from & are
distinct. See Erdds and Graham (1980, p. 98) for references and a proof.

In 1976, Szemerédi proved the following attractive result (see ErdGs and
Graham 1980, pp. 98-99).

Theorem 5.19. There is a constant ¢ such that if &, BC{1, 2,...,N} and
|AB| = ||| B|, then |B| < cN*/log(N +1).

In contrast, it is easy to comstruct sets &, & CN such that each n €N has a
unique representation n = ab with a € 8¢, b € %. For example, we may choose &
to be the powers of 2 and % to be the odd natural numbers, or more generally, &
the natural numbers all of whose primes come from %; and % the natural
numbers all of whose primes come from %,, where & U%, is an arbitrary
partition of the set of primes. Erdds, Saffari, Vaughan, and Daboussi have studied
this problem. ' '

In 1975, Erdés and Selfridge (see Erd8s and Graham 1980, p. 66) showed the
following striking result.

. _ -
Theorem 5.20. The product of two or more consecutive positive integers is never a
non-trivial power.

There are many other problems and results concerning blocks of consecutive
integers in Erdés and Graham (1980, section 8).
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6. Van der Waerden’s theorem and generalizations

For many references, see chapters 1 and 2 of Graham et al. (1980), and section 2
of Erd6s and Graham (1980). :

How much of the structure of the natural numbers must be preserved in a
“dense” subset? In 1927, B. L. van der Waerden showed that if the natural
numbers are partitioned into two subsets, then one subset contains arbitrarily long
arithmetic progiessions. In one sense, this theorem is best possible, since it is an
easy exercise to partition the natural numbers into two subsets, neither of which
contains an infinite arithmetic progression. But the theorem still leaves us
wondering about our opening question, which we now repeat more specifically.
How dense must a subset of the natural numbers be for it to contain arbitrarily
long arithmetic progressions?

In particular, in 1936 Erd8s and Turén conjectured that if o C N has positive
upper asymptotic density, then & contains arbitrarily long APs (we abbreviate

“arithmetic progression” as AP). In 1952, Roth used the Hardy-Littlewood circle

method from analytic number theory to prove the Erdés—Turén conjecture for
three-term APs. In 1969, via a combinatorial argument, Szemerédi showed the
conjecture for four-term APs, and in 1974, in what must be one of the most
complex proofs in combinatorial number theory, he proved the complete
conjecture. A few years later, Fiirstenberg, using ergodic theory, gave another
proof (also complicated) of what is now known as Szemerédi’s theorem.

How much can Szemerédi’s theorem be improved? An old conjecture of Erdos
is that if & CN satisfies only the weaker hypothesis '

S g

acd a ’
rather than positive upper asymptotic density, then this is enough to force & to
have arbitrarily long APs.

A corollary to this conjecture of Erdds is that the set of primes would contain
arbitrarily Jong APs. It is unclear, though, that one should think of this prime
number problem in terms of the Erd6s conjecture. That is, Erdds is suggesting
that the set of prime numbers contains arbitrarily long APs only because the
prime numbers are fairly numerous and not because of any special properties of
the prime numbers. This technique of generalizing a hard problem to put it in
proper perspective is of course an often-successful trick in mathematics. However,
the only progress we have had so far on showing the set of primes contains
arbitrarily long APs is through intrinsic properties of the primes. '

For example, Chudakov, Estermann, and van der Corput independently in
1937-38 used the circle method to show the following strengthening of Corollary
3.1: for any A >0, the number of even integers up to x not the sum of two
distinct primes is O(x/log”x). From this we can prove the following result.

Corollary 6.1. The set of primes contains infinitely many three-term APs.
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Proof. By the prime number theorem, the number of even integers up to x of the
form 2p with p prime is ~x/(2logx). Thus by the above-mentioned theorem,
most of these numbers 2p can be represented as g + 7, where g <r are primes.
But then g, p, r form a three-term AP of prime numbers.” [

Tt is still unknown if there are infinitely many four-term APs of primes. The
Jongest AP of primes ever found has length 22, a result of Pritchard et al. (1995).

We now look at several “equivalent” formulations of van der Waerden’s
theorem. The reason for the quotation marks is that logically, all theorems are
equivalent. Here we mean it in the subjective sense that the proofs of inter-
dependence are simple and fairly transparent. '

Theorem 6.2. The following statements are equivalent:

(i) If N is partitioned into two subsels, then one subset contains arbitrarily long
- APs. :
(ii) For each k €N, there is a number W(k) such that if {1, 2,..., W)} Is
partitioned into two subsets, then one subset contains a k-term AP.

(iii) For each k, r EN, there is a number W(k, vy such that if {1, 2,...,
Wik, r)} is partitioned into r subsets, then one subsel contains a k-term AP.

(iv) For each r €N, if N is partitioned into v subsets, then one subset contains
arbitrarily long APs.

) If {a,} is an infinite subsequence of N with {a,., — a,} bounded, then {a,}
contains arbitrarily long APs.

Proof. We first show that (i) = (ii), which is probably the most difficult of the
implications. It is an example of the “compactness principle” in Ramsey theory
(cf. chapter 42). Suppose k is such that W(k) does not exist. Thus for every N
there is a subset &y of {1, 2,..., N} such that neither sy nor its complement
contains a k-term AP. Obviously there is an infinite subsequence Ny <Np<-+-
of N such that -

5"1:=&¢Nnﬂ{1}=~Q¢N120{1}=--';

that is, either 1 is in each &y or 1 is in no &iNU. By passing to an infinite
subsequence N,y <N,, <--- of {Nlj}, we have

Syr=sly ({12} =y, N{1,2}="""

and &, C &,. Continuing in this fashion we find &; C ¥, C+++CN and an infinite
subsequence N, <N, <--- of N (N; =Ny, N, =Ny, etc.) with &= sy N{L,
2,..., ]} foreachj. Thusif &= U &, then peither & nor N\ contains a k-term
AP, contradicting (i). '

Now we show (ii) => (iii). We do this by induction on 1, (ii) being the
statement for 7 = 2 (and the case r = 1 being trivial). Suppose Wk, r) exists for all
k for some fixed r=2. Say {1, 2,...,N} is partitioned into r+1 sets
Ay, ...y, ;. I N=W(, r), then one of AUy, oy, ..., contains an
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Iterm AP, call it B. If & Cof, Ush,, then &, NB, L,NT is a partition of %
into two parts. Thus if /=W(k, 2), then one part contains a k-term AP. Since
clearly W(k, 2) =k, if B is contained in one of &, . .., &y, then one of these
sets contains a k-term AP. Thus, not only have we shown that W(k, r < 1) exists,
but we have shown that the least choice for W(k, r + 1) is at most W(W(k, 2), r).

It is obvious that (ifi) = (iv) = (i). '

It is also clear that (v) = (i), since if Z=sf, U4, o N4, =0, and kEN,
then either sf, contains k consecutive integers or the maximal gap between
consecutive members of &, is at most k.

Finally we show (iv) = (v), which will complete our proof. Suppose ¢ C N has
maximal gap r between consecutive members. Let o =s+ {i} for i=0,
1,...,r—1. Then &4, U+ - Usf,_, = N. Although these sets may not be disjoint,

(iv) still implies that one of them contains a k-term AP. Then so does 54, = 4.
(]

Van der Waerden’s theorem, as we originally stated it, is statement (i) of

‘Theorem 6.2. We now give a proof of van der Waerden’s theorem.

We begin with two definitions. If x;, X, - . . , %, and X1, X3, . . ., X, are two
sequences where each term is in {0, 1,. .., 1}, we say {x;} is l-equivalent to {x;}
if either / does not appear in either sequence or there is some k with x; =x,; for
i=<k and each x;, x; <[ for j > k. That is, {x,} and {x;} agree at least up to the
last appearance of . '

Next, we define the statement S(,m) (where I,m&N) as the following
assertion: for each r €N there is a number N(I, m, r) such that whenever {1,
2,...,N(, m, r)} is partitioned into r parts &f,..., o,, there exist a,
d,...,d, €N such that '

a+1d, +--+d,)<N({m,7) (6.3)
and such that whenever {x,} and {x]} are m-term sequences from {0, 1, . .. 1}
that are l-cquivalent, a +x,d; + - - - +X,,d,, and a + x;d, + - - - +x,,d,, are in the
same <.

Note that the condition (6.3) guarantees that a + Y xd, and a + X x/d; are in
{1,2,...,N({, m, r)}. ‘

Note also that the assertion S(/, 1). is essentially the same as statement (iii) of
Theorem 6.2. Indeed, two integers x, ¥’ €{0, 1,..., [}, considered as 1-term
sequences, are l-equivalent if and only if both x, x' <[ orx = x' = I. The assertion
S(1, 1) says that there is some number N(, 1, r) such that if {1,2,...,N({, 1,1}
is partitioned into r subsets, then there are positive integers a, d with a,
a+d,...,a+(—1)d allin one of the parts. That is, one part contains an I-term
AP. [Note that S(, 1) also carries the extra stipulation, not found in statement
(iii) of Theorem 6.2, that a +1d <N(, 1, ).] Thus van der Waerden’s theorem
will follow from the following result.

Theorem 6.4. For each I, m €N, the assertion S(, m) is a theorem.
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Proof. Our plan is as follows. First we show that if S(/, k) is a theorem for
k=1,...,m, then so toois S(, m + 1). Next we show that if S(/, m) is a theorem
for all m, then so too is S( + 1, 1). Thus our theorem will follow from this double
induction and the fact that S(1, 1) is trivially true.

Suppose I, mEN and S(, k) is a theorem for k=1,...,m. Let rEN be
arbitrary, let M = N(, m, r), M' = N(], 1, r*). We shall show that we may choose
NI, m+1,)=MM" Let &,, ..., be a partition of {1, 2,... ,MM'} and let
C be the function that assigns to i€{1, 2,...,MM'} the number j€E {1,
2,...,r} with i€ o,

Consider now the matrix

c(1) C(2) e C(M)
P RSy C(M +2) ceM)
CM - )M +1) C(M' -~ )M +2) - L coem)

Each row of A is one of the v M-term sequences from {1, 2,...,7}. We now
partition {1, 2,..., M’} into #™ subsets where i, j are in the same subset if and
only if the ith row and jth row of A are identical. Since S(l, 1) is true and by our
choice of M', one of these subsets contains an [-term arithmetic progression b,
b+d,...,b+(I—1)d, where b, d are positive integers with b + Id < M". That is,
rows b +id fori=1,...,I—-1 of A are identical.

We now apply S(,m) to {(b —1)M + 1, (b —1)M +2,...,bM} (a translate of
{1,2,...,M}) and the partition we already have of {1, 2, . .. , MM '} restricted
" o this subset. Thus there are natural numbers a, dy, . .., d,, such that

W az=dG-1)M+1, atlid, + - +d,)<bM;

(2) whenever {x;}, {x;/} are l-equivalent, m-term sequences from {0,
1,...,I}, then Cla+ Lx,d,)=Cla+ Xx/d). '

Let d,,,, = dM. To prove assertion S(/, m + 1), we will show

(Ya+ld, +:--+d,.  )sMM,;

(2') whenever {x;}, {x;} are l-equivalent, (m + 1)-term sequences from {0,
1,...,0}, then Cla+ Lx,d,)=Cla+ X x!d,).

For (1'), note that the left-hand side is

atld, +-+d,)+1d,,, <bM+I1dM

by (1). But we noted above that b +Id < M’, so we have (1').
For (2') we may clearly assume that the [-equivalent sequences {x,} and {x;}.
are not identical. Thus x,,,, X, <l Let

j=a~(G-DM+2xd, j=a—{b-1)M+2xd. (6.5)
1 1

Thenj, j'€{1,2,...,M}. We look now at columns j and'j’ of matrix A and how
they intersect rows b, b +d, . .., b + (I — 1)d. Of course, column j is constant on -




em for
heorem
double

eN be
choose
and let
JELL,

Ne now
t if and
| by our
ssion b,
That is,

slate of
stricted

m {0,

om {0,

wd {x!)

(6.5)

nd how
itant on

Combinatorial number theory 1003

these rows, as is column j'. But from (6.5),

i m
G-DM+j=a+Xxd, (G-DM+j=a+2xd,
1 1
and since x,, . . . , x,, is l-equivalent to xj, . . . , X,,, (2) implies C((b — DM +j)=
C((b —1)M +j"). Thus the constant value on the [ special rows of column j is the
same constant value as in column j'. Note that one of these rows is b +x, 414,
whose jth entry is

m+l
C((b+x,,,d-1D)M+j)=C (a + > xidi)
1

by (6.5). Another special row is b +x,,.,d, whose j'th entry is
m+1
Cb+x, ., d-1M+j)=C (a + > x,fd,.) .
1

Thus (2') holds and we have proved S(I, m +1).

For our second induction, assume / € N and S(/, m) is a theorem for all m €N.
Choose 7 €N, 7 =2 (since we clearly can take N(I +1,1, 1) =1+2). Let N= N(
7, ). We shall show we may take N(! +1, 1, 7) = 2N, Indeed take any partition of
{1, 2,...,2N} into r subsets &, ..., %, Let g, d,...,d, €N be such that
a+ld,+--+d,)<N and such that whenever {x;}, {x;} are l-equivalent,
m-term sequences from {0, 1,...,7}, a+ Y. x,d, is in the same & as a + Y xd,.

Since r=2, we have ("31)>7, so there arc integers ¥ <v with O=su<v=r
and such that

a+2d,, a+>ld
i=1 i=1
are in the same subset from &, ..., &, say . Let
' =a+2d, d= 2 d.
i=1 . j=y+1

We now claim that the (/ + 1)-term arithmetic progression a’, a’ + d,...,a' +id
lies wholly in &, and that a’ + (I +1)d' <2N. Indeed, we know already that a'
and a’ +1d’ both lie in & and if x€ {1, 2,...,[—1}, then

{,...,1,0,...,0} and {4 ....Lx,...,x0,...,0}
Mt . ey e e e e
u r—u 124 U— U r—uv

are l-equivalent, so that a’ and a'+xd’ both lie in . The assertion about
a' + (I +1)d’ is trivial since @’ +1d' <a+ Id, +---+d,)<N. Thus Si+1,1)is
proved, as is the theorem. [

The above proof is a “fleshed-out” version of the short proof presented in




1004 ' C. Pomerance and A. Sérkdzy

Graham et al. (1980, p. 32). It shows that the function W(k,r) defined in
statement (iii) of Theorem 6.2 is recursive, but it does not show it is primitive
recursive. This has recently been done by Shelah (1988), thus solving a problem
that had been outstanding for a long time. :

For the record we now formally state Szemerédi’s theorem.

Theorem 6.6. If i CN has posifive upper asymptotic density, then & contains
arbitrarily long APs.

As van der Waerden’s theorem contains several essentially equivalent forms,
the following result which is superficially stronger than Szemerédi’s theorem is
easily proved to follow from it.

Corollary 6.7. Let k €N and ¢ > 0. For each sufficiently large N, depending on the
choice of k and &, if 4 C{1, 2, ..., N} with |A| > &N, then o contains a k-term
AP.

Proof. We may assume k = 3. If the corollary is untrue, then there is an infinite

sequence N;, N, ... and sets & C {1,...,N;} with |sziN‘_] > N, and &, does not
contain any k-term AP. Let B, = sy + {2N,}, so that | By | > &N, By, C (2N, +
1,..,3N;} and %, does not contain any k-term AP. By passing to an infinite

subsequence if necessary, we may assume N, =5N, fori=1,2,.... Let
=B, .
i=1 !

Then s has upper asymptotic density at least Le. Furthermore, & contains no
k-term AP, since no %,, does and since & does not contain any 3-term AP that is
not wholly in some %,, . However, Theorem 6.6 denies the existence of any such
set of, which proves the corollary. [

An interesting and still unsolved problem that is perhaps connected with these
considerations is the following old problem of Erdés. Is there a sequence &, of 1’s
and —1’s with

N
gk, N)=2, &,
, n=1

bounded for all k, N €N? Another form of this problem asks if g(1, N) can be
bounded for all N ‘for some sequence g, of 1's and —1’s that is also ‘a
multiplicative function.

The integers

4030, 4131, 4232, 4333, 4434, 4535, 4636, 4737, 4838, 4939 (6.8)

obviously form an AP of length 10. We generalize this idea as follows. Let cy
denote the set of N-term sequences from {0, 1,...,#—1}. Then ¢ distinct points
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P, P,...,Pin CY are said to form a line if the sequence of jth terms P,
P4, ..., P!is either constant or is 0, 1, ..., ¢— 1. Thus the quadruplets formed
by the digits of the integers in (6.8), viewed as members of CJ;, form a line. The
following result is due to Hales and Jewett in 1963. ‘

Theorem 6.9. For each r, t € N, there is a number HI(r, t) such that if N = HI(r, t)
and C) is partitioned into r subsets, then one subset contains a line.

By writing the integers below ¢" in base-t notation, we see that if {0,
1,...,t" —1} is partitioned into r subsets, where N = HI(r, ), then one subset
contains a #-term AP. That is, the Hales-Jewett theorem implies van der
Waerden’s theorem. In fact, Shelah’s recent result mentioned above, that W(k, r)
is primitive recursive, was obtained by proving the stronger theorem that the
function HI(r, ¢) is primitive recursive.

In the 1930s, Gallai proved the following generalization of van der Waerden’s
theorem as a corollary of the latter. It is also possible to prove this result as a
simple corollary of the Hales—Jewett theorem.

Theorem 6.10. For all u, r, k€N, if Z" is partitioned into r subsets, then one
subset contains a set of the form B* where B CZ is an AP of length k.

By 3" we mean of course all the points of Z* whose coordinates lie in 2. -

It is natural to ask if Theorems 6.9 and 6.10 can be generalized to “dense’ séts.
For Hales-Jewett, the following theorem was recently announced by Fiirstenberg
in the Abstracts of the 1990 International Congress of Mathematicians.
Theorem 6.11. For each tEN, >0, if N is sufficiently large and s{ C Y with
|s2| > et”, then of contains a line.

The proof is by ergodic methods. The following result is a Szemerédi-type
analog of Gallai’s theorem 6.10. It was first proved by Fiirstenberg and Katznel-
son in 1978. However, it now may be viewed as a corollary of Theorem 6.11.

Theorem 6.12. For each k,u €N and each >0, if N is sufficiently large and
o C{—N,NJ*NZ" with || > eN", then A contains a subset B* where B CL is
an AP of length k. ‘

Another question one may attack is that of sequences of lattice points in Z*. If
a sequence v, Uy, ... in Z" has “small gaps”, what may be said? We should not
expect to find long APs as can be seen from the following result of Dekking
(1979).

Theorem 6.13. There is an infinite sequence ©,, Uy, . . . in 7% with each v, —~ v, =
(0, 1) or (1, 0) and such that no five of the v’s form an AP of vectors.
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However, we may expect a large subset to be collinear, at least for 7* (we mean
“collinear” in the ordinary, geometric sense). The following result is due to
Ramsey and Gerver (1979).

‘Theorem 6.14. If vy, ©,, . . . is an infinite sequence in 72 with |v,., — v;| bounded,
then for every k there are k of the v’s which are collinear. _

As is also shown by Ramsey and Gerver, this result is not true for 7.

Theorem 6.14 bears a similarity in appearance t0 statement (v) of Theorem 6.2
and thus may be thought of as an analog of van der Waerden’s theorem. The
following result of Pomerance (1980) would thus be a Szemerédi-analog.

Theorem 6.15. If v,, v, . .. is an infinite sequence in 77 with

: o 1 N .
lign ipf 7 2 [0 0l <
im
then for every k there are k of the U’s that are collinear.

An old result of Schur says that if N is partitioned into finitely many classes,
then one class must contain infinitely many triples x, y, z with x +y =Z. This
result has been starting point of many interesting Ramsey-type problems on the
integers. One particularly interesting result is due to Hindman in 1974 who
showed that if N is partitioned into finitely many classes, then one class contains
an infinite set & such that all finite subset sums from & belong to the same class.
For more on problems of this type, see chapter 3 of Graham et al. (1980).

7. Miscellaneous problems

As with combinatorics as a whole, combinatorial number theory is rich in
attractive problems that defy precise classification. It is from the wealth of such
problems in an area that we are sometimes able to discern patterns that become
the broad outlines of a more mature branch of mathematics. In this section we '
take a very brief glimpse at a few of these problems.

7.1. Covering congruences

For references see section 3 of Erdds and Graham (1980) and section F13 of Guy
(1994). :

In 1934, Romanoff posed the following problem. Can every sufficiently large
odd integer be written as a suin of a power of 2 and a prime? In 1950, Erdds and
van der Corput independently answered this problem in the negative by showing
that in fact there is an infinite arithmetic progression of positive odd numbers m .
not of the form 2" + p. Erd6s’s solution begins with the observation that every
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integer n is in at least one of the following residue classes:

0(mod2), 0(mod3), 1 (mod4),

3(mod8), 7(mod12), 23 (mod24). (7D

From this he was able to deduce that if n is a positive integer and m
simultaneously satisfies

m=1(mod32), m=2"(mod3), m=2°(mod7),
m=2'(mod5), ' (7.2)
m=2*(mod17), m=2"(mod13), m=2% (mod?241),

then m is odd and not representable as 2" +p. Moreover, by the Chinese
Remainder Theorem from elementary number theory, the set of integers m which
satisfy all of the congruences in (7.2) form an infinite arithmetic progression with
common difference 32-3-7-5-17-14-241. (It is still not known if a positive odd
intéger m which is not representable as 2" +p must belong to an infinite
arithmetic progression of such integers.)

A finite system of residue classes, such as (7.1), which have distinct moduli and
such that every integer belongs to at least one class, is called a covering system of
congruences. Another example that is simpler than (7.1) (but that does not have
relevance to the 2" + p problem) is

0(mod2), O(mod3), 3(mod4), 1(mod6), 5(modi2).
' (7.3)

In both (7.1) and (7.3) the least modulus is 2. The following problem of Erdds
from 1950 is the major unsolved problem in the area.

Problem 7.4. It is true that for every k there is a covering system of congruences
with least modulus at least k&?

An example due to Choi has least modulus 20. There are numerous other
problems and some results concerning covering systems of congruences. We
mention two more problems, the first due to Selfridge, the second to Erdés.

Problem 7.5. Is there a covering system of congruences with all moduli squarefree
and greater than 2?

Problem 7.6. Is there a covering system of congruences with all moduli odd and
greater than 17

7.2. Graham’s conjecture
If CN, let F(&¥)={a/b: a, b € ¥}. Graham conjectured in 1970 that if & is
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finite, then
F&)YZ F({1,2,..., || —1}).

That is, there are a, b € & with a/(a, b) =|¥|. This problem has attracted much
attention and there have been numerous partial results. One of the easier ones is
due to Szemerédi who has proved Graham’s conjecture in the case |#|=p, a
prime. Indeed, we may assume not every member of & is divisible by p (if not,
replace each a € ¥ with a/p) so that there are two members 4, b € & with either
a=b#0 (mod p) or a#b=0 (mod p). In either case, a/bZF({1,2,...,p—
1}). -

Recently Graham’s conjecture was independently proved by Szegedy (1986)
and Zaharescu (1987) for all sufficiently large values of |#]. They were even able
to describe those sets & with F(#)=F({1, 2,...,1¢[}). '

Theorem 7.7. There is some number n, such that if n=n,,  CN, |#|=n, then
FOYZF({L, 2,...,n=1}). If F&¥)CF{L, 2,...,n}), then there is some
k &N with either

Kk
172°°""’n

F={k,2k,...,nk} or .9’={

In Cheng and Pomerance {1994) it is shown that we may take n, = 10°°°% and
in Balasubramanian and Soundararajan (1995) it is shown that we may take
1, = 5. Note that the first claim in Theorem 7.7 is true for n <5, but the second
claim fails for n =4, since & = {2, 3, 4, 6} has F(¥) = F({1, 2, 3, 4}).

7.3. Perfect numbers — Wirsing’s theorem

Let o(n) denote the sum of the positive divisors of n. If o(n) = 2n, then n is said
to be perfect. The first few examples are 6, 28, and 496. It has been known since
Euclid that if 27 — 1 is prime, then 277'(2” — 1) is perfect. The three examples
just cited fit this formula with p =2, 3, 5. In fact, it has been shown by Euler that
every even perfect number comes from Euclid’s formula. The two big questions
are: (1) are there infinitely many perfect numbers?, and (2) are there any odd
perfect numbers? )

From the Buclid—Euler results, the first question is equivalent to the existence
of infinitely many Mersenne primes, that is, primes of the form 27 —1. This is a
very hard problem about which very little is known. We know 33 values of p for
which 27 — 1 is prime, the largest being p = 859 433. :

We are still far from solving the second problem too. Numerous partial results
are known, however. One of the more interesting theorems in the subject is due
to Wirsing (1959), a paper which extends earlier joint work with Hornfeck.

Theorem 7.8. There are absolute constanis c,, x, such that if x = x, and a is any
rational number, then the number of n<x with o(n) = an is at.most xCo/leglosr
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Proof. We begin with the observation that o(n) is a multiplicative function
[o(mn) = o(m)o(n) when (m, n) = 1]. Suppose « is given; write ¢ in reduced form
u/v. Suppose x is large, n < x, and o(n) = an. Write n = ab, where b is the largest
divisor of » all of whose prime factors p satisfy p <logx or p|v. Then ab is an
integer. The idea of the proof is to use the equation.

o) =o(@b)=oc(@)ob)=a-ab. - (79

The plan is to show that we must have o(b){ab, and use this to show that b just
about determines 4.

Suppose the prime factorization of a is p’3 1 p pok. Let I be the least mteger
=log x/log log x. Since each p, >logx and since a =< < n =<x, we have

ﬁ1+ﬁz‘|""+ﬁk‘<~l: ’ (7-10)

so that, in particular, k =</. Then

k k 1
1@0(“)=H(1+p;1+---+p;ﬂ=')<ﬂ(1+ )
| i=1 pi—1 _
< (i—l )< (—l )<2 7.11
X\ 25 —1) <P \(log ) —1 o0

for x = x,. Thus for x =x, we have a|o(a) if and only if = 1. Putting this into
(7.9) we see that for x = x, we have either a =1 or o(b)4ab. In fact we get even
more. If a'|a, (a', ala')=1, and a' <a, then applying (7.11) to a/a’ we have
o{a'b)ta’ - ab.

Let us see how we can reconstruct the number a given only b and an ordered
k-tuple (with k= 0) of positive integers B, B,, - - . , B; satisfying (7.10). First if
k=0, then a =1, and we are done. So suppose & > 0. Then o(b){ab (if this fails
then there can be no a at all), so let p, be the least prlrne that divides o(b) to a
higher power than it divides ab. If k=1, then a =p%!, so suppose k>1. Let
b'=bp®. Then as before we may assume o(p')¥ab’; let p, be the least prune
that d1v1des o{b') to a higher power than it divides ab’ If k=2, then a = piiph2.
If k>2, we let b"=bp%1pf2 and contlnue as before. This procedure either
terminates with an integer a = p%1pf2. .. p& or proves no a can exist satisfying
(7.9). If @ is constructed, it may or may not satisfy (7.9). But if some a satlsfymg
(7.9) does exist, this procedure will find it.

Thus for x = x; the number of n < x satisfying o(n) = an is at most BC, where
B is the number of »=<x such that v|b and for every prime p in b we have
p=<logx or pjv and C is the number of ordered tuples of natural numbers
satisfying (7.10).

From elementary combinatorics we have C = 2. :

Note that we have B < B, B,B,, where B, is the number of b; <x of the form

Y1 472
4192

Yis Yas - e -

-+ g} where g, g5, . .., g, are all of the primes in v exceeding logx and

, 7%, are natural numbers, B, is the number of b, =<x such that every
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prime in b, is in the interval (log®'*x, logx], and B, is the number of by =<x
divisible by no prime exceeding log®'*x.

An upper bound for B, is the number of sequences ¥, %, .-, % of natural
numbers such that - '

Wty t-ohy=sl.

Thus B, <(,!,)=2"

The total number of prime factors in a choice for b, is at most (log x)/
log(log® *x) <2L. Say the primes in (log*"“x, logx] are r;, ry, . . ., 7,,- Then B, s
af most the number of sequences 8,, 8,, . . . , §,, of non-negative integers with

8 +8,t---+8,<2.
Thus again using elementary combinatorics, we have

B. < (m + 21) < gm+2
9 = m = .

However, m = #r(log x) — w(log*'*x), so that from the ptime number theorem we
have m ~ (log x)/log log x. Since we have yet to use such a “big gun”, we could
rely instead on the more elementary inequality (1.1). To be specific, we use
7r(z) < 2z/log z, which holds for all z> 1. Thus we have m < 21, so that B, <2¥,
(In fact, the inequality m(z) <2z/logz can be proved by a very easy argument
involving binomial coefficients, but we suppress the details.) :

If p is a prime and p? divides some choice for b, then p” <x so that g =<(log
x)/log 2. Thus B, is at most the number of ordered w(log® “x)-tuples with each
coordinate a non-pegative integer at most (logx)/log2. Thus

B, <(1+ (log x)/10g 2)"0°="*? < (1 + (log x) log 2)"*%" * < 2!

for x=x,. :

From the above, if x=x,, then B < B,B,B, <2%. Since C =2, if we have
x =x, = max{x,, x,}, then the number of n=<x with o(n) = an is at most 27,
proving the theorem. [

While it is clear that a smaller value of ¢, may be found from a more careful
proof, it would be more interesting to replace ¢, with some function tending to 0,
‘perhaps only in the special case o =2 corresponding to perfect numbers. As for
Jower bounds, we know of no & for which we can prove o(n) = an has infinitely
many solutions. In fact, we cannot even prove that the number of solutions is
unbounded as a varies. It is known that if for some & and k there are infinitely
many solutions to o(n) = an with »(n) =k, then there are infinitely many even
perfect numbers, a result due to Kanold in 1956. Pomerance (1977a) proved the
following effective form of this theorem.

Theorem 7.12. For any « and k there is an effectively computable constant N(e, k)
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such that if n > N(a, k), o(n) = an, and v(n) = k, then n = em, where e is an even
perfect number (e,m) =1, and m < N(a, k).

The bound N(e, k) is not very friendly, although it is primitive recursive as a

function of k. In the special case of odd solutions z, there is a somewhat more

reasonable bound. For example, if # is an odd perfect number with »(n) = &, then
Heath-Brown (1994), improving on a result in Pomerance (1977a) showed

I
n<4*

That n is bounded by some function of k& (for odd perfect numbers) was first
shown by L. E. Dickson in 1913.

In 1932, D. H. Lehmer proposed the following problem that is similar in flavor
to the odd perfect number problem. Lehmer asked if there are any composite
natural numbers n with () |# — 1, where ¢ is Euler’s function from elementary
number theory. This is still unsolved today. We do know that the number of
composité integers n<x with o(n)|n—1, is O *log’*x), and that if ¢(n)
divides n — 1, »(n) =k, and k> 1, then

ok
n=k® |

see Pomerance (1977b). This can be improved to n<42" using the method of
Heath-Brown (1994).

Consider the function s(n) = a(n) — n, the sum of the proper divisors of n. Thus
a perfect number # satisfies s(n) = n. For any natural number #, one may consider
the aliquot sequence for n: n, s(n), s(s(n)), . ... An old conjecture of Catalan and
Dickson is that any such sequence either terminates at 0 (by hitting a prime and
becoming 0 two steps later) or becomes periodic. This has been proved for all
n=<275. Guy and Selfridge (1975) instead conjecture that the set of n whose
aliquot sequence is unbounded has positive lower asymptotic density.

A cycle of length 2 for the function s(r) is called an amicable pair. Namely, this
is a pair of distinct integers a, b such that s(¢) = b and s(b) = a. Such numbers
have been studied since Pythagoras who noted that 220 and 284 are an amicable
pair. In 1955, Erdés showed that the numbers which belong to an amicable pair
have asymptotic density 0. In Pomerance (1981) it is shown that the number of
integers up to x which belong to an amicable pair is at most x - exp(—(log x)*"*) if
x is sufficiently large.

7.4. Graphs on the integers

Consider the coprime graph on Z. This is the graph whose vertex set is Z and two
integers a, b are connected by an edge if (a, b) = 1.

The problem that opens this chapter can be reworded as follows. What is the
largest set o C {1, 2, ..., N} such that the induced coprime graph on & contains
no edges? This is the case k=2 of the following famous problem of Erdds.

Namely, what is the largest set &f C {1, 2, ..., N} such that the induced coprime .
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graph on & does not contain a complete graph on k& vertices? Of course, the set
of integers n < N which have a prime factor among the first & — 1 primes is such a
set, and Erdés conjecture was that this set gives the maximum. This conjecture is
fairly easily proved for k=3. The case k =4 was proved by Szabd and Téth

(1985). Finally this long-standing problem has been very recently settled com-
pletely by Ablswede and Khachatrian (1995). First, they showed that there is a
pair k, N for which the conjecture fails, and their example suggests that probably
there are infinitely many integers k such that the conjecture fails for these k and
certain small values of N. On the other hand, they proved that the following
slightly weaker form of the conjecture is true: for every k there is a number

N, = Ny(k) such that for N> N,(k), up to N the set of multiples of the first k —1
- primes gives the largest set with no k numbers pairwise coprime.

If o C{1,2,...,N)} has ||= [N} +1, then we have seen that the coprime
graph on & must contain an edge. Must it already contain many edges? The
answer is yes, for as Erdds et al. (1980) show, there must be some a € of with
valence at least cN/loglog N. Moreover, if [o£|=(Z + g)N, then the coprime
graph on sf contains at least c(£)N? edges. They also show that if |Al= (2 + )N,
then the coprime graph on & contains at least c()N” triangles, i.e. triplets 4y, @;,
a; with (a;, a,) = @y, a5) = (@2 as)=1. :

The coprime graph on Z has many edges so we might expect that if I; and I, are
disjoint intervals of n consecutive integers, then the induced coprime graph on
I, UL, contains a matching from I, to I,. This is not the case, however. Suppose
I,={2,3,4and,={8,9, 10}. Then any one-to-one correspondence between I,
and I, must have at least onc pair of even numbers in the correspondence.
Another example: I, = {2, 3, 4, 5}, I, =430, 31, 32, 33}. Here nothing can
correspond with 30.

About 25 years ago, D. J. Newman conjectured that if [, = {1,2,...,n}yand
is any interval of n consecutive integers, then there is a coprime matching from I
to I,. (If I, N [, #®, we mean there is 2 one-to-one correspondence from I, to I
with corresponding numbers coprime. This can still be thought of as a matching in
the coprime graph if we replace I, by I,+ {n!}.} In Pomerance and Selfridge
(1980), Newman’s conjecture is proved by giving an algorithm for constructing a
coprime matching and proving it works for every n. The proof involves effective
estimates for the cardinality of the sets S(x, u)={n=<x: ¢n)/n=< u}, where ¢ 18
Euler’s function. ' : '

Consider now the divisor graph on N. Here two distinct numbers a, b are
connected by an edge if either a|b or b |a. There are many attractive problems
concerning the divisor graph; few of them are completely solved. The divisor
graph is not as dense with edges as the coprime graph, so in general two
n-element subsets of N should not be expected to contain 4 matching. Rather, we
might consider the following. Let f(n) be the least integer such that the divisor
graph contains a matching from {1,2,...,n}into {n+1,n +2, ..., fm)}. The
following result is due to Erd6s and Pomerance (1980).

Theorem 7.13. There are positive CORSIanis Co; ¢, such that for all large n,

cn((log m)/log log n)** < f(n) < c;n(log m)""* .
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Proof. We present only the proof of the upper bound; the lower bound proof is
much harder and not particularly combinatorial in flavor. We shall show that we
may take ¢, as any number larger than 2.
Let &> 0 be arbitrary. The divisor graph clearly contains a matching from the
integers in (/y/log n, n] into the integers in (n, n[Vlog n]] —indeed, just multiply
each number in the ﬁrst interval by [Vlog n]. It will thus be sufficient to show the
divisor graph contains a matching from I to J, where

1= [1, n/\/iog n]NN, J=n[Viogn],(2+eenviegn]NN.

We consider in fact only the subgraph where a &1, b €J are connected by an
edge if b/a is prime.

If a €1, the number of primes p such that pa €/J is, by the prime number
theorem,

w(%(zw)m/loﬂ) ~ (G nrvicgn)
nViogn

>(1+1
(1+3e) a log(a™'nVlog n)
logn
2(1+%8)10g10gn |

if n = n,, uniformly for al @ € I. On the other hand, if b € J, the maximal number
of a €7 that can correspond to b is at most the number of primes p that divide b
with p =logn. Since b < (2 + &)nVlog n, this number evidently is at most

log((2 + &)n/log n) {41 logn
loglog n (1+z¢) log logn

for n=n,. Thus for n=max{n,, n,}, the Koénig—Hall marriage lemma (see
chapter 3) implies there is a matching from [ into J. O

What is the length H(n) of the longest simple path in the divisor graph on {1,
2,...,n}? Hegyviri conjectured H(n) = o(n) and this was proved by Pomerance
(1983) It would be nice to get an asymptotic formula for H(n). Recently, Saias
and Tenenbaum have obtained fairly sharp estimates for H(n). Other problems of
a similar nature are considered in Erd®s et al. (1983).

7.5. Egyptian fractions

The ancient Egyptians thought fractions 1/a where a €N were especially nice.
There is today a wide body of literature and many problems and results
concerning Egyptian fractions —see section 4 in Erd6s and Graham (1980) and
section D11 of Guy (1994).

It has been known since Fibonacci that every positive rational r can be
expressed as a finite sum of distinct Egyptian fractions. In fact, the greedy
algorithm of choosing @,,, minimal with a,_,>a, and 1/g,+---+1/a,  ,<r
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always terminates. However, 2 representation of r as a sum of distinct Egyptian
fractions is certainly not unique and this fact Jeads to many questions. For
example, what is the fewest number of summands for 7? Or, how many ways are
there to write r as a sum of » distinct Egyptian fractions as n—> ? For the latter
question, the ease r= 1 has special interest. ,

It has been conjectured by Erd6s and Straus that for every integer n>1, 4/n
can be written as a sum of three Egyptian fractions. This has been verified
numerically for small values of n and has been shown true for all n but for a
possible exceptional set of asymptotic density 0. More generally, Schinzel and
Sierpifiski have conjectured that every positive rational a/b can be expressed as a
sum of three Bgyptian fractions provrided the denominator b is sufficiently large as
a function of the numerator a. This is easily seen not to be true for a sum of two
Egyptian fractions. For example, if p is a prime with p=1 (mod3), then
3/p=1/x+1ly is not solvable in integers. '

7.6. Pseudoprimes

From Fefmat’s little theorem, if r is prime and a0 (mod n), then

a" " =1(modn). | (7.14).

The congruence (7.14) is very useful for testing large numbers » for primality.

Indeed, even if n is very large, it is a relatively simple matter to compute the least -

non-negative residue of 2”7 (modn); if this is not 1 (and n>2), then n is

composite. The residue may be found in O(log ) multiplications (mod n) using’

the repeated squaring method. However, this method is not perfect— sometimes
we come across composite numbers 7 that nevertheless satisfy (7.14) for some a.
The least example with @ =2 is n =341, and with a=3 is n=91. We say n is a
pseudoprime to the base a if n is a composite natural number and (7.14) holds.

Let P,(x) denote the number of base a pseudoprimes up to x. Can we prove
that for a fixed a we have P,(x) = o(m(x)); that is, that base g pseudoprimes are
rare compared with primes? Certainly not for a = +1, since then (7.14) has many
composite solutions. However, for {a|>1, Erd6s showed in 1956 that P,(x)=
o(ar(x)) does in fact hold. The best result in this direction is due to Pomerance in
1981. '

Thebrem 7.15. For each integer a with |a| > 1, there is a number xy(a) such that fo'r
x = x,(a) we have P,(x) <x'7*®? where

&(x) = (loglog log x)/log log x . (7.16)
In 1956, Erdds conjectured that P,(x) > x'~“** for some ¢ > 0 and x sufficiently

Jarge and where &(x) is defined in (7.16). This conjecture was refined by
Pomerance to the following. -
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Conjecture 7.17. For each integer a with |a| > 1, we have

P, (x) = x! ™0+ (0s)
, .

One might wonder if a number # can be simultaneously a pseudoprime to the
bases 2 and 3. This in fact can happen; the least example is # = 1105. It is not
known if there are infinitely many such . There are numbers n which are a
pseudoprime to every base a with (a, n) = 1. Such numbers are called Carmichael
numbers; the smallest example is n =3561. If C(x) is the number of Carmichael
numbers up to x, it is known that C(x) < x'7*® for x sufficiently large and it is
conjectured that C(x) =x"~*°IN®  Alford et al. (1994) recently proved there
are infinitely many Carmichael numbers. In fact they showed the following.

{

Theorem 7.18. For all sufficiently large values of x, C(x) > x*7.

The proof, which roughly follows a heuristic argument given by Erdés in 1956,
has some strong combinatorial elements.

We remark that any composite number n with ¢(n)|n —1 must also be 2
Carmichael number, but no such # are known to exist (see the earlier remarks on
perfect numbers). ' '
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